
Aalto University

School of Science

Degree Programme in Computer, Communication and Information Sciences

Yury Shukhrov

Lightweight Massively Parallel

Suffix Array Construction

Master’s Thesis
Espoo, May 26, 2019

Supervisor: Professor Petteri Kaski

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/219838804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT OF
MASTER’S THESISAalto University

School of Science
Degree Programme in Computer, Communication and Information Sciences

Author: Yury Shukhrov

Title: Lightweight Massively Parallel Suffix Array Construction

Date: May 26, 2019 Pages: 88

Major: Computer Science Code: SCI3042

Supervisor: Professor Petteri Kaski

The suffix array is an array of sorted suffixes in lexicographic order, where each
sorted suffix is represented by its starting position in the input string. It is a
fundamental data structure that finds various applications in areas such as string
processing, text indexing, data compression, computational biology, and many
more. Over the last three decades, researchers have proposed a broad spectrum
of suffix array construction algorithms (SACAs). However, the majority of SACAs
were implemented using sequential and parallel programming models. The matu-
rity of GPU programming opened doors to the development of massively parallel
GPU SACAs that outperform the fastest versions of suffix sorting algorithms op-
timized for the CPU parallel computing. Over the last five years, several GPU
SACA approaches were proposed and implemented. They prioritized the running
time over lightweight design.

In this thesis, we design and implement a lightweight massively parallel SACA on
the GPU using the prefix-doubling technique. Our prefix-doubling implementa-
tion is memory-efficient and can successfully construct the suffix array for input
strings as large as 640 megabytes (MB) on Tesla P100 GPU. On large datasets,
our implementation achieves a speedup of 7-16x over the fastest, highly opti-
mized, OpenMP-accelerated suffix array constructor, libdivsufsort, that leverages
the CPU shared memory parallelism. The performance of our algorithm relies
on several high-performance parallel primitives such as radix sort, conditional
filtering, inclusive prefix sum, random memory scattering, and segmented sort.
We evaluate the performance of our implementation over a variety of real-world
datasets with respect to its runtime, throughput, memory usage, and scalability.
We compare our results against libdivsufsort that we run on a Haswell compute
node equipped with 24 cores. Our GPU SACA is simple and compact, consisting
of less than 300 lines of readable and effective source code. Additionally, we de-
sign and implement a fast and lightweight algorithm for checking the correctness
of the suffix array.

Keywords: suffix array construction, GPU, prefix-doubling, CUDA, skew,
Burrows-Wheeler transform, algorithm engineering, parallel
primitives, induced sorting

Language: English

ii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my su-
pervisor, Professor Petteri Kaski, for his continuous support, patience, and
guidance throughout the course of this work. I also wish to thank him for pro-
viding me the opportunity to work on a challenging yet exciting project. His
constructive feedback, immense knowledge, and valuable suggestions have
contributed greatly to the improvement of the thesis.

I would like to acknowledge the use of computing resources available via
project ”Science-IT” at Aalto University School of Science and via CSC—
the Finnish IT Center for Science. As regards the latter I would especially
like to thank ”Science-IT” administrators for granting me access to the Triton
cluster to carry out the experiments in this thesis.

Finally, I would like to thank my parents for their support and faith in my
ability to attain my goals.

Espoo, May 26, 2019

Yury Shukhrov

iii

Contents

1 Introduction 1

2 Background 4
2.1 Notation and Terminology . 4
2.2 The Suffix Array . 7
2.3 The Burrows-Wheeler Transform 9
2.4 Prior Work . 11

3 Algorithms for Suffix Array Construction 15
3.1 Prefix-Doubling Algorithms 16

3.1.1 Manber and Myers Algorithm 16
3.1.2 Larsson and Sadakane Algorithm 23

3.2 Recursive Algorithms . 28
3.3 Induced Sorting Algorithms 30

4 GPU Parallel Programming 34
4.1 Compute Unified Device Architecture 34
4.2 Essentials of the Thrust Library 36

4.2.1 Host and Device Vectors 37
4.2.2 Interoperability . 38
4.2.3 Anonymous Kernels . 40

4.3 Parallel Primitives . 42
4.3.1 Radix Sort . 42
4.3.2 Select-Flagged . 44
4.3.3 Inclusive Prefix Sum 46
4.3.4 Scatter . 48
4.3.5 Segmented Sort . 49

5 Implementations 52
5.1 Choosing the Algorithm . 53
5.2 Suffix Array Construction on the GPU 54

iv

5.3 The Suffix Array Checker . 66

6 Experimental Results 69
6.1 Hardware Specifications . 69
6.2 Performance Evaluation . 70
6.3 Scalability Analysis . 74

7 Conclusions 77

v

Chapter 1

Introduction

The problem of suffix sorting boils down to finding a lexicographic order of
all suffixes in a string. The suffix array (SA) is an elegant and compact data
structure that stores the starting positions of sorted suffixes. The concept
of the SA was proposed in 1990 by Manber and Myers [53] as the space-
saving substitute of the suffix tree [19, 24] data structure. The SA finds
an important application in different areas such as stringology [16], genome
analysis [2], bioinformatics [18], and many more.

