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Abstract—It is well known that a bandlimited signal can be
uniquely recovered from nonuniformly spaced samples under
certain conditions on the nonuniform grid and provided that
the average sampling rate meets or exceeds the Nyquist rate.
However, reconstruction of the continuous-time signal from
nonuniform samples is typically more difficult to implement than
from uniform samples. Motivated by the fact that sinc interpo-
lation results in perfect reconstruction for uniform sampling,
we develop a class of approximate reconstruction methods from
nonuniform samples based on the use of time-invariant lowpass
filtering, i.e., sinc interpolation. The methods discussed consist of
four cases incorporated in a single framework. The case of sub-
Nyquist sampling is also discussed and nonuniform sampling is
shown as a possible approach to mitigating the impact of aliasing.

Index Terms—Nonuniform sampling, Approximate reconstruc-
tion, Lagrange interpolation, Sinc interpolation, Time jitter, Sub-
Nyquist sampling

I. INTRODUCTION

D ISCRETE-time signals can arise in many ways, but they
most commonly occur as representations of sampled

continuous-time signals. The most common form of sampling
used in the context of discrete-time processing of continuous-
time signals is uniform sampling corresponding to samples
of continuous-time signals obtained at equally spaced time
intervals. Under certain conditions, specified by the Nyquist-
Shannon sampling theorem, the original signal can be recon-
structed from this set of equally-spaced samples. The recon-
struction is done through sinc interpolation1 corresponding to
the impulse response of a linear time-invariant ideal lowpass
filter.

In a variety of contexts, nonuniform sampling naturally
arises or is preferable to uniform sampling. For example, some
biomedical devices utilize low-power sensors that use self-
timed circuits, thus removing the need for power-intensive
clock buffers and clock distribution. However, these self-timed
circuits tend to introduce nonuniformity in the sampling clock
[1]. Nonuniform sampling also often arises in time-interleaved
analog-to-digital converters, where a signal is passed through
multiple parallel channels, each uniformly sampling the signal
at the same rate. The output samples of the channels are then
multiplexed to obtain a full discrete-time representation of
the signal. For the case in which the clock phases of these
channels are asynchronous, interleaving samples from each
channel leads to recurrent nonuniform sampling [2]. Recurrent
nonuniform sampling also often arises in sensor networks
in which each sensor uniformly samples the environment
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1Throughout the paper we refer to convolution of an impulse train of
samples with the function h(t) = sinc( π

T
t) as sinc interpolation and use the

historical unnormalized definition of the sinc function, i.e. sinc(x) , sin(x)
x

asynchronously and transmits to a main base station, where
the samples are interleaved.

In many cases nonuniform sampling is deliberate and advan-
tageous. In the spatial domain, non-uniformity of the spacing
of the array elements in an antenna or acoustic sensor array is
often part of the array design as a trade off between the length
of the array and the number of elements. In ray traced com-
puter graphics, it has been shown that nonuniform sampling
yields aliasing that is less conspicuous to the observer [3].

Exact reconstruction of a bandlimited continuous-time sig-
nal from nonuniform samples is based on Lagrange interpola-
tion. For the case of uniform sampling, Lagrange interpolation
reduces to sinc interpolation and can be approximated with
well designed lowpass filtering. When the sampling grid is not
uniform, Lagrange interpolation is more difficult as discussed
in section II. In this paper we consider sinc interpolation of
nonuniform samples as a way to approximately reconstruct the
continuous-time signal. A class of approximate reconstruction
methods is proposed in which each method corresponds to
a different assumption with respect to the knowledge of the
exact sampling times and of the probability distribution of their
deviation from a uniform sampling grid.

II. RECONSTRUCTION OF BANDLIMITED SIGNALS FROM
NONUNIFORM SAMPLES

A variety of approaches to reconstruction of signals from
nonuniform samples have been previously proposed and dis-
cussed. In a classic paper on nonuniform sampling of ban-
dlimited signals [2], Yen introduced several reconstruction
theorems to address the cases of a finite number of non-
uniform samples on an otherwise uniform grid, a single gap in
uniform sampling and recurrent nonuniform sampling. Other
reconstruction approaches, specific to recurrent nonuniform
sampling have also been proposed [4–8]. In the work of
Yao and Thomas [9], the Lagrange interpolation functions
were applied to the reconstruction of bandlimited signals from
nonuniform samples. It is shown there that a finite-energy
signal x(t) bandlimited to ±π/TN can be reconstructed from
its nonuniform samples x(tn) using Lagrange interpolation
when the sampling instants tn do not deviate by more than
TN/4 from a uniform grid with spacing of TN . Specifically,
if

|tn − nTN | ≤ d < TN/4, ∀n ∈ Z , (1)

then

x(t) =
∞∑

n=−∞
x(tn)ln(t) , (2a)

where
ln(t) =

G(t)

G′(tn)(t− tn)
, (2b)
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G(t) = (t− t0)
∞∏

k=−∞
k ̸=0

(
1− t

tk

)
, (2c)

and G′(t)=̂dG(t)
dt . Interpolation using eqs. (2) is referred to as

Lagrange interpolation. This theorem is based on a theorem
proved by Levinson [10], which states that the functions
{Ln(Ω)}, defined as the Fourier transforms of {ln(t)}, are
bandlimited and form a sequence biorthogonal to {ejΩtn} over
[− π

TN
, π
TN

], given that the condition of eq. (1) is satisfied, i.e.,

Ln(Ω) =

∫ ∞

−∞
ln(t)e

−jΩtdt = 0, |Ω| > π

TN
, (3)

and

1

2π

∫ π
TN

− π
TN

Ln(Ω)e
jΩtkdΩ = ln(tk) = δ[n− k]. (4)

Eq. (4) utilizes the interpolation condition of the Lagrange
kernel which ensures that the property of consistent resampling
is upheld, i.e., that sampling the reconstructed signal on the
nonuniform grid {tn} yields the original samples {x(tn)}.
Note that expressing Ln(Ω) in (4) as the Fourier transform
of ln(t) results in biorthogonality of the sequences {ln(t)}
and {sinc(π/TN (t− tn))}, i.e.,∫ ∞

−∞
ln(t)sinc(π/TN (t− tk))/TNdt = δ[n− k], (5)

from which the expansion in (2) for bandlimited signals is
clearly followed.

The difficulty of exact reconstruction of bandlimited signals
from nonuniform samples through Lagrange interpolation is
partly due to the fact that the interpolating functions at
different sampling times do not have the same form except
in special cases. Also, each interpolating function depends on
all sampling instants. The complexity of the implementation
motivates the need for simpler approximate approaches to
reconstruction, and a variety of methods has previously been
proposed. One practical approach to recovering a signal from
its nonuniform samples has been the use of nonuniform splines
[11]. Iterative reconstruction methods for nonuniform sam-
pling which are computationally demanding and have potential
issues of convergence have also been previously proposed
[12–18]. In a different approach, time-warping methods were
applied by Papoulis in [19] to reconstruct bandlimited signals
from jittered samples. In [20] and [21], time-warping was used
for reconstruction from samples of signals with time-varying
frequency content. A method of designing FIR filters in such
a way that the effect of input clock jitter is diminished is
discussed in [22]. In [23, 24] several approaches are suggested
and analyzed for approximate reconstruction from jittered
samples. Mean-square comparison of various interpolators
is done in [25] for the case of uniform sampling, uniform
sampling with skips, and Poisson sampling. A modification
of the conventional Lagrange interpolator is proposed in [26]
which allows approximating a bandlimited signal from its
nonuniform samples with high accuracy. A comprehensive
review of literature concerning other techniques in nonuniform
sampling can be found in [27] and [28].

III. SINC INTERPOLATION OF NONUNIFORM SAMPLES

In this section we restrict ln(t) in eq. (2a) to be of the
form ln(t) = (T/TN )sinc(π/TN · (t − t̃n)) corresponding to
sinc interpolation. It will be assumed throughout this section
that the average sampling rate meets or exceeds the Nyquist
rate, i.e., that T ≤ TN where T denotes the nominal sampling
interval and TN denotes the Nyquist sampling interval.

Note that since the kernel used in this framework is time-
invariant, the exact sampling instants are not needed in design-
ing the reconstruction filter. This is in contrast to Lagrange
interpolation in which this knowledge is required in forming
the interpolating functions since these functions do not have
the same form at each sampling instant and each interpolating
function depends on all sampling instants, i.e., it is not a time-
invariant convolution.

