152 research outputs found

    Threshold Verification Technique for Network Intrusion Detection System

    Get PDF
    Internet has played a vital role in this modern world, the possibilities and opportunities offered are limitless. Despite all the hype, Internet services are liable to intrusion attack that could tamper the confidentiality and integrity of important information. An attack started with gathering the information of the attack target, this gathering of information activity can be done as either fast or slow attack. The defensive measure network administrator can take to overcome this liability is by introducing Intrusion Detection Systems (IDSs) in their network. IDS have the capabilities to analyze the network traffic and recognize incoming and on-going intrusion. Unfortunately the combination of both modules in real time network traffic slowed down the detection process. In real time network, early detection of fast attack can prevent any further attack and reduce the unauthorized access on the targeted machine. The suitable set of feature selection and the correct threshold value, add an extra advantage for IDS to detect anomalies in the network. Therefore this paper discusses a new technique for selecting static threshold value from a minimum standard features in detecting fast attack from the victim perspective. In order to increase the confidence of the threshold value the result is verified using Statistical Process Control (SPC). The implementation of this approach shows that the threshold selected is suitable for identifying the fast attack in real time.Comment: 8 Pages, International Journal of Computer Science and Information Securit

    New Sequential Methods for Detecting Portscanners

    Full text link
    In this paper, we propose new sequential methods for detecting port-scan attackers which routinely perform random "portscans" of IP addresses to find vulnerable servers to compromise. In addition to rigorously control the probability of falsely implicating benign remote hosts as malicious, our method performs significantly faster than other current solutions. Moreover, our method guarantees that the maximum amount of observational time is bounded. In contrast to the previous most effective method, Threshold Random Walk Algorithm, which is explicit and analytical in nature, our proposed algorithm involve parameters to be determined by numerical methods. We have developed computational techniques such as iterative minimax optimization for quick determination of the parameters of the new detection algorithm. A framework of multi-valued decision for testing portscanners is also proposed.Comment: 11 pages, 5 figures, the mathematical theory of the detection algorithm has been presented in SPIE conference

    Real-time detection of malicious network activity using stochastic models

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 115-122).This dissertation develops approaches to rapidly detect malicious network traffic including packets sent by portscanners and network worms. The main hypothesis is that stochastic models capturing a host's particular connection-level behavior provide a good foundation for identifying malicious network activity in real-time. Using the models, the dissertation shows that a detection problem can be formulated as one of observing a particular "trajectory" of arriving packets and inferring from it the most likely classification for the given host's behavior. This stochastic approach enables us not only to estimate an algorithm's performance based on the measurable statistics of a host's traffic but also to balance the goals of promptness and accuracy in detecting malicious network activity. This dissertation presents three detection algorithms based on Wald's mathematical framework of sequential analysis. First, Threshold Random Walk (TRW) rapidly detects remote hosts performing a portscan to a target network. TRW is motivated by the empirically observed disparity between the frequency with which connections to newly visited local addresses are successful for benign hosts vs. for portscanners. Second, it presents a hybrid approach that accurately detects scanning worm infections quickly after the infected local host begins to engage in worm propagation.(cont.) Finally, it presents a targeting worm detection algorithm, Rate-Based Sequential Hypothesis Testing (RBS), that promptly identifies high-fan-out behavior by hosts (e.g., targeting worms) based on the rate at which the hosts initiate connections to new destinations. RBS is built on an empirically-driven probability model that captures benign network characteristics. It then presents RBS+TRW, a unified framework for detecting fast-propagating worms independently of their target discovery strategy. All these schemes have been implemented and evaluated using real packet traces collected from multiple network vantage points.by Jaeyeon Jung.Ph.D

    On the Adaptive Real-Time Detection of Fast-Propagating Network Worms

    Get PDF
    We present two light-weight worm detection algorithms thatoffer significant advantages over fixed-threshold methods.The first algorithm, RBS (rate-based sequential hypothesis testing)aims at the large class of worms that attempts to quickly propagate, thusexhibiting abnormal levels of the rate at which hosts initiateconnections to new destinations. The foundation of RBS derives fromthe theory of sequential hypothesis testing, the use of which fordetecting randomly scanning hosts was first introduced by our previouswork with the TRW (Threshold Random Walk) scan detection algorithm. The sequential hypothesistesting methodology enables engineering the detectors to meet falsepositives and false negatives targets, rather than triggering whenfixed thresholds are crossed. In this sense, the detectors that weintroduce are truly adaptive.We then introduce RBS+TRW, an algorithm that combines fan-out rate (RBS)and probability of failure (TRW) of connections to new destinations.RBS+TRW provides a unified framework that at one end acts as a pure RBSand at the other end as pure TRW, and extends RBS's power in detectingworms that scan randomly selected IP addresses