For example, one can use the SA to determine quickly if a given text
contains a required pattern. Instead of constructing an index structure for
the text by repetitive queries and text preprocessing, the SA provides an
immediate index structure solution. Thus, to find all matches of a pattern in
a text one needs to identify each suffix that begins with a pattern. A simple
solution requires a double pass of a binary search [91] to locate the first and
last index of the interval containing the pattern. This kind of indexes is
called full-text indexes [50].

Another application of the SA is in data compression. The SA plays
an important role in Burrows-Wheeler transformation (BWT) introduced by
Burrows and Wheeler in 1994 [12]. The BWT of a string is obtained by
generating cyclic rotations of this string, by sorting them in lexicographic
order, and by extracting the last character of these sorted strings. This
transformation is reversible with minimal data overhead. The BWT can be
efficiently computed as a simple modification of the SA. It is a powerful tool
for transforming data into a form suitable for lossless compression algorithms
incorporated in popular compressors such as bzip2 [7] and szip [78].

A trivial way to construct the suffix array of the input text is to employ
a sorting algorithm (e.g., quick sort or merge sort [27, 41]) to find the lexico-
graphic order of suffixes. This approach will result in O(n2 log n) time com-
plexity because O(n log n) comparisons are used and each string comparison

1

takes O(n) time. However, we can significantly improve on that complexity
if we utilize the knowledge that there is some dependency between suffixes.
In fact, suffixes are overlapping substrings.

Currently, suffix array construction algorithms (SACAs) that take advan-
tage of this knowledge can be classified into three main categories: prefix-
doubling, recursive, and induced sorting [74]. Prefix-doubling SACAs use the
rank of prefixes to determine the order of suffixes, where the length of each
prefix is doubled in each iteration. Recursive SACA approaches group suf-
fixes into two subsets according to some criteria. One subset with 2/3 or less
suffixes is recursively sorted, and its order is used to induce the order of the
second subset. Once both subsets are sorted, merge sort is used to combine
the results. Induced sorting algorithms use the information about the sorted
subset of suffixes to induce the order of the remaining suffixes.

Over the past two decades, the majority of the proposed SACAs have been
implemented using the sequential programming model. The advances and
accessibility of the general-purpose computing on graphics cards (GPGPU)
have spurred interest in designing an efficient SACA that would harness
the power of massively parallel GPU architectures and outperform currently
fastest parallel SACAs built for multi-core CPU architectures. In the past five
years, there were several approaches to design and implement a shared mem-
ory parallel SACA using the GPU programming model. The most prominent
is the implementation of Deo and Kelly [17], based on the skew algorithm
[77]; the implementation of Osipov [73], based on prefix-doubling method;
and the implementation of Wang et al. [89], based on a hybrid skew prefix-
doubling approach.

To best of our knowledge, previous approaches to constructing a suffix ar-
ray with GPGPU coding prioritized the running time of the implementation
over other technical aspects. As a result, implementations in the previous
approaches lacked a simple, compact and lightweight design. We are mo-
tivated to improve on the previous approaches in terms of simplicity and
compactness of the GPU SACA implementation. In this thesis, we design
and implement a lightweight and memory-efficient GPU SACA using modern,
high-performance, state-of-the-art parallel primitives to achieve best results.
We experimentally evaluate the performance of our implementation using
real-world datasets and comparing the runtime, throughput, and scalabil-
ity against the fastest in practice suffix sorting algorithm working in main
memory [21], libdivsufsort [61].

This thesis is organized as follows: we begin in Chapter 2 with a brief
introduction to the basic definitions and notations in stringology, we study
basic properties of the SA and its inverse. Then, we describe the BTW and
demonstrate how it can be efficiently constructed by the SA. Finally, we give

2

a short review of the prior work done in the area of suffix array construction.
In Chapter 3, we discuss three fundamental methods for suffix array con-
struction. We study working principles of the SACAs based on each method.
In Chapter 4, we review the programming model for GPGPU: we begin with
a brief introduction to Compute Unified Device Architecture (CUDA), then
we cover essentials of the Thrust library that are employed in our imple-
mentation, and explain the working principles of the most efficient parallel
primitives that were incorporated in our GPU SACA implementation. In
Chapter 5, we present our GPU SACA implementation and justify the rea-
son for choosing the prefix-doubling method. Additionally, we present a fast
and lightweight implementation of the suffix array checker. This program
serves the purpose of checking the correctness of our GPU SACA implemen-
tation. Its working principles are based on three conditions for checking the
correctness of the suffix array. We discuss these conditions and describe our
implementation approach. Experimental evaluation of our implementation
and the corresponding results are presented in Chapter 6. We conclude this
thesis in Chapter 7.

3

Chapter 2

Background

In this chapter, we give a brief introduction to basic terminologies and defi-
nitions in stringology. We describe the concept of the suffix array data struc-
ture and expose the related notation. We study the working principles of the
Burrows-Wheeler Transform (BWT) and demonstrate how to efficiently con-
struct a BWT string directly from the SA. The chapter ends with a review
of the advances in suffix array construction.