We consider and analyze four cases incorporated in a single
framework where the choice for the values t̃n differs for each
of the methods discussed below. In the first case, it is assumed
that both the exact sampling instants and the probability
distribution of their deviation from a uniform sampling grid
are known. As we will see in section III-F, even with the
knowledge of the exact sampling instants, it can sometimes be
beneficial to place the samples on a grid other than the actual
nonuniform grid corresponding to the sampling instants. In
determining this grid we utilize the probability distribution of
the deviation of the sampling instants from a uniform sampling
grid. In the second case, sinc interpolation is applied to the
samples placed on a uniform grid with spacing corresponding
to the average or nominal spacing of the nonuniform sampling
grid. In that approximation it is not necessary to know the
exact sampling instants since they are not used. This may
occur in situations where the samples are stored in memory
and their exact timing information is lost. The third case
consists of applying sinc interpolation to the samples located at
the actual nonuniform sampling times. This method requires
knowledge of the nonuniform grid. However, as opposed to
Lagrange interpolation where the sampling instants are needed
in advance to generate the interpolating functions, the sinc
interpolation function requires only knowledge of the nominal
sample spacing. In the fourth case, it is assumed that the
exact sampling times are not known but that the probability
distribution of their deviation from a uniform sampling grid is
known.

A. Mathematical Formulation

To have a common framework that incorporates these four
cases, we denote by x[n] a sequence of nonuniform samples
of x(t), i.e.,

x[n] = x(tn) (6)

where {tn} represent a nonuniform grid which we model as
a perturbation of a uniform grid with spacing T , i.e.,

tn = nT + ξn. (7)

For analysis purposes, we consider x(t) to be a continuous-
time zero-mean wide-sense stationary random process with
autocorrelation function Rxx(τ) and power spectral density
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(PSD) Sxx(Ω) which is zero for |Ω| ≥ Ωc = π/TN .
ξn is characterized as an i.i.d. sequence of zero-mean ran-
dom variables independent of x(t) with probability density
function (pdf) fξ(ξ) and characteristic function Φξ(Ω) =∫∞
−∞ fξ(ξ

′)ejΩξ′dξ′.
For the reconstruction of x(t) from its nonuniform samples

x[n], we apply sinc interpolation to the samples placed on a
second nonuniform grid t̃n = nT + ζn that in general is not
restricted to the nonuniform grid on which the samples were
originally acquired, i.e., ζn and ξn are not necessarily equal.
The reconstruction takes the form

x̂(t) =
∞∑

n=−∞
(T/TN ) · x(tn) · h(t− t̃n), (8)

with h(t) = sinc( π
TN

t) as illustrated in Figure 1, where π
TN

is
the highest frequency present in x(t).

T

π

TN

x̂(t)

−

π

TN

∑
n
x[n]δ(t− t̃n)x[n]

t̃n = n · T + ζn

Sample
to

Impulse

Fig. 1. Reconstruction using sinc interpolation.

The four cases outlined above are incorporated into this gen-
eral framework as follows: For the first case, we characterize
ζn as another i.i.d sequence of random variables independent
of x(t) and for which ζn is independent of ξk when n ̸= k.
This case will be referred to as Randomized Sinc Interpolation
(RSI) and is the most general case we consider, since the
other three cases can be treated as special cases of it. In the
second case, we assume that only the average spacing of the
nonuniform grid is known rather than the exact location of
the sampling times. This corresponds to choosing ζn = 0 and
applying sinc interpolation to the samples placed on a uniform
grid. We refer to this case as Uniform Sinc Interpolation (USI).
The third case referred to as Nonuniform Sinc Interpolation
(NSI) corresponds to choosing ζn = ξn, i.e., the reconstruction
is carried out on the nonuniform grid corresponding to the
sampling instants. In the fourth case, we assume that the
deviations ξn of the sampling instants from a uniform grid
are not known but their probability distribution is known.
Therefore, ζn is characterized as an i.i.d sequence of random
variables independent of x(t) and for which ζn is independent
of ξk for all n, k. This case will be referred to as Independent
Sinc Interpolation (ISI). Table I summarizes these four cases.

B. Randomized Sinc Interpolation

Appendix B shows an equivalence with respect to second-
order statistics2 between the nonuniform sampling discussed
above when followed by Randomized Sinc Interpolation and
the system in Figure 2. The frequency response of the LTI sys-
tem in Figure 2 is the joint characteristic function Φξζ(Ω1,Ω2)

2Throughout the paper we use the terminology of equivalence between two
systems with respect to second-order statistics to mean that for the same input,
the output means, auto-correlation functions, and cross-correlation functions
are identical.

Φξζ(Ω,−Ω)
y(t)

v(t)

z(t)x(t)

Fig. 2. A second-order statistics model for nonuniform sampling followed
by Randomized Sinc Interpolation for the case where T ≤ TN .

of ξn and ζn, defined as the Fourier transform of their joint
pdf fξζ(ξ, ζ). In the same figure, v(t) is zero-mean additive
colored noise, uncorrelated with x(t), with PSD as follows:

Svv(Ω) =
T

2π

∫ Ωc

−Ωc

Sxx(Ω
′
)(1− |Φξζ(Ω

′
,−Ω)|2)dΩ

′
|Ω| < Ωc .

Thus, with respect to second-order statistics, x̂(t) can equiva-
lently be represented by the signal z(t) in Figure 2.

We denote eR(t) = x̂(t) − x(t) as the error between x(t)
and its approximation x̂(t) obtained by RSI. Then, as shown
in Appendix B, the corresponding mean square error (MSE)
is given by

σ2
eR =

1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·Q(Ω)dΩ, (9)

where

Q(Ω) = |1− Φξζ (Ω,−Ω)|2 +
1

r
·
∫ Ωc

−Ωc

1− |Φξζ(Ω,−Ω1)|2

2Ωc
dΩ1, (10)

and r = TN/T ≥ 1 denotes the oversampling ratio.

C. Uniform Sinc Interpolation

In the case where neither the sampling instants nor their
distribution is known, we set the perturbations ζn in the
reconstruction of Figure 1 to zero. This results in

x̂(t) =
∞∑

n=−∞
(T/TN ) · x(tn) · h(t− nT ), (11)

which corresponds to treating the nonuniform samples as
being on a uniform grid and reconstructing x(t) with sinc
interpolation of these samples as though the sampling was
uniform, corresponding to USI. Note that when USI is used
for reconstruction, the signal x(t) in the equivalent system of
Figure 2 is in effect pre-filtered by the characteristic function
Φξ(Ω) of ξn, and the additive uncorrelated noise v(t) is white.
Since |Φξ(Ω)| ≤ Φξ(Ω)|Ω=0 = 1, the characteristic function
has in general the behavior of a lowpass filter when viewed
as a frequency response of an LTI system3.

The error between x(t) and its approximation x̂(t) obtained
by USI is denoted by eU (t) and the corresponding MSE
follows directly from (9) by replacing Φξζ(Ω1,Ω2) with

3Note that when ξn is symmetrically distributed on (−T/2, T/2), the
characteristic function Φξ(Ω) is real and symmetric. In addition, in the region
Ω ∈ (−π/T, π/T ) Φξ(Ω) is non-negative, concave and bounded from below
by cos(ΩT/2), as elaborated in Appendix A. Its radius of curvature at Ω = 0
is also shown to be inversely proportional to the variance σ2

ξ of ξn.
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TABLE I
SINC INTERPOLATION RECONSTRUCTION METHODS

Randomized Sinc Interpolation (RSI) Nonuniform Sinc Interpolation (NSI)
Sinc interpolation is applied to the samples Sinc interpolation is applied to the samples
placed on a grid determined by both the placed on the nonuniform grid corresponding
exact sampling instants and the pdf of their to the sampling instants
deviation from a uniform sampling grid

Independent Sinc Interpolation (ISI) Uniform Sinc Interpolation (USI)
Sinc interpolation is applied to the samples Sinc interpolation is applied to the samples
located on a grid independent of the actual placed on a uniform grid
nonuniform grid

Φξ(Ω1), i.e.,

σ2
eU=

1

2π

∫ Ωc

−Ωc

Sxx(Ω)
(
|1− Φξ(Ω)|2 +

1

r
·
(
1− |Φξ(Ω)|2

))
dΩ. (12)

