1,057 research outputs found

    Lightweight Massively Parallel Suffix Array Construction

    Get PDF
    The suffix array is an array of sorted suffixes in lexicographic order, where each sorted suffix is represented by its starting position in the input string. It is a fundamental data structure that finds various applications in areas such as string processing, text indexing, data compression, computational biology, and many more. Over the last three decades, researchers have proposed a broad spectrum of suffix array construction algorithms (SACAs). However, the majority of SACAs were implemented using sequential and parallel programming models. The maturity of GPU programming opened doors to the development of massively parallel GPU SACAs that outperform the fastest versions of suffix sorting algorithms optimized for the CPU parallel computing. Over the last five years, several GPU SACA approaches were proposed and implemented. They prioritized the running time over lightweight design. In this thesis, we design and implement a lightweight massively parallel SACA on the GPU using the prefix-doubling technique. Our prefix-doubling implementation is memory-efficient and can successfully construct the suffix array for input strings as large as 640 megabytes (MB) on Tesla P100 GPU. On large datasets, our implementation achieves a speedup of 7-16x over the fastest, highly optimized, OpenMP-accelerated suffix array constructor, libdivsufsort, that leverages the CPU shared memory parallelism. The performance of our algorithm relies on several high-performance parallel primitives such as radix sort, conditional filtering, inclusive prefix sum, random memory scattering, and segmented sort. We evaluate the performance of our implementation over a variety of real-world datasets with respect to its runtime, throughput, memory usage, and scalability. We compare our results against libdivsufsort that we run on a Haswell compute node equipped with 24 cores. Our GPU SACA is simple and compact, consisting of less than 300 lines of readable and effective source code. Additionally, we design and implement a fast and lightweight algorithm for checking the correctness of the suffix array

    Fast Parallel Suffix Array on the GPU

    Full text link

    GPU-Accelerated BWT Construction for Large Collection of Short Reads

    Full text link
    Advances in DNA sequencing technology have stimulated the development of algorithms and tools for processing very large collections of short strings (reads). Short-read alignment and assembly are among the most well-studied problems. Many state-of-the-art aligners, at their core, have used the Burrows-Wheeler transform (BWT) as a main-memory index of a reference genome (typical example, NCBI human genome). Recently, BWT has also found its use in string-graph assembly, for indexing the reads (i.e., raw data from DNA sequencers). In a typical data set, the volume of reads is tens of times of the sequenced genome and can be up to 100 Gigabases. Note that a reference genome is relatively stable and computing the index is not a frequent task. For reads, the index has to computed from scratch for each given input. The ability of efficient BWT construction becomes a much bigger concern than before. In this paper, we present a practical method called CX1 for constructing the BWT of very large string collections. CX1 is the first tool that can take advantage of the parallelism given by a graphics processing unit (GPU, a relative cheap device providing a thousand or more primitive cores), as well as simultaneously the parallelism from a multi-core CPU and more interestingly, from a cluster of GPU-enabled nodes. Using CX1, the BWT of a short-read collection of up to 100 Gigabases can be constructed in less than 2 hours using a machine equipped with a quad-core CPU and a GPU, or in about 43 minutes using a cluster with 4 such machines (the speedup is almost linear after excluding the first 16 minutes for loading the reads from the hard disk). The previously fastest tool BRC is measured to take 12 hours to process 100 Gigabases on one machine; it is non-trivial how BRC can be parallelized to take advantage a cluster of machines, let alone GPUs.Comment: 11 page

    On Longest Repeat Queries Using GPU

    Full text link
    Repeat finding in strings has important applications in subfields such as computational biology. The challenge of finding the longest repeats covering particular string positions was recently proposed and solved by \.{I}leri et al., using a total of the optimal O(n)O(n) time and space, where nn is the string size. However, their solution can only find the \emph{leftmost} longest repeat for each of the nn string position. It is also not known how to parallelize their solution. In this paper, we propose a new solution for longest repeat finding, which although is theoretically suboptimal in time but is conceptually simpler and works faster and uses less memory space in practice than the optimal solution. Further, our solution can find \emph{all} longest repeats of every string position, while still maintaining a faster processing speed and less memory space usage. Moreover, our solution is \emph{parallelizable} in the shared memory architecture (SMA), enabling it to take advantage of the modern multi-processor computing platforms such as the general-purpose graphics processing units (GPU). We have implemented both the sequential and parallel versions of our solution. Experiments with both biological and non-biological data show that our sequential and parallel solutions are faster than the optimal solution by a factor of 2--3.5 and 6--14, respectively, and use less memory space.Comment: 14 page
    corecore