    Portscan Detection with Sampled NetFlow

    Full text link

    Distributed Port Scanning Detection

    Get PDF
    Conventional Network Intrusion Detection System (NIDS) have heavyweight processing and memory requirements as they maintain per flow state using data structures like linked lists or trees. This is required for some specialized jobs such as Stateful Packet Inspection (SPI) where the network communications between entities are recreated in its entirety to inspect application level data. The downside to this approach is that the NIDS must be in a position to view all inbound and outbound traffic of the protected network. The NIDS can be overwhelmed by a DDoS attack since most of these try and exhaust the available state of network entities. For some applications like port scan detection, we do not require to reconstruct the complete network tra�c. We propose to integrate a detector into all routers so that a more distributed detection approach can be achieved. Since routers are devices with limited memory and processing capabilities, conventional NIDS approaches do not work while integrating a detector in them. We describe a method to detect port scans using aggregation. A data structure called a Partial Completion Filter(PCF) or a counting Bloom filter is used to reduce the per flow state

    Threshold Verification Technique for Network Intrusion Detection System

    Get PDF
    Internet has played a vital role in this modern world, the possibilities and opportunities offered are limitless. Despite all the hype, Internet services are liable to intrusion attack that could tamper the confidentiality and integrity of important information. An attack started with gathering the information of the attack target, this gathering of information activity can be done as either fast or slow attack. The defensive measure network administrator can take to overcome this liability is by introducing Intrusion Detection Systems (IDSs) in their network. IDS have the capabilities to analyze the network traffic and recognize incoming and on-going intrusion. Unfortunately the combination of both modules in real time network traffic slowed down the detection process. In real time network, early detection of fast attack can prevent any further attack and reduce the unauthorized access on the targeted machine. The suitable set of feature selection and the correct threshold value, add an extra advantage for IDS to detect anomalies in the network. Therefore this paper discusses a new technique for selecting static threshold value from a minimum standard features in detecting fast attack from the victim perspective. In order to increase the confidence of the threshold value the result is verified using Statistical Process Control (SPC). The implementation of this approach shows that the threshold selected is suitable for identifying the fast attack in real tim

    Time Based Intrusion Detection on Fast Attack for Network Intrusion Detection System

    Get PDF
    In recent years network attack are easily launch since the tools to execute the attack are freely available on the Internet. Even the script kiddies can initiate a sophisticated attack with just a basic knowledge on network and software technology. To overcome this matter, Intrusion Detection System (IDS) has been used as a vital instrument in defending the network from this malicious activity. With the ability to analyze network traffic and recognize incoming and ongoing network attack, majority of network administrator has turn to IDS to help them in detecting anomalies in network traffic. The gathering of information and analysis on the anomalies activity can be classified into fast and slow attack. Since fast attack activity make a connection in few second and uses a large amount of packet, detecting this early connection provide the administrator one step ahead in deflecting further damages towards the network infrastructure. This paper describes IDS that detects fast attack intrusion using time based detection method. The time based detection method calculates the statistic of the frequency event which occurs between one second time intervals for each connection made to a host thus providing the crucial information in detecting fast attack

    FDF: Frequency Detection-Based Filtering of Scanning Worms

    Full text link
    Abstract — In this paper, we propose a simple algorithm for detecting scanning worms with high detection rate and low false positive rate. The novelty of our algorithm is inspecting the frequency characteristic of scanning worms from a monitored network. Its low complexity allows it to be used on any network-based intrusion detection system as a real time detection module for high-speed networks. Our algorithm need not be adjusted to network status because its parameters depend on application types, which are generally and widely used in any networks such as web and P2P services. By using real traces, we evaluate the performance of our algorithm and compare it with that of SNORT. The results confirm that our algorithm outperforms SNORT with respect to detection rate and false positive rate. I
    • …
    corecore