2.1 Notation and Terminology

A string is a sequence of characters drawn from a finite set, called alphabet.
The alphabet may contain symbols, letters or characters. We will usually
denote an alphabet with the symbol Σ and its size with σ, that is |Σ| = σ.
The size of the alphabet is the number of unique elements in it [15, 16].

Example 2.1. The most common type of the alphabet is the basic modern
Latin alphabet of lowercase letters:

Σ = {a, b, c, . . . , x, y, z} .

This alphabets contains 26 distinct letters, that is σ = 26. The word S =
abracadabra is an example of a string over the alphabet Σ.

Let Σ1 = {0, 1} be the alphabet of size two containing binary numbers.
Then strings ε, 0, 1, 00, 01, 10, 11, 000, etc. are all in Σ1, where ε represents
the empty string. This kind of alphabet is commonly used in the context of
finite automata [82].

Other commonly used alphabets include the set of 256 8-bit ASCII (
(American Standard Code for Information Interchange) [49] symbols or the
set of DNA (DeoxyriboNucleic Acid) characters [84].

4

We denote the set of all strings over an alphabet Σ by

Σ∗ =
∞⋃
t=0

Σt = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . ,

where

Σt =

t︷ ︸︸ ︷
Σ× Σ× · · · × Σ

= {x1x2 . . . xt | xi ∈ Σ for 1 ≤ i ≤ t}

denotes the set of all strings on Σ having length t.
The length of a string x, denoted by |x|, is the number of alphabet el-

ements it contains. Given a string x of length n, we denote by x[i], for
i ∈ [0, n), the character of a string x at the position i or at index i of x
assuming that we are dealing with a zero-indexed string, that is a string with
the first character positioned at index zero instead of one.

We can denote a string S of length n using either index separated by
comma notation or index-range notation. In the first case, we mark the
starting index and ending index of S separated by a comma. In the second
case, we write the starting index and ending index of S separated by the
range symbol.

Example 2.2. Given a string S of length n, we denote it as

S = S[1, n] = S[1]S[2] . . . S[n] = S[1 . . . n],

if it starts at index 1 and ends at index n. We can express zero-indexed
strings T of length n as follows:

T = T [0, n− 1] = T [0]T [1] . . . T [n− 1] = T [0 . . . n).

Given a string S[0, n) with n characters, S[i . . . j] ⊂ S denotes the sub-
string of S that starts at position i and ends at position j, such that i ≤ j.
When i > j, S[i . . . j] denotes the empty string ε.

Example 2.3. Suppose we are given a string T [0, 11] = abracadabra$. To
define a substring braca we provide its starting and ending character indices
within the array T , that is T [1, 4] = braca.

Let x be a string of length n and let y be a string of length m. The
concatenation of x and y, denoted by xy, is the string formed by merging
x and y, as in x1 · · ·xny1 . . . ym. We write xn to denote that string x is
concatenated with itself n times, that is,

x0 = ε and xn =

n︷ ︸︸ ︷
xx · · · x .

5

Example 2.4. Let x = abra and y = cadabra. The concatenation of x
and y is xy = abracadabra. To obtain x2 we append x to the end of itself,
that is, x2 = abraabra.

Given a string S[1 . . . n] with n symbols, a substring S[i . . . n] ⊂ S is a
suffix of S that starts at index i and ends at the end of S. A proper suffix
of the string S is any suffix of S such that 1 < i ≤ n, that is, any non-empty
suffix of S that is not equal to S. A prefix of S is a substring S[1 . . . i] ⊂ S
that starts from the beginning of S and ends at index i. A proper prefix of
the string S is any prefix of S such that 1 ≤ i < n, that is, any non-empty
prefix of S that is not equal to S [51].

Example 2.5. Suffixes and prefixes of the string T = abracadabra$.

Suffix Prefix Index
abracadabra$ a 0
bracadabra$ ab 1
racadabra$ abr 2
acadabra$ abra 3
cadabra$ abrac 4
adabra$ abraca 5
dabra$ abracad 6
abra$ abracada 7
bra$ abracadab 8
ra$ abracadabr 9
a$ abracadabra 10
$ abracadabra$ 11

In Example 2.5, you can see that a suffix of the string T starts from the cor-
responding index and includes all characters in between until and including
the last character. Thus, if we consider suffix 5, adabra$, we can express
it as T [5 . . . 11]. Observe that the prefix is reciprocal in some way to the
suffix. Suffix index tells us that it starts from that index and spans over all
characters until and including the last character. The same index tells us
that the prefix is a substring that starts from the first index and ends on the
suffix index. Hence, prefix 5, abraca can be defined as T [0 . . . 5].

The lexicographic ordering, denoted by <, is a total ordering on the alpha-
bet Σ that induces the ordering on Σ∗ as follows. Given two strings s, t ∈ Σ∗,
we say that s is lexicographically smaller than t, written as s < t, if and only
if either s is a proper prefix of t or we can express the first string as s = xcy
and the second string as t = xdz with x, y, z ∈ Σ∗ and characters c, d ∈ Σ
such that c < d [15, 70].

