11 research outputs found

    Geodesic Active Fields:A Geometric Framework for Image Registration

    Get PDF
    Image registration is the concept of mapping homologous points in a pair of images. In other words, one is looking for an underlying deformation field that matches one image to a target image. The spectrum of applications of image registration is extremely large: It ranges from bio-medical imaging and computer vision, to remote sensing or geographic information systems, and even involves consumer electronics. Mathematically, image registration is an inverse problem that is ill-posed, which means that the exact solution might not exist or not be unique. In order to render the problem tractable, it is usual to write the problem as an energy minimization, and to introduce additional regularity constraints on the unknown data. In the case of image registration, one often minimizes an image mismatch energy, and adds an additive penalty on the deformation field regularity as smoothness prior. Here, we focus on the registration of the human cerebral cortex. Precise cortical registration is required, for example, in statistical group studies in functional MR imaging, or in the analysis of brain connectivity. In particular, we work with spherical inflations of the extracted hemispherical surface and associated features, such as cortical mean curvature. Spatial mapping between cortical surfaces can then be achieved by registering the respective spherical feature maps. Despite the simplified spherical geometry, inter-subject registration remains a challenging task, mainly due to the complexity and inter-subject variability of the involved brain structures. In this thesis, we therefore present a registration scheme, which takes the peculiarities of the spherical feature maps into particular consideration. First, we realize that we need an appropriate hierarchical representation, so as to coarsely align based on the important structures with greater inter-subject stability, before taking smaller and more variable details into account. Based on arguments from brain morphogenesis, we propose an anisotropic scale-space of mean-curvature maps, built around the Beltrami framework. Second, inspired by concepts from vision-related elements of psycho-physical Gestalt theory, we hypothesize that anisotropic Beltrami regularization better suits the requirements of image registration regularization, compared to traditional Gaussian filtering. Different objects in an image should be allowed to move separately, and regularization should be limited to within the individual Gestalts. We render the regularization feature-preserving by limiting diffusion across edges in the deformation field, which is in clear contrast to the indifferent linear smoothing. We do so by embedding the deformation field as a manifold in higher-dimensional space, and minimize the associated Beltrami energy which represents the hyperarea of this embedded manifold as measure of deformation field regularity. Further, instead of simply adding this regularity penalty to the image mismatch in lieu of the standard penalty, we propose to incorporate the local image mismatch as weighting function into the Beltrami energy. The image registration problem is thus reformulated as a weighted minimal surface problem. This approach has several appealing aspects, including (1) invariance to re-parametrization and ability to work with images defined on non-flat, Riemannian domains (e.g., curved surfaces, scalespaces), and (2) intrinsic modulation of the local regularization strength as a function of the local image mismatch and/or noise level. On a side note, we show that the proposed scheme can easily keep up with recent trends in image registration towards using diffeomorphic and inverse consistent deformation models. The proposed registration scheme, called Geodesic Active Fields (GAF), is non-linear and non-convex. Therefore we propose an efficient optimization scheme, based on splitting. Data-mismatch and deformation field regularity are optimized over two different deformation fields, which are constrained to be equal. The constraint is addressed using an augmented Lagrangian scheme, and the resulting optimization problem is solved efficiently using alternate minimization of simpler sub-problems. In particular, we show that the proposed method can easily compete with state-of-the-art registration methods, such as Demons. Finally, we provide an implementation of the fast GAF method on the sphere, so as to register the triangulated cortical feature maps. We build an automatic parcellation algorithm for the human cerebral cortex, which combines the delineations available on a set of atlas brains in a Bayesian approach, so as to automatically delineate the corresponding regions on a subject brain given its feature map. In a leave-one-out cross-validation study on 39 brain surfaces with 35 manually delineated gyral regions, we show that the pairwise subject-atlas registration with the proposed spherical registration scheme significantly improves the individual alignment of cortical labels between subject and atlas brains, and, consequently, that the estimated automatic parcellations after label fusion are of better quality

    Connectomics across development:towards mapping brain structure from birth to childhood