For the case of no oversampling, i.e., when the oversampling
factor r = 1, the MSE in eq. (12) reduces to

σ2
eU = 2 · 1

2π

∫ Ωc

−Ωc

Sxx(Ω) · (1−ℜ(Φξ(Ω))) dΩ

= 2 ·

(
Rxx(0)−

1

2π

∫ Ωc

−Ωc

Sxx(Ω) · ℜ(Φξ(Ω))dΩ

)

= 2 ·
(
Rxx(0)−

∫ ∞

−∞
Rxx(τ) · f (even)

ξ (τ)dτ

)
. (13)

When in addition, ξn is symmetrically distributed on
(−TN/2, TN/2), the following inequalities on the mean
square reconstruction error follow by utilizing the properties
of Rxx(τ) and Φξ(Ω) given in Appendix A,

σ2
eU

2Rxx(0)
≥ 1−min (ρxx(ξ0),Φξ (Ω0)) (14a)

σ2
eU

2Rxx(0)
≤ 1−max (ρxx(TN/2),Φξ(π/TN )) , (14b)

where ρxx(τ) = Rxx(τ)/Rxx(0), ξ0 = E(|ξ|), and Ω0 =∫ Ωc

−Ωc
|Ω| · Sxx(Ω)∫ Ωc

−Ωc
Sxx(Ω′)dΩ′ dΩ. The fact that Rxx(τ) is mono-

tonically decreasing in (0, TN/2) and Φξ(Ω) is monotonically
decreasing in (0, π/TN ) leads to∫ TN/2

−TN/2

Rxx(τ)fξ(τ)dτ ≥ Rxx(TN/2), (15)

and

1

2π

∫ Ωc

−Ωc

Sxx(Ω) · Φξ(Ω)dΩ ≥ Rxx(0) · Φξ(π/TN ), (16)

from which the upper bound in (14) clearly follows. To obtain
the lower bound in (14) we use the concavity of Rxx(τ) and

Φξ(Ω) in the appropriate regions. Specifically,∫ TN/2

−TN/2

Rxx(τ)fξ(τ)dτ =

∫ TN/2

0

Rxx(τ) · 2fξ(τ)dτ

≤ Rxx

(∫ TN/2

0

τ · 2fξ(τ)dτ

)
= Rxx(E(|ξ|)), (17)

and

1

2π

∫ Ωc

−Ωc

Sxx(Ω) · Φξ(Ω)dΩ =

Rxx(0) ·
1

2π

∫ Ωc

−Ωc

Sxx(Ω)
1
2π

∫ Ωc

−Ωc
Sxx(Ω′)dΩ′

· Φξ(Ω)dΩ

≤ Rxx(0) · Φξ

(∫ Ωc

−Ωc

|Ω| · Sxx(Ω)∫ Ωc

−Ωc
Sxx(Ω′)dΩ′

dΩ

)
. (18)

Note that the inequality in (17) suggests that when E(|ξ|) =
ξ0 < TN/2 is fixed, minimum mean square reconstruction er-
ror of USI is achieved when ξn takes the values ±ξ0 with equal
probabilities, i.e., when Φξ(Ω) = cos(ξ0Ω). Alternatively,
when

∫ Ωc

−Ωc
|Ω| · Sxx(Ω)∫ Ωc

−Ωc
Sxx(Ω′)dΩ′ dΩ = Ω0 < π/TN is fixed, it

follows from (18) that minimum mean square reconstruction
error of USI is achieved when ρxx(τ) = cos(Ω0τ). The lower
bound in (14) together with the fact that when a lower bound is
achieved it is the greatest lower bound results in the following
upper bounds on ρxx(τ) and Φξ(Ω),

ρxx(τ) ≤ cos(Ω0τ) |τ | < TN/2, (19)

Φξ(Ω) ≤ cos(ξ0Ω) |Ω| < π/TN . (20)

We would expect the performance of USI to be inversely
proportional to the signal’s bandwidth Bx, as defined in (30).
This is intuitively reasonable since with slow variations of the
signal, the uniform samples x(nTN ) are accurately approx-
imated by the nonuniform samples x(tn). The upper bound
on σ2

eU seems to agree with this intuition since it decreases as
Rxx(TN/2) increases, and Rxx(TN/2) is expected to increase
as the radius of curvature of Rxx(τ) at τ = 0 increases or
equivalently as the bandwidth Bx of x(t) decreases.
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D. Nonuniform Sinc Interpolation

When the sampling instants tn are known, we can alterna-
tively set the reconstruction perturbations ζn to be equal to
the sampling perturbations ξn so that the impulses in Figure
1 are located on the correct grid. This is another special case
of eq. (8) for which the reconstruction takes the form

x̂(t) =
∞∑

n=−∞
(T/TN ) · x(tn) · h(t− tn). (21)

Note that for this approximation, referred to as Nonuniform
Sinc Interpolation, the distribution of the perturbations is not
needed. The corresponding MSE of the reconstruction error
eN (t) follows directly from eq. (9) by replacing Φξζ(Ω1,Ω2)
with Φξ(Ω1 − Ω2), i.e.,

σ2
eN =

1

r
·

(
Rxx(0)−

1

2Ωc

∫ Ωc

−Ωc

(
Sxx(Ω) ∗ |Φξ(Ω)|2

)
dΩ

)
=

1

r
· 1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·

(∫ Ω+Ωc

Ω−Ωc

1− |Φξ(Ω
′
)|2

2Ωc
dΩ

′

)
dΩ. (22)

E. Independent Sinc Interpolation

When the exact sampling times are not known but the
probability distribution fξ(ξ) of their deviation from a uniform
sampling grid is known, and choosing ζn in the reconstruction
of Figure 1 to be independent of ξk for all n, k, we obtain

σ2
eI =

1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·
{
|1− Φξ (Ω)Φζ (−Ω)|2 +

1

r
·

(
1− |Φξ(Ω)|2 ·

1

2Ωc

∫ Ωc

−Ωc

|Φζ(Ω1)|2dΩ1

)}
dΩ.(23)

As with any characteristic function, |Φζ(Ω)| ≤ 1 for all
Ω. Consequently, the second term in eq. (23) is minimized
when Φζ(Ω) = 1, corresponding to ζn = 0, i.e., Uniform
Sinc Interpolation. In minimizing the first term in eq. (23)
we restrict fξ(ξ) to be symmetric. Furthermore, the deviation
from the uniform grid is restricted to be less than T/2, i.e.,
fξ(ξ) = 0 for |ξ| ≥ T/2. From this it follows that the
Fourier transform of fξ(ξ), i.e., Φξ(Ω) is guaranteed to be
real and non-negative for |Ω| ≤ π/T (see Appendix A).
Since the average sampling rate is at or above the Nyquist
rate, i.e., π

T ≥ Ωc, Φξ(Ω) will always be real and non-
negative in the interval of integration for the first term in eq.
(23). Consequently, to minimize that term we again choose
Φζ(Ω) = 1, corresponding to Uniform Sinc Interpolation.

In summary, when the probability density function of ξn is
symmetric and has bounded support, Uniform Sinc Interpola-
tion is an optimal reconstruction within this framework. More
generally, the optimal choice for fζ(ζ) may not correspond to
Uniform Sinc Interpolation and lower MSE may be achieved
with Φζ(Ω) = e−jζ0Ω corresponding to ζn = −ζ0, i.e.,
Uniform Sinc Interpolation with an offset of the uniform grid.
The offset ζ0 can be optimized to minimize σ2

eI in (23).
Specifically,

ζopt0 = argmax
ζ0

ℜ

{
1

2π

∫ Ωc

−Ωc

Sxx(Ω)Φξ(Ω)e
jζ0ΩdΩ

}
(24)

or equivalently,

ζopt0 = argmax
ζ0

Rxx(τ) ∗ fξ(τ)|τ=ζ0

= argmax
ζ0

Eξ (Rxx(ξ − ζ0)) . (25)

Note that when fξ(ξ) is symmetric and the deviation from
the uniform grid is less than T/2, ζopt0 = 0 consistent with the
observation that the optimal reconstruction in this case does
not depend on the specific shape of the pdf and corresponds
to Uniform Sinc Interpolation. This follows by noting that∫ T/2

−T/2

Rxx(τ − ζ0)fξ(τ)dτ =∫ T/2

0

[Rxx(τ − ζ0) +Rxx(τ + ζ0)] fξ(τ)dτ ≤∫ T/2

−T/2

Rxx(τ)fξ(τ)dτ, (26)

where we used the symmetry of the pdf fξ(ξ) and of Rxx(τ),
and the property that

Rxx(τ) ≥
1

2
(Rxx(τ − ζ0) +Rxx(τ + ζ0)) ∀ |τ | < T/2, ζ0, (27)

which Appendix A shows to be true for the autocorrelation
function of a bandlimited signal.