6

Example 2.6. Suppose we have three strings: x = acacc, y = acca and z =
accaac. To determine the lexicographic ordering of these strings we compare
their first characters index-wise. Assume that a < c. The first two characters
of all three strings are the same, so we need to look at the third character.
We see that in string x this character is a which is smaller than in the
other two strings that have character c at that index. This tells us that x is
lexicographically the smallest among three strings. Next, we compare y and
z. The first four characters are the same. However, we notice that y is a
proper prefix of z. Hence the lexicographic ordering is x < y < z.

2.2 The Suffix Array

Let x[0 . . . n] be a string of length n + 1 over an indexed alphabet Σ (i.e.
an alphabet where each symbol is associated with an integer that belongs
to some limited range). We assume that x[n] = $ is a special symbol called
the sentinel that is usually marked with a dollar sign $ such that $ is lexi-
cographically smaller than any other symbol in Σ [18].

We denote the i-th suffix of x as xi = x[i . . . n] or suffix i. The suffix array
of the string x, written as SAx or just SA, is an array of integers SA[0 . . . n],
which stores a permutation of the integers {0, . . . , n}, such that

xSA[0] < xSA[1] < · · · < xSA[n].

To put it another way, xi is the j-th smallest suffix of the string x in ascending
lexicographical order if and only if SA[j] = i [64].

Example 2.7. The suffix array of the string x = abracadabra$.

Suffix i Sorted suffix SA[i]
abracadabra$ 0 $ 11
bracadabra$ 1 a$ 10
racadabra$ 2 abra$ 7
acadabra$ 3 abracadabra$ 0
cadabra$ 4 acadabra$ 3
adabra$ 5 adabra$ 5
dabra$ 6 bra$ 8
abra$ 7 bracadabra$ 1
bra$ 8 cadabra$ 4
ra$ 9 dabra$ 6
a$ 10 ra$ 9
$ 11 racadabra$ 2

7

Example 2.7 tells us that x11 is the 0-th smallest suffix, x10 is the 1-th smallest
suffix, and so on (assuming that we use zero-indexed string and lexicograph-
ical order of the characters). Notice that |x| = |SA| and that SA is the
permutation of the set {0, . . . , 11}.

The inverse suffix array of the string x, written as ISAx or just ISA, is
an array of integers ISA[0 . . . n], so that for any i with 0 ≤ i ≤ n the equality
ISA[SA[i]] = i. More precisely, the relation between SA and ISA can be
expressed as follows:

ISA[i] = j ⇔ SA[j] = i.

The inverse suffix array is also called the lexicographic ranks of suffixes be-
cause ISA[i] specifies the rank of the i-th suffix among the lexicographically
ordered suffixes [74]. The expression ISA[i] = j implies that suffix xi is the
j-th smallest suffix of the string x in ascending lexicographical order [51, 64].
We can compute SA and ISA, one from the other, in linear time as follows:

SA[ISA[i]] = i, 0 ≤ i ≤ n and ISA[SA[j]] = j, 0 ≤ j ≤ n.

Example 2.8. The suffix array and the inverse suffix array of the string
x = abracadabra$.

Suffix i Sorted suffix SA[i] ISA[i]
abracadabra$ 0 $ 11 3
bracadabra$ 1 a$ 10 7
racadabra$ 2 abra$ 7 11
acadabra$ 3 abracadabra$ 0 4
cadabra$ 4 acadabra$ 3 8
adabra$ 5 adabra$ 5 5
dabra$ 6 bra$ 8 9
abra$ 7 bracadabra$ 1 2
bra$ 8 cadabra$ 4 6
ra$ 9 dabra$ 6 10
a$ 10 ra$ 9 1
$ 11 racadabra$ 2 0

Example 2.8 tells us that x0 is the 3-th smallest suffix, x1 is the 7-th smallest
suffix, and so on. To compute SA from ISA we take the following steps:
SA[ISA[0]] = SA[3] = 0, SA[ISA[1]] = SA[7] = 1, and so on. To compute ISA
from SA we take the following steps: ISA[SA[0]] = ISA[11] = 0, ISA[SA[1]] =
ISA[10] = 1, and so on. Obviously, we can compute SA from ISA and vice
versa in linear time.

8

2.3 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) [12] is a process of transforming
an input string into another string that has a structure suitable for efficient
compression. A remarkable property of this structure is that a string gener-
ated by the BWT tends to contain a large number of substrings composed of
consecutive identical characters. To take advantage of this property and effi-
ciently code a string generated by the BWT, a Move-to-Front (MTF) [9, 76]
and a Huffman [31, 87] or arithmetic [93] coders are used.

The BTW is reversible, which enables a recovery of the original string
with minimal data overhead. The BWT of a string x[0 . . . n] is generated as
follows: (1) Append a sentinel symbol $ to the end of the string x such that
x[n] = $ (2) Construct a n + 1 × n + 1 matrix R containing all rotations
(cyclic shifts) of x. (3) Sort rotations in R lexicographically. (4) The last
column of R is the output of the BWT [12, 71].