    Get PDF
    The brain is probably the most complex system of the human body, composed of numerous neural units interconnected at dierent scales. This highly structured architecture provides the ability to communicate, synthesize information and perform the analytical tasks of human beings. Its development starts during the transition between the embryonic and fetal periods, from a simple tubular to a highly complex folded structure. It is globally organized as early as birth. This developing process is highly vulnerable to antenatal adverse conditions. Indeed, extreme prematurity and intra uterine growth restriction are major risk factors for long-term morbidities, including developmental ailments such as cerebral palsy, mental retardation and a wide spectrum of learning disabilities and behavior disorders. In this context, the characterization of the brainâs normative wiring pattern is crucial for our understanding of its architecture and workings, as the origin of many neurological and neurobehavioral disorders is found in early structural brain development. Diusion magnetic resonance imaging (dMRI) allows the in vivo assessment of biological tissues at the microstructural level. It has emerged as a powerful tool to study brain connectivity and analyse the underlying substrate of the human brain, comprising its structurally integrated and functionally specialized architecture. dMRI has been widely used in adult studies. Nevertheless, due to technical constraints, this mapping at earlier stages of development has not yet been accomplished. Yet, this time period is of extreme importance to comprehend the structural and functional integrity of the brain. This thesis is motivated by this shortfall, and intends to fill the gap between the clinical and neuroscience demands and the methodological developments needed to fulfill them. In our work, we comprehensibly study the brain structural connectivity of children born extremely prematurely and/or with additional prenatal restriction at school-age. We provide evidence that brain systems that mature early in development are the most vulnerable to antenatal insults. Interestingly, the alterations highlighted in these systems correlate with the neurobehavioral and cognitive impairments seen in these children at school-age. The overall brain organization appear also altered after preterm birth and prenatal restriction. Indeed, these children show dierent brain network modular topology, with a reduction in the overall network capacity. What remains unclear is whether the alterations seen at school age are already present at birth and, if yes, to what extent. In this thesis we set the technical basis to enable the connectome analysis as early as at birth. This task is challenging when dealing with neonatal data. Indeed, most of the assumptions used in adult data processing methods do not hold, due to the inverted image contrast and other MRI artefacts such as motion, partial volume and intensity inhomogeneities. Here, we propose a novel technique for surface reconstruction, and provide a fully-automatic procedure to delineate the newborn cortical surface, opening the way to establish the newborn connectome

    Shape analysis of the human brain.

    Get PDF
    Autism is a complex developmental disability that has dramatically increased in prevalence, having a decisive impact on the health and behavior of children. Methods used to detect and recommend therapies have been much debated in the medical community because of the subjective nature of diagnosing autism. In order to provide an alternative method for understanding autism, the current work has developed a 3-dimensional state-of-the-art shape based analysis of the human brain to aid in creating more accurate diagnostic assessments and guided risk analyses for individuals with neurological conditions, such as autism. Methods: The aim of this work was to assess whether the shape of the human brain can be used as a reliable source of information for determining whether an individual will be diagnosed with autism. The study was conducted using multi-center databases of magnetic resonance images of the human brain. The subjects in the databases were analyzed using a series of algorithms consisting of bias correction, skull stripping, multi-label brain segmentation, 3-dimensional mesh construction, spherical harmonic decomposition, registration, and classification. The software algorithms were developed as an original contribution of this dissertation in collaboration with the BioImaging Laboratory at the University of Louisville Speed School of Engineering. The classification of each subject was used to construct diagnoses and therapeutic risk assessments for each patient. Results: A reliable metric for making neurological diagnoses and constructing therapeutic risk assessment for individuals has been identified. The metric was explored in populations of individuals having autism spectrum disorders, dyslexia, Alzheimers disease, and lung cancer. Conclusion: Currently, the clinical applicability and benefits of the proposed software approach are being discussed by the broader community of doctors, therapists, and parents for use in improving current methods by which autism spectrum disorders are diagnosed and understood

    Proceedings of the Fourth International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Biological Shape Variability Modeling (MFCA 2013), Nagoya, Japan

    Get PDF
    International audienceComputational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the first edition of this workshop in 2006, second edition in New-York in 2008, the third edition in Toronto in 2011, the forth edition was held in Nagoya Japan on September 22 2013

    Proceedings of the First International Workshop on Mathematical Foundations of Computational Anatomy (MFCA'06) - Geometrical and Statistical Methods for Modelling Biological Shape Variability