F. RSI - Minimum Mean Square Reconstruction Error

As eq. (9) shows, the performance of RSI depends on the
power spectrum Sxx(Ω) of the continuous-time signal x(t)
as well as on the joint characteristic function Φξζ(Ω1,Ω2) of
the perturbations, which can be designed to reduce the MSE.
In order to formulate the optimal reconstruction within the
framework of RSI, i.e., to design ζn in the reconstruction
method of Figure 1 to achieve minimum MSE, eq. (9) should
be optimized with respect to Φξζ(Ω1,Ω2) subject to the
constraint Φξζ(Ω, 0) = Φξ(Ω). This optimization requires in
general the knowledge of both the exact sampling instants and
the probability distribution of their deviation from a uniform
sampling grid. As we will next see, even though the exact
sampling instants are known, the optimal reconstruction may
not correspond to NSI, i.e., the optimal grid on which the
samples are placed in reconstruction prior to sinc interpolation
may possibly be different than the actual nonuniform sampling
grid.

In minimizing the MSE we consider two cases. The first is
the case of small, zero-mean perturbations from a uniform
grid, for which in the region |Ω1| < Ωc and |Ω2| < Ωc,
Φξζ(Ω1,Ω2) can be approximated well by the second-order
Taylor expansion

Φξζ(Ω1,Ω2) ≈ 1− σξζΩ1Ω2 −
1

2
σ2
ξΩ

2
1 −

1

2
σ2
ζΩ

2
2, (28)

with the corresponding standard deviations σξ and σζ of ξn
and ζn assumed to be small enough relative to T so that (28)
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holds. Substituting (28) into (9) for the case r = 1 yields

σ2
eR ≈ Rxx(0) ·

(
σ2
ξ ·Bx + 1/3 · σ2

ζ · Ωc
2
)
, (29)

where Bx is a measure of the signal’s bandwidth defined as

Bx =

∫ Ωc

−Ωc

Ω2 ·

(
Sxx(Ω)∫ Ωc

−Ωc
Sxx(Ω

′)dΩ′

)
dΩ. (30)

From (29) we see that independent of the detailed character-
istics of the perturbation or the signal spectrum, as long as
the perturbations around the uniform grid are small enough so
that (28) holds, it is preferable to reconstruct the signal using
USI, corresponding to ζn = 0. This is despite the fact that
USI uses only the nominal rather than actual sampling times.

We next consider the case in which the sampling perturba-
tion errors are uniformly distributed over the range

(
−T

2 ,
T
2

)
.

As previously mentioned, the optimal perturbations ζn in the
reconstruction of Figure 1 are chosen to minimize (9) with
respect to Φξζ(Ω1,Ω2). One interesting case occurs when the
joint characteristic function Φξζ(Ω1,Ω2) is characterized by a
finite set of parameters, and the optimization of the MSE in
(9) reduces to optimization over those parameters. Consider
as an example the case when ζn is a kth-order polynomial
of ξn whose coefficients are to be designed. For simplicity,
we consider here only the linear case, i.e., ζn = βξn with
β ∈ [0, 1] for which the case of β = 0 corresponds to USI
and the case of β = 1 corresponds to NSI. It then follows that
the Fourier transform of the joint pdf fξζ(ξ, ζ) is

Φξζ(Ω1,Ω2) = Φξ (Ω1 + βΩ2) , (31)

and Q(Ω) as defined in (10) reduces to

Q(Ω) = |1− Φξ ((1− β)Ω)|2

+
1

r
·
∫ Ωc

−Ωc

1− |Φξ(Ω− βΩ1)|2

2Ωc
dΩ1, (32)

where Φξ(Ω) = sinc(T2Ω). Figure 3 shows Q(Ω) for different
values of β with no oversampling, i.e., when the oversampling
factor r = 1. As indicated, at low frequencies Q(Ω) is
minimized when β is close to 0, whereas at high frequencies
it is minimized when β is close to 1. More generally, the
optimal choice of β that minimizes the reconstruction MSE
will depend on the specific shape of the power spectrum
Sxx(Ω) of the input signal x(t). As Figure 3 suggests, it
will tend to be small for signals that vary slowly, i.e., when
Bx as defined in (30) is small. As an illustration, Figure 4
demonstrates this behavior of the optimal choice of β as a
function of Bx for an example in which Sxx(Ω) is of the
form

Sxx(Ω) =
π

d tan(Ωc/d)
· 1

1 + (Ω/d)2
|Ω| < Ωc, (33)

in which case

Bx =
Ωcd

arctan(Ωc/d)
− d2, (34)

and

1

2π

∫ Ωc

−Ωc

Sxx(Ω)dΩ = 1. (35)

As indicated, when the bandwidth Bx of the input signal
is small, the samples are positioned close to the uniform
sampling grid. As Bx is increased, β is increased and as
a result the samples are positioned closer to their original
locations but still with a tendency towards the uniform grid
due to the optimality of USI.

−π/Τ  −π/2Τ  0  π/2Τ  π/Τ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ω

Q
(Ω

)

 

 

β=0
β=0.25
β=0.5
β=0.75
β=1

Fig. 3. Q(Ω) for the case where ξn ∼ u[−T/2, T/2] and T = TN = 1.
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0.14

0.16

0.18
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β

Fig. 4. The optimal choice of β that minimizes σ2
eR

as a function of Bx

for the case where T = TN = 1.

G. Discussion

While USI uses only the zero-mean assumption of the
perturbation error and does not require the knowledge of
the exact sampling instants, this knowledge is necessary for
NSI. Comparing USI with NSI with respect to mean square
reconstruction error, it is in general not possible to claim
which of these methods is preferable. Their relative perfor-
mance is dependent on the power spectrum Sxx(Ω) of the
continuous-time signal, the distribution fξ(ξ) of the sampling
perturbations and the oversampling ratio r. For ISI, not only
the mean but the entire probability distribution function of the
deviation from a uniform sampling grid is needed in general.
Since USI can be viewed as a special case of ISI for which
fζ(ζ) = δ(ζ), it might be possible in general to obtain a
lower MSE with ISI than with USI. As previously discussed,
there are cases in which even though the entire probabil-
ity distribution of the sampling perturbations is known, the
mean square reconstruction error of ISI is minimized when
fζ(ζ) = δ(ζ), corresponding to USI. USI, NSI and ISI can all
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be formulated as special cases of RSI, which is more general.
With an appropriate choice of fξζ(ξ, ζ), it might be possible
in general to obtain a lower MSE with RSI than with USI,
NSI or ISI.

In the problem formulation, the samples were taken on a
nonuniform grid that is a perturbation of a uniform grid, and
the objective was to design the grid on which to locate the
samples in reconstruction prior to sinc interpolation. Never-
theless, this framework can handle other cases of interest as
well. Consider for example the case in which the samples
are taken on an accurate uniform grid, but there are timing
inaccuracies in the discrete to continuous processing. This case
can be formed as a special case of the general framework for
which Φξζ(Ω1,Ω2) = Φζ(Ω2).

IV. SUB-NYQUIST SAMPLING

In the previous section we considered the case of T ≤ TN

for which under certain conditions perfect reconstruction is
possible using Lagrange interpolation. When T > TN per-
fect reconstruction is in general not possible. However, the
biorthogonality condition in (4) guarantees that whether or
not T ≤ TN , the output of the system in Figure 5 with
ln(t) as given by eq. (2b) corresponds to the least-squares
approximation of x(t). In other words, when the sampling

|tn − nT | ≤ d <
T

4

x(t)

tn

x̃(t)

π

T
−

π

T

1

ln(t)
x̂(t) =

∑
n
x̃[n]ln(t)x̃[n]

C/D

Fig. 5. Anti-Aliasing followed by nonuniform sampling and Lagrange
interpolation.

instants {tn} satisfy the condition

|tn − nT | ≤ d < T/4 ∀n ∈ Z, (36)

the use of an anti-aliasing LTI filter with cut-off frequency
of half the average sampling rate, followed by nonuniform
sampling and Lagrange interpolation results in an orthogonal
projection from the space of finite energy signals to the
subspace of finite energy bandlimited signals.