Example 2.9. Application of the BWT with input string x = abracadabra.

i Rotations (R) Sorted rotations BWT[i]
0 abracadabra$ $abracadabra a

1 bracadabra$a a$abracadabr r

2 racadabra$ab abra$abracad d

3 acadabra$abr abracadabra$ $
4 cadabra$abra acadabra$abr r

5 adabra$abrac adabra$abrac c

6 dabra$abraca bra$abracada a

7 abra$abracad bracadabra$a a

8 bra$abracada cadabra$abra a

9 ra$abracadab dabra$abraca a

10 a$abracadabr ra$abracadab b

11 $abracadabra racadabra$ab b

Observe that when cyclic shifts are applied on the string abracadabra$, the
sentinel symbol $ shifts from right to left until it reaches the first position
in the last rotation. The output of the transformation is ard$rcaaaabb.
Although the length of the input string is small, the structure of the output
string contains substrings of consecutive identical characters, which are easy
to compress using the coders mentioned at the beginning of this chapter.
In practice, input strings of sufficiently large length are likely to generate

9

more substrings of consecutive identical characters, as a result of the BTW
transformation, and hence the compression efficiency tends to increase.

The efficiency of the original approach for computing the BTW of a string
boils down to the efficiency of sorting lexicographically the rotations of the
Burrows-Wheeler Matrix (BWM). In other words, sorting the rotations is a
bottleneck in the BWT with respect to the time complexity of this operation.
A naive approach is to sort the rotations using a comparison-based sorting
algorithm such as quicksort or mergesort. However, a more sophisticated and
efficient approach is to employ the suffix array to solve the problem of sorting
the rotations [3, 46].

Observe that the sorted rotations resemble the sorted suffixes obtained
from the suffix array of the string x = abracadabra$. We notice in Example
2.10 that each sorted rotation can be obtained by extracting a corresponding
sorted suffix of x and prepending it to the beginning of x.

Example 2.10. The relation between the BWT and the SA with input string
x = abracadabra$.

i Sorted rotations Sorted suffixes of x SA[i] BWT[i]
0 $abracadabra $ 11 a

1 a$abracadabr a$ 10 r

2 abra$abracad abra$ 7 d

3 abracadabra$ abracadabra$ 0 $
4 acadabra$abr acadabra$ 3 r

5 adabra$abrac adabra$ 5 c

6 bra$abracada bra$ 8 a

7 bracadabra$a bracadabra$ 1 a

8 cadabra$abra cadabra$ 4 a

9 dabra$abraca dabra$ 6 a

10 ra$abracadab ra$ 9 b

11 racadabra$ab racadabra$ 2 b

The relation between the BWT and the SA can be formulated as follows:

BWT[i] =

{
x[SA[i]− 1] if SA[i] > 0

$ if SA[i] = 0

This relation implies that BWT[i] of the string x can be constructed by
taking a character that is positioned to the left of the suffix in the suffix
array SA[i].

10

2.4 Prior Work

In this section, we give a short review of the most notable SACAs and clas-
sify them according to three categories: sequential implementations, parallel
CPU implementations and massively parallel GPU implementations. The se-
quential implementation class of algorithms includes all SACAs that run in a
single thread and execute CPU instructions sequentially. A class of parallel
CPU implementations includes SACAs that leverage multi-core CPU par-
allelism and shared-memory data access. These are multi-threaded SACAs
that can be powered by some application programming interface (API) that
supports multi-platform shared memory multiprocessing programming. Fi-
nally, the last class includes SACAs developed for massively parallel shared-
memory GPU architectures.

Sequential Implementations

The concept of the suffix array was introduced in 1990 by Manber and Myers
(MM) [53] along with the first O(n log n) [47] suffix sorting algorithm, which
consumed less space than alternative suffix tree implementations. Their work
was motivated by the results of Karp et al. in 1972 [38] who was working
on pattern matching in strings using array and tree data structures. The
MM algorithm was later improved and optimized by Larsson and Sadakane
(LS) [45]. Both the MM and the LS algorithms used prefix-doubling tech-
nique. According to [74], the LS algorithm was ten times faster than the MM
algorithm in practice.

In 2003, independent groups of researchers developed different linear-time
SACAs that leveraged recursive divide-and-conquer principles. Among them
the most prominent are: Ko and Aluru (KA) [42]; Kärkkäinen and Sanders
(KS) [37]; Kim et al. (KSPP) [39] and Hon et al. (HSS) [30].

A plethora of SACAs of different time and space complexities based on
induced sorting method have been proposed among which are a few notable
ones: Itoh and Tanaka (IT, 1999) [33]; Seward (S, 2000) [80]; Burkhardt
and Kärkkäinen (BK, 2003) [11]; Manzini and Ferragina (MF, 2004) [56];
Schürmann and Stoye (SS, 2005) [79]; Baron and Bresler (BB, 2005) [5];
Maniscalco and Puglisi (MP, 2007) [55]; Nong et al. (SA-IS, 2009) [67]. In
2010, Yuta Mori improved the performance of Nong et al. SA-IS algorithm
and released an open-source version in a public repository [62].

