35,235 research outputs found

    Integrating and Ranking Uncertain Scientific Data

    Get PDF
    Mediator-based data integration systems resolve exploratory queries by joining data elements across sources. In the presence of uncertainties, such multiple expansions can quickly lead to spurious connections and incorrect results. The BioRank project investigates formalisms for modeling uncertainty during scientific data integration and for ranking uncertain query results. Our motivating application is protein function prediction. In this paper we show that: (i) explicit modeling of uncertainties as probabilities increases our ability to predict less-known or previously unknown functions (though it does not improve predicting the well-known). This suggests that probabilistic uncertainty models offer utility for scientific knowledge discovery; (ii) small perturbations in the input probabilities tend to produce only minor changes in the quality of our result rankings. This suggests that our methods are robust against slight variations in the way uncertainties are transformed into probabilities; and (iii) several techniques allow us to evaluate our probabilistic rankings efficiently. This suggests that probabilistic query evaluation is not as hard for real-world problems as theory indicates

    Probabilistic Models over Ordered Partitions with Application in Learning to Rank

    Get PDF
    This paper addresses the general problem of modelling and learning rank data with ties. We propose a probabilistic generative model, that models the process as permutations over partitions. This results in super-exponential combinatorial state space with unknown numbers of partitions and unknown ordering among them. We approach the problem from the discrete choice theory, where subsets are chosen in a stagewise manner, reducing the state space per each stage significantly. Further, we show that with suitable parameterisation, we can still learn the models in linear time. We evaluate the proposed models on the problem of learning to rank with the data from the recently held Yahoo! challenge, and demonstrate that the models are competitive against well-known rivals.Comment: 19 pages, 2 figure
    • …
    corecore