In certain applications, it is either not possible or not
preferable to implement anti-aliasing filtering. With uniform
sampling and when the Nyquist condition is not satisfied,
frequency components of the original signal that are higher
than half the sampling rate are then folded into lower frequen-
cies resulting in aliasing. More generally, when the sampling
grid is nonuniform and satisfies the condition of eq. (36), the
approximation resulting from Lagrange interpolation can be
viewed in general as an oblique projection from the space of
finite energy signals into the space of finite energy bandlimited
signals. This follows from noting that the composition of
sampling at times {tn} and reconstruction using the kernel
ln(t) is a linear operator f(·). Since the Lagrange kernel
is bandlimited, applying the operator f(·) to x(t) yields a
bandlimited signal x̂(t) = f(x(t)). Since Lagrange interpola-
tion results in perfect reconstruction from nonuniform samples

of bandlimited signals, f(x̂(t)) = f(x(t)), i.e., f(·) is a
projection. Consequently, aliasing with uniform or nonuniform
sampling is a projection from the space of out of band signals
into the space of bandlimited signals [29]. The projection
representing aliasing with nonuniform sampling is in general
an oblique rather than orthogonal projection.

Nonuniform sampling can offer an advantage over uniform
sampling when the nominal sampling rate is less than the
Nyquist rate, i.e., for undersampled signals. It has previously
been suggested by several authors that nonuniform sampling
can be utilized to mitigate the impact of aliasing. In cer-
tain applications, particularly perceptual ones, the distortion
resulting from nonuniform sampling is often preferable to
aliasing artifacts. In fact, a form of randomized sampling
is used in the computer graphics community to anti-alias
ray-traced images [3, 30, 31]. In this section we consider
the framework developed in section III for reconstruction
from nonuniform samples for the case where T > TN , i.e.,
sub-Nyquist sampling and discuss the second-order statistics
characteristics and the aliasing behavior of these methods.

A. Randomized Sinc Interpolation

Applying Randomized Sinc Interpolation to the nonuniform
samples {x(tn)} as shown in Figure 1, where the cut-off
frequency of the ideal low-pass filter is π

T , results in x̂(t)
whose power spectrum and cross-correlation with x(t) are
shown in Appendix C to be

Sx̂x̂(Ω) =
∞∑

n=−∞
Sxx(Ω− 2π

T
n)|Φξζ(Ω− 2π

T
n,−Ω)|2 +

T

2π

∫ Ωc

−Ωc

Sxx(Ω
′
)
(
1− |Φξζ(Ω

′
,−Ω)|2

)
dΩ

′
|Ω| < π

T
, (37)

and

Rx̂x(t, t− τ) =
1

2π

∫ π/T

−π/T

ejΩτ ·
∞∑

n=−∞

(
Sxx

(
Ω− 2π

T
n

)
·

Φξζ

(
Ω− 2π

T
n,−Ω

)
ej

2π
T n(t−τ)

)
dΩ =

∫ ∞

−∞
Rxx(t1) ·

∞∑
n=−∞

[
fξζ(t1 + t− nT − τ, ζ) ∗ sinc(

π

T
ζ)
]
|ζ=t−nT dt1. (38)

Once again, the perturbations in sampling and reconstruc-
tion can be designed to shape the power spectrum of the
reconstructed signal through the joint characteristic function
Φξζ(Ω1,Ω2). Notice that in the case of T = TN , eqs. (37)
and (38) coincide with the output power spectrum and the
input-output cross-correlation of the system in Figure 2.

B. Uniform Sinc Interpolation

In the case of Uniform Sinc Interpolation, sinc interpolation
is applied to the samples placed on a uniform grid with spacing
corresponding to the average spacing of the nonuniform sam-
pling grid. With respect to second-order statistics, nonuniform
sampling followed by USI is equivalent to the system of
Figure 6, in which vU (t) is zero-mean additive white noise,
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∑
n δ(t− nT )

Φξ(Ω)
x(t)

vU (t)

zU (t)
T

π

T
−

π

T

Fig. 6. A second-order statistics equivalent of nonuniform sampling followed
by Uniform Sinc Interpolation for the case where T > TN .

uncorrelated with x(t). For the system of Figure 6 it is straight
forward to show that

SzUzU (Ω) =
∞∑

n=−∞
Sxx

(
Ω− 2π

T
n

)
·
∣∣∣∣Φξ

(
Ω− 2π

T
n

)∣∣∣∣2 +
T

2π

∫ Ωc

−Ωc

Sxx(Ω
′
) ·
(
1− |Φξ(Ω

′
)|2
)
dΩ

′

︸ ︷︷ ︸
T 2·SvUvU (Ω)

|Ω| < π

T
, (39)

and that

RzUx(t, t− τ) =
1

2π

∫ π/T

−π/T

∞∑
n=−∞

(
Sxx

(
Ω− 2π

T
n

)
·

·Φξ

(
Ω− 2π

T
n

)
ej

2π
T n(t−τ)

)
ejΩτdΩ. (40)

To show the equivalence, we note that with Uniform Sinc
Interpolation, i.e., when ζn = 0, Sx̂x̂(Ω) in eq. (37) reduces to
SzUzU (Ω) in eq. (39) and the cross-correlation Rx̂x(t, t−τ) in
eq. (38) reduces to RzUx(t, t−τ) in eq. (40). The structure of
Figure 6 suggests that with respect to second-order statistics,
nonuniform sampling with stochastic perturbations can be
modeled as uniform sampling of the signal pre-filtered by the
Fourier transform of the pdf of the sampling perturbation.
Correspondingly, the pdf fξ(ξ) can be designed subject to
the constraints on fξ(ξ) as a probability density function so
that the characteristic function Φξ(Ω) acts as an equivalent
anti-aliasing LPF. Of course the stochastic perturbation still
manifests itself through the additive white noise source vU (t)
in Figure 6. Thus, Figure 6 suggests that aliasing can be traded
off with uncorrelated white noise by appropriate design of the
pdf of the sampling perturbation.

C. Nonuniform Sinc Interpolation

In the case of Nonuniform Sinc Interpolation, sinc interpola-
tion is applied to the samples located at the actual nonuniform
sampling grid. With respect to second-order statistics this is
equivalent to the system in Figure 7, in which vN (t) is zero-

p(t) =
∑

n
fξ(t− nT )

x(t)

vN (t)

zN (t)
T

π

T
−

π

T

Fig. 7. A second-order statistics equivalent of nonuniform sampling followed
by Nonuniform Sinc Interpolation for the case where T > TN .

mean additive noise, uncorrelated with x(t). For the system

of Figure 7 it is straight forward to show that

SzNzN (Ω) =
∞∑

n=−∞
Sxx

(
Ω− 2π

T
n

)
·
∣∣∣∣Φξ

(
2π

T
n

)∣∣∣∣2 +
T

2π

∫ Ωc

−Ωc

Sxx(Ω
′
) ·
(
1− |Φξ(Ω− Ω

′
)|2
)
dΩ

′

︸ ︷︷ ︸
T 2·SvNvN (Ω)

, |Ω| < π

T
,(41)

and that

RzNx(t, t− τ) =

∫ ∞

−∞
Rxx(τ − τ

′
)p(t− τ

′
)sinc

( π
T
τ

′
)
dτ

′
, (42)

where p(t) =
∑∞

n=−∞ fξ(t− nT ). The equivalence is shown
by noting that with Nonuniform Sinc Interpolation, i.e., when
ζn = ξn, Sx̂x̂(Ω) in eq. (37) reduces to SzNzN (Ω) in eq. (41)
and Rx̂x(t, t− τ) in eq. (38) reduces to RzNx(t, t− τ) in eq.
(42).