In 2018, Li et al. [47] obtained the first in-place linear-time SACA that
takes constant workspace for read-only input strings over integer alphabets,
where |Σ| = O(n). They improved the result of Nong [66] by extending the

11

alphabet size to O(n) for in-place sorting and by reducing the workspace to
O(1). Li et al. in-place linear-time SACA is based on the induced sorting
framework developed in [42] (which is also used in the following SACAs
[23, 66–69, 74]).

Parallel CPU Implementations

In 2009, Homann et al. [29] introduced an open-source program for con-
structing enhanced suffix arrays mkESA. The mkESA was based on Manzini
and Ferragina [56] Deep-Shallow SACA that Homann et al. managed to map
onto a multi-core CPU architecture. The authors achieved a speedup of less
than 2x using 16 threads against single threaded execution of mkESA.

In 2010, Mohamed and Abouelhoda [60] proposed a parallelized version
of the the bucket pointer refinement (bpr) algorithm of Schürmann and Stoye
[79]. Their algorithm the pbpr incorporates Seward’s [80] method and they
tested it on 8 core machine. Mohamed and Abouelhoda claim that the pbpr
outperforms the mkESA. Their results show that the pbpr algorithm achieves
less than 1.7x speedup using eight threads [89].

One of the fastest, robust and lightweight SACAs of this category was
implemented by Yuta Mori. Mori’s algorithm, libdivsufsort (sometimes re-
ferred as divsufsort), is based on induced sorting technique and parallelized
by the OpenMP application programming interface (API) [72]. Mori eval-
uated the performance of its implementation in the benchmarking contest
[63]. A plethora of SACAs participated in this contest. Among them two al-
gorithms were parallelized for shared memory multiprocessing: the Archon4
algorithm by Dmitry Malyshev [52] and the MSufSort3 algorithm by Michael
Maniscalco [54]. All participating in the contest algorithms were extensively
tested over different corpora. Mori’s algorithm showed the best total run-
ning time. Fischer and Kurpicz gave a concise description of libdivsufsort by
dismantling the source code that has never been documented in an academic
context. According to Fischer and Kurpicz [21, 22], libdivsufsort is still the
fastest and the most space-conscious way to construct the suffix array on the
CPU.

In 2012, Shun et al. [81] released an open-source Problem Based Bench-
mark Suite (PBBS), which includes two shared memory parallel implemen-
tations of the skew [37] and prefix-doubling [45] algorithms. Both SACAs
from the PBBS are implemented using Cilk Plus extension [32], which is
deprecated since 2018 and requires a separate installation on the machine.
Authors claim that both versions of their implementations are faster than
libdivsufsort.

Recently, Nong et al. [44] developed the first linear-time and in-place

12

parallel suffix sorting algorithm for constant alphabets the pSACAK, which
is essentially a parallelized version of the SACAK [66] algorithm. Addition-
ally, Nong et al. [43] described the parallelization process of the sais [67]
SACA. They called a parallelized version the psais. Both, the pSACAK and
the psais algorithms were developed using Cilk Plus extension. Their results
suggest that the pSACAK runs 34 percent faster than psais and consumes
5 percent less memory. Authors compared their implementations against
the pKS algorithm (parallel version of the skew [37] algorithm from PBBS)
and against libdivsufsort. According to their results, the pSACAK is just 5
percent faster than the pKS, but uses 4 times less memory. The pSACAK
achieves an average speedup of 2.85x over libdivsufsort and requires up to
0.3 percent more space. It remains uncertain whether the authors ran libdi-
vsufsort with maximum number of OpenMP threads, since they referred to
Mori’s algorithm as sequential.

Massively Parallel GPU Implementations

In 2013, Deo and Keely [17] mapped a recursive skew algorithm onto GPUs.
They implemented a GPU version of the skew algorithm using OpenCL and
achieving up to 34x and 5.8x speedup over a single threaded CPU implemen-
tation using a discrete GPU and accelerated processing unit (APU) respec-
tively. In their work, Deo and Keely also described the GPU implementation
of Kasai longest common preffix (LPC) algorithm. Their GPU implementa-
tion of LCP achieves a speedup of up to 25x and 4.3x on discrete GPU and
APU respectively.

Deo and Keely conclude that the skew algorithm is the best candidate
for GPU implementation, because, as they claim, all phases of the algorithm
can be efficiently parallelized using GPU programming paradigms. On the
other hand, Deo and Keely claim that induce sorting SACA can be efficiently
mapped onto GPUs only if data-dependency issue will be solved by finding
an efficient way to parallelize between different phases and finding a way how
to sort strings of irregular size efficiently. They also consider prefix-doubling
to be unsuitable for GPU because of the increasing number of unsorted buck-
ets in each level, non-uniform amount of work in each unsorted bucket and
difficulties in managing the increasing number of unsorted buckets.