    Get PDF
    International audienceNon-linear registration and shape analysis are well developed research topic in the medical image analysis community. There is nowadays a growing number of methods that can faithfully deal with the underlying biomechanical behaviour of intra-subject shape deformations. However, it is more difficult to relate the anatomical shape of different subjects. The goal of computational anatomy is to analyse and to statistically model this specific type of geometrical information. In the absence of any justified physical model, a natural attitude is to explore very general mathematical methods, for instance diffeomorphisms. However, working with such infinite dimensional space raises some deep computational and mathematical problems. In particular, one of the key problem is to do statistics. Likewise, modelling the variability of surfaces leads to rely on shape spaces that are much more complex than for curves. To cope with these, different methodological and computational frameworks have been proposed. The goal of the workshop was to foster interactions between researchers investigating the combination of geometry and statistics for modelling biological shape variability from image and surfaces. A special emphasis was put on theoretical developments, applications and results being welcomed as illustrations. Contributions were solicited in the following areas: * Riemannian and group theoretical methods on non-linear transformation spaces * Advanced statistics on deformations and shapes * Metrics for computational anatomy * Geometry and statistics of surfaces 26 submissions of very high quality were recieved and were reviewed by two members of the programm committee. 12 papers were finally selected for oral presentations and 8 for poster presentations. 16 of these papers are published in these proceedings, and 4 papers are published in the proceedings of MICCAI'06 (for copyright reasons, only extended abstracts are provided here)

    Patient-specific modellling of cortical spreading depression applied to migraine studies.

    Get PDF
    254 p.-La migraña es un trastorno neurológico muy común. Un tercio de los pacientes que sufren migraña experimentan lo que se denomina aura, una serie de alteraciones sensoriales que preceden al típico dolor de cabeza unilateral. Diversos estudios apuntan a la existencia de una correlación entre el aura visual y la depresión cortical propagada (DCP), una onda de despolarización que tiene su origen en el córtex visual para propagarse, a continuación, por todo el córtex hacia las zonas periféricas. La complejidad y la elevada especificidad de las características del córtex cerebral sugieren que la geometría podría tener un impacto significativo en la propagación de la DCP. En esta tesis hemos combinado dos modelos existentes: un modelo neurológico pormenorizado para el componente electrofisiológico de la DCP y un modelo de reacción-difusión que tiene en consideración la difusión del potasio, el impulsor de la propagación de la DCP. Durante el proceso, hemos integrado dos aspectos de la DCP que tienen lugar en diferentes escalas de tiempo: la dinámica electrofisiológica seguiría un patrón temporal del orden de milisegundos, mientras que la dinámica del potasio extracelular que acciona las funciones de propagación de la DCP se mediría en una escala de minutos. Como resultado, obtendremos un modelo multiescalar EDP-EDO. Asimismo, hemos incorporado los datos específicos del paciente en el modelo DCP: (i) la geometría cerebral específica de un paciente obtenida a través de resonancia magnética, y (ii) los tensores de conductividad personalizados obtenidos a través de diffusion tensor images. A fin de estudiar el papel que desempeña la geometría en la propagación de la DCP, hemos definido las cantidades de interés (CdI) relacionadas con la geometría y las que dependen de la DCP y las hemos evaluado en dos casos prácticos. Si bien la geometría no parece tener un impacto significativo en la propagación de la DCP, algunas CdI han resultado ser unas candidatas muy prometedoras para facilitar la clasificación de individuos sanos y pacientes con migraña. Finalmente, para justificar la carencia de datos experimentales para la validación y selección de los parámetros del modelo, hemos aplicado diversas técnicas de cuantificación de la incertidumbre al modelo DCP y hemos analizado el impacto de las diversas elecciones de parámetros en el resultado del modelo.Migraine is a common neurological disorder and one-third of migraine patients suffer from migraine aura, a perceptual disturbance preceding the typically unilateral headache. Cortical spreading depression (CSD), a depolarisation wave that originates in the visual cortex and propagates across the cortex to the peripheral areas, has been suggested as a correlate of visual aura by several studies. The complex and highly individual-specific characteristics of the brain cortex suggest that the geometry might have a significant impact on CSD propagation. In this thesis, we combine two existing models, a detailed neurological model for the electrophysiological component of CSD and a reaction-diffusion model accounting for the potassium diffusion, the driving force of CSD propagation. In the process, we integrate two aspects of CSD that occur at different time scales: the electrophysiological dynamics features a temporal scale in the order of milliseconds, while the extracellular potassium dynamics that triggers CSD propagation features is on the scale of minutes. As a result we obtain a multi-scale PDE-ODE model. In addition, we incorporate patient-specific data in the CSD model: (i) a patient-specific brain geometry obtained from magnetic resonance imaging, and (ii) personalised conductivity tensors derived from diffusion tensor imaging data. To study the role of the geometry in CSD propagation, we define geometric and CSD-dependent quantities of interest (QoI) that we evaluate in two case studies. Even though the geometry does not seem to have a major impact on the CSD propagation, some QoI are promising candidates to aid in the classification of healthy individuals and migraine patients. Finally, to account for the lack of experimental data for validation and selection of the model parameters, we apply different techniques of uncertainty quantification to the CSD model and analyse the impact of various parameter choices on the model outcom
    corecore