Figure 7 suggests that with respect to second-order statis-
tics, nonuniform sampling followed by NSI is equivalent
to modulating the signal with a periodic signal p(t) with
period T , obtained from the pdf fξ(ξ) of the perturbation
error and adding uncorrelated noise. In the frequency domain,
this corresponds to scaling each replica of the spectrum by
|Φξ(

2π
T n)|2. Correspondingly, the components in (41) asso-

ciated with aliasing can be eliminated by designing the pdf
fξ(ξ) so that Φξ(

2π
T n) = 0 for all n ̸= 0, which corresponds

in the time-domain to p(t) = c where c is a nonzero constant.
Of course, similar to USI, the stochastic perturbation still
manifests itself through additive uncorrelated noise, as shown
in Figure 7. However, as opposed to USI where the additive
noise is white and the signal is pre-filtered by the characteristic
function of the perturbation, the additive noise in NSI is in
general not white, its power spectrum is determined by the
convolution of Sxx(Ω) with (1− |Φξ(Ω)|2), and the shape of
the original signal is preserved in reconstruction.

D. Independent Sinc Interpolation

With respect to second-order statistics, Independent Sinc
Interpolation corresponds to the system of Figure 8, in which

Φζ(−Ω)

vU (t)

zI (t)

∑
n δ(t− nT )

Φξ(Ω)
x(t)

vI (t)

T

π

T
−

π

T

Fig. 8. A second-order statistics equivalent of nonuniform sampling followed
by Independent Sinc Interpolation for the case where T > TN .

vI(t) is zero-mean additive noise, uncorrelated with both
vU (t) and x(t),

RzIx(t, t− τ) =
1

2π

∫ π/T

−π/T

∞∑
n=−∞

(
Sxx

(
Ω− 2π

T
n

)
·

·Φξ

(
Ω− 2π

T
n

)
ej

2π
T n(t−τ)

)
Φζ(−Ω)ejΩτdΩ, (43)
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and

SzIzI (Ω) =

( ∞∑
n=−∞

Sxx

(
Ω− 2π

T
n

) ∣∣∣∣Φξ

(
Ω− 2π

T
n

)∣∣∣∣2 +
T

2π

∫ Ωc

−Ωc

Sxx(Ω
′
)
(
1− |Φξ(Ω

′
)|2
)
dΩ

′

︸ ︷︷ ︸
T 2·SvUvU (Ω)

 · |Φζ(−Ω)|2 +

(
1− |Φζ(−Ω)|2

)
· T

2π

∫ Ωc

−Ωc

Sxx(Ω
′
)dΩ

′

︸ ︷︷ ︸
T 2·SvIvI (Ω)

|Ω| < π

T
. (44)

As Figure 8 suggests, perturbing the grid on which the
samples are placed prior to sinc interpolation has a similar
effect to that of the stochastic perturbations in sampling, i.e.,
the characteristic function of the perturbations acts as a low-
pass filter and an uncorrelated noise is added.

E. Simulations

In Figure 10 we illustrate the different types of artifacts
resulting from sub-Nyquist sampling and with each of the
reconstruction methods discussed above. We choose the signal
x(t) to be the output of an LTI system driven by white noise
for which the transfer function Hc(s) has unity gain at s = 0,
and as shown in Figure 9 its poles and zeros locations are
{0.1πejπ(2k+9)/20}10k=1 and {0.1π(−0.1± 5

8j)}, respectively.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ℜ (s)

Im
(s

)

Fig. 9. Pole-zero diagram of the transfer function Hc(s).

To simulate a discrete-time signal whose power spectrum
is consistent with the power spectrum of x(t), we process
discrete-time white noise with a discrete-time LTI system
whose impulse response h[n] is obtained using the method
of impulse invariance, i.e., by sampling the impulse response
hc(t) of the continuous-time system every Td = 1 [sec]. The
spacing on this grid is considered to be sufficiently dense
so that aliasing is negligible and it accurately represents the
impulse response of the continuous-time system. Figure 10(a)
shows Ŝxx(Ω), the estimated power spectrum of x(t) obtained
by applying Welch’s method [32] with Hanning window of
length 6656 [sec] and with 50% overlap. 500 blocks are
averaged to obtain the estimate. This method and parameters
are used for all spectral estimates in Figure 10.

From the parameters used for generating x(t) and consistent
with Figure 10(a) we consider the bandwidth of x(t) to be
approximately 0.14π [rad/sec] and the corresponding value of
TN to be approximately 7 [sec]. In the remaining simulations
in Figure 10, the average or nominal spacing is T = 13 [sec]≈
1.8TN , and the power spectrum estimates are shown over the
region [− π

T ,
π
T ] as if an ideal reconstruction filter was applied.

Figure 10(b) corresponds to the case of uniform sampling
where reconstruction is obtained by applying USI to the sam-
ples of x(t). This figure shows the estimated PSD ŜU

x̂x̂(Ω) of
the approximation obtained by simulations vs. the theoretical
results of the PSD and its components as follows from eq. (39)
for the uniform sampling case, i.e., when ξn = 0. As shown
in this figure, aliasing occurs as a result of undersampling
and the interference is therefore correlated with the signal.
(c), (d) and (e) of Figure 10 correspond to reconstruction
obtained by applying USI, NSI and ISI respectively to the
nonuniform samples of x(t) with T = 13 [sec], and the devi-
ation ξn from a uniform sampling grid uniformly distributed
over (−T/2, T/2). Those figures compare the estimated PSD
ŜUSI
x̂x̂ (Ω), ŜNSI

x̂x̂ (Ω) and ŜISI
x̂x̂ (Ω) obtained by simulations

with the theoretical results, as in eqs. (39), (41) and (44),
respectively. As shown in (b)-(e) of Figure 10, the theoretical
results are consistent with those obtained by simulations.

Consistent with the fact that the characteristic function
Φξ(Ω) of the sampling perturbations acts as an anti-aliasing
filter in the model of Figure 6, the aliasing produced in USI
as shown in Figure 10(c) is reduced relative to that produced
with uniform sampling. However, this reduced aliasing is at
the expense of an additional additive uncorrelated white noise
component. Note that in Figure 10(d) there is no aliasing but
only uncorrelated noise. This is because the pdf fξ(ξ) of the
perturbations satisfies the following condition

Φξ

(
2π

T
n

)
= 0 ∀ n ̸= 0, (45)

which ensures no aliasing artifact when applying NSI to
the nonuniform samples. Figure (e) corresponds to ISI with
ζn uniformly distributed over (−T/2, T/2). Comparing this
figure with figure (c), we notice that due to the filtering
by the characteristic function Φζ(−Ω) of the perturbations
ζn as shown in Figure 8, high frequency components of
the signal and its replicas are attenuated in ISI compared
to USI, and the additive uncorrelated noise is appropriately
shaped. Superimposed on Ŝxx(Ω) are shown in Figure 10(f)
the estimated PSD of the various approximations obtained by
simulations of the reconstruction methods discussed above.

As we can see from these figures, the artifacts resulting
in sub-Nyquist sampling differ in each of the reconstruction
methods discussed above and can be controlled by designing
the perturbations in sampling and in reconstruction to trade off
aliasing with uncorrelated noise. The artifacts correspond to
uniform sampling are more severe in high frequencies and are
correlated with the signal, whereas the artifacts correspond
to the reconstruction methods from nonuniform sampling
have reduced or no correlation with the signal and are more
balanced across frequency.
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Fig. 10. Artifacts with sub-Nyquist sampling. (a) The estimated power spectrum of x(t). The estimated power spectrum vs. analytic results in the case of
(b) Uniform Sampling, (c) USI applied to nonuniform sampling, (d) NSI applied to nonuniform sampling, and (e) ISI applied to nonuniform sampling. (f)
The estimated power spectrum of x(t) and of its approximations.