In 2012, Vitaly Osipov [73] implemented a prefix doubling SACA on the
GPU. He claimed that to his best knowledge it was the first prefix-doubling
SACA mapped onto GPU. According to Osipov, his GPU algorithm is the
result based on a few modifications applied to MM and LS algorithms. In
particular, in his GPU solution, he reduced the number of radix sort passes
to one and applied a filtering criterion to eliminate large overheads caused

13

by re-sorting.
Osipov also compared the running time of his algorithm against libdivsuf-

sort. Osipov’s results suggest that his algorithm achieved around 6x speedup
only on one dataset, while on other datasets the speedup over libdivsufsort
was up to 4. Osipov stated that he ran libdivsufsort on 4 core CPU. He
concludes that prefix-doubling algorithms are better suitable for mapping
onto GPUs compared to recursive algorithms like the skew. He justifies his
opinion by claiming that sorting and merging in the skew are more expen-
sive, while prefix-doubling requires only efficient GPU sorting of four-byte
key-value pairs.

In 2015, Wang et al. [89] proposed and developed two SACAs on the
GPU. They implemented the skew algorithm on the GPU with some al-
gorithmic modifications and improvements over Deo and Kelly’s algorithm
achieving a speedup of 1.45x over their work. In addition to that, they
also implemented a hybrid GPU SACA that combined both the skew and
prefix-doubling approaches in its design and outperformed Osipov’s algo-
rithm by 2.3-4.4x, and their own GPU skew implementation by 2.4-7.9x on
large datasets. Wang et al. claim that their hybrid algorithm is the first
in its kind. Performance improvement over Deo and Kelly’s skew algorithm
and Osipov’s prefix-doubling algorithm was achieved by taking advantage of
parallel primitives such as a merge and a segmented sort [6].

14

Chapter 3

Algorithms for Suffix Array
Construction

In this chapter, we study three main classes of algorithms that are used for
suffix array construction. Each class of such algorithms applies a specific
technique to succeed in its task. We analyze the main ideas behind each
technique and investigate how they are implemented by some of the most
prominent SACAs of each class.

The prefix-doubling technique was first introduced and applied for suf-
fix array construction by Manber and Myers [53] in 1990. Their work was
inspired and motivated by Karp et al. [38] who proposed the idea of the
technique in 1972. Later, Larsson and Sadakane [45] optimized the MM
algorithm achieving around 10x speedup without applying any parallelism
[74].

In 2003 and 2004, several novel linear-time recursive suffix array con-
struction algorithms were developed. They are Kärkkäinen and Sanders’ [37]
algorithm, Ko and Aluru’s [42] algorithm, Kim et al.’s [39] algorithm and
Hon et al.’s [30] algorithm. They are based on a similar recursive divide-
and-conquer model.

The first algorithm based on induced sorting technique was proposed by
Itoh and Tanaka [33] in 1999. From 2000 until 2006, other induced sort-
ing SACAs were developed. They are Seward’s [80] algorithm, Burkhardt
and Kärkkäinen’s [11] algorithm, Manzini and Ferragina’s [56] algorithm,
Schürmann and Stoye’s [79] algorithm, Baron and Bresler’s [5] algorithm and
Maniscalco and Puglisi’s [55] algorithm. In 2009, Nong et al.’s [67] developed
fast and lightweight induced sorting SACA, which was later improved and
optimized without any parallelism by Mori [62].

15

3.1 Prefix-Doubling Algorithms

The idea of the prefix-doubling approach is to deduce the order of suffixes
from the lexicographic ranks of their prefixes. Initially, we sort suffixes lexi-
cographically by their prefixes of length one. Essentially, this means that we
sort lexicographically each suffix according to the first character. Then, we
group suffixes that start with identical character into buckets.

A bucket that contains only one suffix is called singleton and considered
sorted. A bucket that contains more than one suffix is called non-singleton
and requires sorting.

In each round, we double the prefix length of each suffix in all non-
singleton buckets, ignoring singleton ones. Then we use the ranks of prefixes
from the previous round to obtain the ranks of prefixes in the current round
and to sort suffixes in each non-singleton bucket according to the new ranks of
their prefixes. In other words, we use the relative order of suffixes computed
in round t to deduce their order in round t + 1. Once the suffix can be
uniquely distinguished by the rank of the corresponding prefix, its position
in the suffix array is fixed, and it is marked as a singleton. The doubling
process terminates when all buckets are singleton.

We say that suffixes are in h-order if they are sorted lexicographically
according to their first h symbols. The h-bucket contains suffixes in their
h-order. Suffixes in h-order may have the same ranks when the value of h is
relatively small compared to the string length.

The length of the prefix is defined by h-order of suffixes with all single-
ton buckets representing suffixes that are already sorted by their h-length
prefixes. The advantage of this method is that once we know the h-order
of suffixes we can determine their positions within 2h-buckets in time O(n)
[89].

