8 research outputs found

    Semi-supervised learning in unbalanced and heterogeneous networks

    Full text link
    Community detection was a hot topic on network analysis, where the main aim is to perform unsupervised learning or clustering in networks. Recently, semi-supervised learning has received increasing attention among researchers. In this paper, we propose a new algorithm, called weighted inverse Laplacian (WIL), for predicting labels in partially labeled networks. The idea comes from the first hitting time in random walk, and it also has nice explanations both in information propagation and the regularization framework. We propose a partially labeled degree-corrected block model (pDCBM) to describe the generation of partially labeled networks. We show that WIL ensures the misclassification rate is of order O(1d)O(\frac{1}{d}) for the pDCBM with average degree d=Ω(logn),d=\Omega(\log n), and that it can handle situations with greater unbalanced than traditional Laplacian methods. WIL outperforms other state-of-the-art methods in most of our simulations and real datasets, especially in unbalanced networks and heterogeneous networks

    Beyond the arithmetic mean : extensions of spectral clustering and semi-supervised learning for signed and multilayer graphs via matrix power means

    Get PDF
    In this thesis we present extensions of spectral clustering and semi-supervised learning to signed and multilayer graphs. These extensions are based on a one-parameter family of matrix functions called Matrix Power Means. In the scalar case, this family has the arithmetic, geometric and harmonic means as particular cases. We study the effectivity of this family of matrix functions through suitable versions of the stochastic block model to signed and multilayer graphs. We provide provable properties in expectation and further identify regimes where the state of the art fails whereas our approach provably performs well. Some of the settings that we analyze are as follows: first, the case where each layer presents a reliable approximation to the overall clustering; second, the case when one single layer has information about the clusters whereas the remaining layers are potentially just noise; third, the case when each layer has only partial information but all together show global information about the underlying clustering structure. We present extensive numerical verifications of all our results and provide matrix-free numerical schemes. With these numerical schemes we are able to show that our proposed approach based on matrix power means is scalable to large sparse signed and multilayer graphs. Finally, we evaluate our methods in real world datasets. For instance, we show that our approach consistently identifies clustering structure in a real signed network where previous approaches failed. This further verifies that our methods are competitive to the state of the art.In dieser Arbeit stellen wir Erweiterungen von spektralem Clustering und teilüberwachtem Lernen auf signierte und mehrschichtige Graphen vor. Diese Erweiterungen basieren auf einer einparametrischen Familie von Matrixfunktionen, die Potenzmittel genannt werden. Im skalaren Fall hat diese Familie die arithmetischen, geometrischen und harmonischen Mittel als Spezialfälle. Wir untersuchen die Effektivität dieser Familie von Matrixfunktionen durch Versionen des stochastischen Blockmodells, die für signierte und mehrschichtige Graphen geeignet sind. Wir stellen beweisbare Eigenschaften vor und identifizieren darüber hinaus Situationen in denen neueste, gegenwärtig verwendete Methoden versagen, während unser Ansatz nachweislich gut abschneidet. Wir untersuchen unter anderem folgende Situationen: erstens den Fall, dass jede Schicht eine zuverlässige Approximation an die Gesamtclusterung darstellt; zweitens den Fall, dass eine einzelne Schicht Informationen über die Cluster hat, während die übrigen Schichten möglicherweise nur Rauschen sind; drittens den Fall, dass jede Schicht nur partielle Informationen hat, aber alle zusammen globale Informationen über die zugrunde liegende Clusterstruktur liefern. Wir präsentieren umfangreiche numerische Verifizierungen aller unserer Ergebnisse und stellen matrixfreie numerische Verfahren zur Verfügung. Mit diesen numerischen Methoden sind wir in der Lage zu zeigen, dass unser vorgeschlagener Ansatz, der auf Potenzmitteln basiert, auf große, dünnbesetzte signierte und mehrschichtige Graphen skalierbar ist. Schließlich evaluieren wir unsere Methoden an realen Datensätzen. Zum Beispiel zeigen wir, dass unser Ansatz konsistent Clustering-Strukturen in einem realen signierten Netzwerk identifiziert, wo frühere Ansätze versagten. Dies ist ein weiterer Nachweis, dass unsere Methoden konkurrenzfähig zu den aktuell verwendeten Methoden sind

    Fast Randomized Semi-Supervised Clustering

    No full text
    International audienceWe consider the problem of clustering partially labeled data from a minimal number of randomly chosen pairwise comparisons between the items. We introduce an efficient local algorithm based on a power iteration of the non-backtracking operator and study its performance on a simple model. For the case of two clusters, we give bounds on the classification error and show that a small error can be achieved from O(n) randomly chosen measurements, where n is the number of items in the dataset. Our algorithm is therefore efficient both in terms of time and space complexities. We also investigate numerically the performance of the algorithm on synthetic and real world data
    corecore