V. CONCLUSIONS

A class of approximate reconstruction methods from non-
uniform samples based on sinc interpolation is developed in
which each method corresponds to a different assumption
with respect to the knowledge of the exact sampling times
and of the probability distribution of their deviation from a
uniform sampling grid. The methods discussed consist of four
cases incorporated in a single framework. The performance
of the reconstruction methods is analyzed and compared with
respect to the reconstruction MSE. When the perturbations
around the uniform grid are small, USI is preferable within
this framework even though it uses the least amount of
information. When the exact sampling times are not known but
the probability distribution of their deviation from a uniform
grid is known and symmetric and has bounded support,
USI is optimal independent of the shape of the pdf of the
perturbations. More generally, optimal reconstruction may not

correspond to USI and better performance may be achieved
with Uniform Sinc Interpolation with an offset of the uniform
grid determined by the autocorrelation function of the input
signal and the pdf of the sampling perturbations. The case
of sub-Nyquist sampling is also discussed and analysis based
on second-order statistics is derived. With respect to second-
order statistics, each of the methods discussed is shown to be
equivalent to a simple system consisting of modulation with
a periodic signal. The artifacts due to undersampling differ in
each of the methods and can be controlled by designing the
perturbations in sampling and in reconstruction to trade off
aliasing with uncorrelated noise.
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APPENDIX A
THE FOURIER TRANSFORM OF A NON-NEGATIVE REAL
SYMMETRIC FUNCTION WHOSE SUPPORT IS BOUNDED

The following properties are generally true for any function
whose Fourier transform pair is non-negative real, symmetric,
and has bounded support (e.g. the chracteristic function of a
symmetric pdf whose support is bounded). For convenience
and without loss of generality, we express these properties
in terms of the autocorrealtion function of a bandlimited
signal. We denote by Rxx(τ) the autocorrelation function of
a bandlimited signal x(t) whose power spectrum Sxx(Ω) = 0
for all Ω ≥ π/TN . Then, the following properties hold:

1) Non-negativity -

Rxx(τ) > 0 ∀ |τ | < TN/2,

2) For all ζ0

Rxx(τ) ≥
1

2
(Rxx(τ − ζo) +Rxx(τ + ζo)) ∀ |τ | < TN/2,

where in general equality is achieved if and only if
ζ0 = 0,

3) Rxx(τ) is strictly concave in the region
(−TN/2, TN/2),

4) The radius of curvature rc(τ) of Rxx(τ) at τ = 0 is
inversely proportional to the signal’s bandwidth, i.e.,

rc(τ)|τ=0 =
1

Rxx(0)Bx
, (A-1)

where Bx is defined in (30) and is bounded from above

by
(

π
TN

)2
,

5) The autocorrelation function Rxx(τ) is bounded in the
region τ ∈ (−TN/2, TN/2), i.e.

cos
(

π

TN
τ

)
<

Rxx(τ)

Rxx(0)
≤ 1 ∀ |τ | < TN

2
. (A-2)

To prove the first property we use symmetry and real argu-
ments of the power spectrum which results in

Rxx(τ) =
1

2π

∫ π/TN

−π/TN

Sxx(Ω)cos(Ωτ)dΩ. (A-3)

We then note that in the interval of integration in eq. (A-3)
cos(Ωτ) > 0 for all |τ | < TN/2, which completes the proof
since Sxx(Ω) ≥ 0 for all Ω. The second property follows by
noting that

1

2
(Rxx(τ − ζo) +Rxx(τ + ζo)) =

1

2π

∫ π/TN

−π/TN

Sxx(Ω)cos(Ωζ0)cos(Ωτ)dΩ, (A-4)

and that for every |τ | < TN/2,

1

2π

∫ π/TN

−π/TN

Sxx(Ω)cos(Ωτ) · (1− cos(Ωζ0)) dΩ ≥ 0. (A-5)

To show concavity of Rxx(τ), we differentiate eq. (A-3) twice
with respect to τ , i.e.

R
′′

xx(τ) = − 1

2π

∫ π/TN

−π/TN

Ω2Sxx(Ω)cos(Ωτ)dΩ, (A-6)

and note that R
′′

xx(τ) is negative for all |τ | < TN/2, ex-
cluding the degenerate case where Sxx(Ω) = 2πRxx(0)δ(Ω)
in which Rxx(τ) = Rxx(0) and R

′′

xx(τ) = 0. Noting that
R

′

xx(τ)|τ=0 = 0 and that

R
′′

xx(τ)|τ=0 = − 1

2π

∫ π/TN

−π/TN

Ω2Sxx(Ω)dΩ, (A-7)

it follows that the radius of curvature of Rxx(τ) at τ = 0 is
inversely proportional to Bx as defined in (30).
The lower bound in the fifth property follows by noting that
in the region of integration in eq. (A-3),

cos(Ωτ) ≥ cos
(

π

TN
τ

)
∀ |τ | < TN

2
. (A-8)

Note that the lower bound cannot be achieved since Sxx(Ω)
is assumed to be zero at Ω = ± π

TN
; however, we can get as

close as we want to this lower bound. The upper bound is
trivial.

APPENDIX B
RANDOMIZED SINC INTERPOLATION - MSE DERIVATION

The autocorrelation of x̂(t) =
∑∞

n=−∞ x[n]h̃(t− t̃n) is

Rx̂x̂(t, t− τ) = E

{ ∞∑
n=−∞

x(nT + ξn)h̃(t− nT − ζn)·

·
∞∑

k=−∞

x(kT + ξk)h̃(t− τ − kT − ζk)

}
, (B-1)

where h̃(t) = T
TN

·h(t). Using iterated expectation, we obtain

Rx̂x̂(t, t− τ) =
∞∑

n=−∞

∞∑
k=−∞

E{Rxx((n− k)T + ξn − ξk) ·

h̃(t− nT − ζn) · h̃(t− τ − kT − ζk)} =

= Rxx(0) ·
∞∑

n=−∞
E{h̃(t− nT − ζn)h̃(t− τ − nT − ζn)}+∑

n ̸=k

E{Rxx((n− k)T + ξn − ξk) ·

h̃(t− nT − ζn) · h̃(t− τ − kT − ζk)}. (B-2)

Representing Rxx(t) and h̃(t) in terms of their corre-
sponding Fourier transforms Sxx(Ω) and H̃(Ω) and using the
following identity:∑

n

ej(Ω2−Ω1)nT = 2π
∑
k

δ((Ω2 − Ω1)T − 2πk), (B-3)
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it follows that
∞∑

n=−∞
E{h̃(t− nT − ζn)h̃(t− τ − nT − ζn)} =

E

( ∞∑
n=−∞

1

2π

∫ Ωc

−Ωc

H̃(Ω1)e
jΩ1(t−nT−ζn)dΩ1·

1

2π

∫ Ωc

−Ωc

H̃∗(Ω2)e
−jΩ2(t−τ−nT−ζn)dΩ2

)
=(

1

2π

)2 ∫ Ωc

−Ωc

∫ Ωc

−Ωc

H̃(Ω1)H̃
∗(Ω2)e

j(Ω1−Ω2)tejΩ2τ ·( ∞∑
n=−∞

ej(Ω2−Ω1)nT

)
Φζ(Ω2 − Ω1)dΩ1dΩ2 =

1

2π

∫ Ωc

−Ωc

1

T
|H̃(Ω)|2ejΩτdΩ = h̃(τ), (B-4)

and ∑
n ̸=k

E{Rxx((n− k)T + ξn − ξk) ·

h̃(t− nT − ζn) · h̃(t− τ − kT − ζk)} =∑
n ̸=k

E

{
1

2π

∫ Ωc

−Ωc

Sxx(Ω)e
jΩ((n−k)T+ξn−ξk)dΩ·

1

2π

∫ Ωc

−Ωc

H̃(Ω1)e
jΩ1(t−nT−ζn)dΩ1·

1

2π

∫ Ωc

−Ωc

H̃∗(Ω2)e
−jΩ2(t−τ−kT−ζk)dΩ2

}
=(

1

2π

)3 ∫ Ωc

−Ωc

∫ Ωc

−Ωc

∫ Ωc

−Ωc

Sxx(Ω)H̃(Ω1)H̃
∗(Ω2) ·

Φξζ(Ω,−Ω1)Φ
∗
ξζ(Ω,−Ω2) · ej(Ω1−Ω2)tejΩ2τ ·∑

n ̸=k

(
ej(Ω−Ω1)nT e−j(Ω−Ω2)kT

)
dΩdΩ1dΩ2 =

(
1

2π

)3 ∫ Ωc

−Ωc

∫ Ωc

−Ωc

∫ Ωc

−Ωc

Sxx(Ω)H̃(Ω1)H̃
∗(Ω2) ·

Φξζ(Ω,−Ω1)Φ
∗
ξζ(Ω,−Ω2) · ej(Ω1−Ω2)tejΩ2τ ·( ∞∑

n=−∞
ej(Ω−Ω1)nT

∞∑
k=−∞

e−j(Ω−Ω2)kT−

∞∑
n=−∞

ej(Ω2−Ω1)nT

)
dΩdΩ1dΩ2 =

1

2π

∫ Ωc

−Ωc

1

T
|H̃(Ω)|2

[
1

T
Sxx(Ω) · |Φξζ(Ω,−Ω)|2−

1

2π

∫ Ωc

−Ωc

Sxx(Ω1)|Φξζ(Ω1,−Ω)|2dΩ1

]
ejΩτdΩ.(B-5)

Substituting (B-5) and (B-4) in (B-2) results in

Rx̂x̂(t, t− τ) =
1

2π

∫ Ωc

−Ωc

Sxx(Ω) · |Φξζ(Ω,−Ω)|2ejΩτdΩ+ (B-6)

T

2π

∫ Ωc

−Ωc

(
1

2π

∫ Ωc

−Ωc

Sxx(Ω1) ·
(
1− |Φξζ(Ω1,−Ω)|2

)
dΩ1

)
ejΩτdΩ.

Similarly, the cross correlation of x̂(t) and x(t) can be
expressed as

Rx̂x(t, t− τ) = E(x̂(t)x(t− τ)) =

E

{ ∞∑
n=−∞

x(nT + ξn)h̃(t− nT − ζn) · x(t− τ)

}
=

E

{ ∞∑
n=−∞

Rxx(τ + nT + ξn − t)h̃(t− nT − ζn)

}
=

(
1

2π

)2 ∫ Ωc

−Ωc

∫ Ωc

−Ωc

Sxx(Ω)H̃(Ω1)Φξζ(Ω,−Ω1) ·

ej(Ω1−Ω)tejΩτ

( ∞∑
n=−∞

ej(Ω−Ω1)nT

)
dΩ1dΩ =

1

2π

∫ Ωc

−Ωc

Sxx(Ω) · Φξζ(Ω,−Ω)ejΩτdΩ, (B-7)

where in the last transition we used again the identity in (B-3).

Taking the Fourier transform of (B-7) and (B-7) with respect
to τ results in

Sx̂x̂(Ω) =
T

2π

∫ Ωc

−Ωc

Sxx(Ω1) ·
(
1− |Φξζ(Ω1,−Ω)|2

)
dΩ1 +

Sxx(Ω) · |Φξζ(Ω,−Ω)|2 |Ω| < Ωc (B-8)

and

Sx̂x(Ω) = Sxx(Ω) · Φξζ(Ω,−Ω) |Ω| < Ωc, (B-9)

from which the second-order statistics model of Figure 2
clearly follows.

The power spectrum of the reconstruction error eR(t) =
x̂(t)− x(t) is

SeReR(Ω) = Sx̂x̂(Ω)− Sx̂x(Ω)− Sxx̂(Ω) + Sxx(Ω),

(B-10)

where Sx̂x̂(Ω) and Sx̂x(Ω) are given in (B-8) and (B-9)
respectively, and Sxx̂(Ω) = Sx̂x

∗(Ω). Consequently,

SeReR(Ω) = Sxx(Ω) · |1− Φξζ(Ω,−Ω)|2 +
T

2π

∫ Ωc

−Ωc

Sxx(Ω1) ·
[
1− |Φξζ(Ω1,−Ω)|2

]
dΩ1 |Ω| < Ωc.

Integrating the power spectrum over frequency, we obtain the
MSE, i.e.,

E({eR(t)}2) = 1

2π

∫ Ωc

−Ωc

SeReR(Ω)dΩ = (B-11)

1

2π

∫ Ωc

−Ωc

Sxx(Ω) · |1− Φξζ(Ω,−Ω)|2 dΩ+

T

TN
· 1

2π

∫ Ωc

−Ωc

Sxx(Ω)dΩ−

T

TN
· 1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·

(
1

2Ωc

∫ Ωc

−Ωc

|Φξζ(Ω,−Ω1)|2dΩ1

)
dΩ.
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APPENDIX C
SUB-NYQUIST SAMPLING - RSI

The autocorrelation of x̂(t) =
∞∑

n=−∞
x(tn)hT (t− t̃n) is

Rx̂x̂(t, t− τ) = E

( ∞∑
n=−∞

x(nT + ξn)hT (t− nT − ζn)·

∞∑
k=−∞

x(kT + ξk)hT (t− τ − kT − ζk)

)
=

Rxx(0) · E

( ∞∑
n=−∞

hT (t− nT − ζn)hT (t− τ − nT − ζn)

)
+∑

n̸=k

E (Rxx((n− k)T + ξn − ξk)·

hT (t− nT − ζn)hT (t− τ − kT − ζk)) , (C-1)

where hT (t) = sinc( πT t). Representing Rxx(t) and hT (t) in
terms of Sxx(Ω) and HT (Ω), we obtain∑
n ̸=k

E (Rxx((n− k)T + ξn − ξk)hT (t− nT − ζn)·

hT (t− τ − kT − ζk)) =

(
1

2π

)3 ∫ Ωc

−Ωc

∫ π
T

− π
T

∫ π
T

− π
T

Sxx(Ω) ·

HT (Ω1)H
∗
T (Ω2)e

j(Ω1−Ω2)tejΩ2τ · Φξζ(Ω,−Ω1)Φ
∗
ξζ(Ω,−Ω2) ·∑

n ̸=k

ej(Ω−Ω1)nT e−j(Ω−Ω2)kT

 dΩdΩ1dΩ2 =

1

2π

∫ π
T

− π
T

( ∞∑
n=−∞

Sxx

(
Ω− 2π

T
n

)
·
∣∣∣∣Φξζ

(
Ω− 2π

T
n,−Ω

)∣∣∣∣2 −
T

2π

∫ Ωc

−Ωc

Sxx(Ω1)|Φξζ(Ω1,−Ω)|2dΩ1

)
ejΩτdΩ, (C-2)

and

E

( ∞∑
n=−∞

hT (t− nT − ζn)hT (t− τ − nT − ζn)

)
=

E

( ∞∑
n=−∞

1

2π

∫ π
T

− π
T

HT (Ω1)e
jΩ1(t−nT−ζn)dΩ1·

1

2π

∫ π
T

− π
T

H∗
T (Ω2)e

−jΩ2(t−τ−nT−ζn)dΩ2

)
=(

1

2π

)2 ∫ π
T

− π
T

∫ π
T

− π
T

HT (Ω1)H
∗
T (Ω2)e

j(Ω1−Ω2)tejΩ2τ ·( ∞∑
n=−∞

ej(Ω2−Ω1)nT

)
Φζ(Ω2 − Ω1)dΩ1dΩ2 = hT (τ).(C-3)

Substituting (C-2) and (C-3) into (C-1) and taking the
Fourier transform with respect to τ , we obtain

Sx̂x̂(Ω) =
∞∑

n=−∞
Sxx

(
Ω− 2π

T
n

) ∣∣∣∣Φξζ

(
Ω− 2π

T
n,−Ω

)∣∣∣∣2 +
T

2π

∫ Ωc

−Ωc

Sxx(Ω1)
(
1− |Φξζ(Ω1,−Ω)|2

)
dΩ1 |Ω| < π

T
. (C-4)

The cross-correlation of x̂(t) and x(t) is

Rx̂x(t, t− τ) = E

( ∞∑
n=−∞

x(nT + ξn)hT (t− nT − ζn)x(t− τ)

)

=

∞∑
n=−∞

E (Rxx(nT + ξn + τ − t)hT (t− nT − ζn)) , (C-5)

where, again, by representing Rxx(t) and hT (t) in terms of
Sxx(Ω) and HT (Ω), we obtain

Rx̂x(t, t− τ) =
1

2π

∫ π
T

− π
T

∞∑
n=−∞

(
Sxx

(
Ω− 2π

T
n

)
·

Φξζ

(
Ω− 2π

T
n,−Ω

)
ej

2π
T n(t−τ)

)
ejΩτdΩ. (C-6)

An alternative representation is obtained by representing
Sxx(Ω) and Φξζ(Ω1,Ω2) in terms of Rxx(t) and fξζ(ξ, ζ),
i.e.,

Rx̂x(t, t− τ) =

∫ ∞

−∞
Rxx(t1) ·

∞∑
n=−∞

[
fξζ(t1 + t− nT − τ, ζ) ∗ hT

( π
T
ζ
)]

|ζ=t−nT dt1.(C-7)
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