When we scan suffixes in their h-order, we deduce the order of suffix i
from the lexicographic rank of its i+h prefix computed in round h−1 (where
round 0 is the initial single character sorting). In each iteration, we double
h, that is h = 2k for k ∈ {0, 1, 2, . . .}. It takes at most O(log n) rounds until
every 2h-bucket is a singleton. Hence, the total running time of this method
is O(n log n).

3.1.1 Manber and Myers Algorithm

The Manber and Myers (MM) suffix sorting algorithm runs in dlog2(n+ 1)e
stages. In each stage, it performs an implicit 2h-sort by scanning buckets
from left to right. This operation takes O(n) time. To implicitly sort the

16

suffixes, Manber and Myers leverage the following idea.
Consider two suffixes i and j that reside in the same bucket. We want to

determine their h-order. For this purpose, we need to compare lexicograph-
ically their i + h and j + h prefixes. We assume that we know the relative
order of suffixes i+h and j+h. Hence, we can use their order to sort suffixes
i and j. This idea leads to the following observation:

Observation 1. Denote by SAh the suffix array in h stage. Let i ∈ [a, b]
be the position of the suffix that belongs to the bucket occupying the interval
[a, b] in SAh . As we traverse SAh left to right, then each h-order suffix

SAh [i]− h > 0

defines the 2h-order of suffixes within the corresponding h-buckets.

This observation means the following. Consider the first bucket, as we scan
SAh left to right, and let suffix i be the first suffix in this bucket, such that
i−h ≥ 0. Since suffix i is ranked first in its h-bucket, then suffix i−h should
be ranked first in its 2h-bucket, because the next h symbols of suffix i − h
are the first h symbols of suffix i. Next, we move suffix i − h to the first
position in its h-bucket. For each suffix i, the algorithm moves suffix i − h
to the next available position in its h-bucket.

The detailed pseudo-code of the MM implementation is available in Al-
gorithm 1. Initially, we create two boolean arrays Bh and B2h, and three
integer arrays SA, Cnt , and ISA. The size of all arrays is n. SA is the suffix
array that stores suffixes in h-order. ISA is the inverse of SA, defined as
ISA[SA[i]] = i for all i ∈ [0, n). Bh marks the bucket heads (i.e. helps to
identify left and right boundaries of h-bucket). B2h marks prefixes that were
moved. Cnt stores the next available position in the bucket that is being
currently scanned. The first prefix is moved to the top of its h-bucket, Cnt [i]
is incremented, and the next prefix goes to the second position and so on.

In line 4 of Algorithm 1, we perform the initialization of SA, Bh and B2h.
We sort suffixes of the input string T = T [0]T [1] . . . T [n−1] according to the
first symbol and store the result into SA. This procedure can be done by
running key-value radix sort, where elements of T are keys and elements of
SA are values. Initially, we fill SA with consecutive integers from [0, n). The
initial values of Bh are computed by comparing lexicographically the first
symbol of the adjacent h-order suffixes, namely, T [SA[i − 1]] and T [SA[i]].
The initial values of B2h are set to 0.

After initialization, the algorithm enters the main while loop (line 6). It
executes until all buckets are fully sorted, that is, each bucket is a singleton.
This condition is satisfied when all values of Bh are set to 1 or when the

17

number of buckets is n. At the beginning of each iteration, we compute the
ranks of suffixes in h-order, namely, ISA[SA[i]] = i and set Cnt [i] to 0 for all
0 ≤ i < n.

In line 15, we begin the traversal of SA left to right. Let [a, b] be the
interval occupied by the h-bucket that is currently being scanned within SA.
We denote by s the rank of every suffix obtained from SA[i]− h ≥ 0. For
every i, a ≤ i ≤ b, we set ISA[s] = ISA[s]+Cnt [s], increment Cnt [s], and set
B2h to 1. All suffixes that are uniquely distinguished by the ranks of their
h-prefixes are moved to the position defined by Cnt within the corresponding
h-bucket.

Before we move to the next bucket, we scan the current bucket again
and update the values of B2h as shown in line 25. For all suffixes that were
moved, we identify the leftmost suffix and use its position to mark the head
of its 2h-bucket, while resetting the B2h values for other suffixes within the
same h-bucket. More precisely, we set B2h to 0 for all v ∈ [ISA[s] + 1, u− 1]
such that the position of every moved suffix s is marked in B2h and

u = min{t : t > ISA[s] and (Bh[t] or not B2h[t])}.

This expression implies that we identify the left boundary of each 2h-bucket,
while the right boundary is preserved by Bh. Below, we provide a running
example of the MM implementation available in the Algorithm 1 using the
input string T = abracadabra$, where $ is the sentinel. At the beginning
of stage h = 1, we have:

i Bh[i] B2h[i] Cnt [i] ISA[i] SA[i]
0 1 1 1 1 11 = $
1 1 0 0 6 0 = abracadabra$
2 0 0 0 10 3 = acadabra$
3 0 0 0 1 5 = adabra$
4 0 0 0 8 7 = abra$
5 0 0 0 1 10 = a$
6 1 0 0 9 1 = bracadabra$
7 0 0 0 1 8 = bra$
8 1 0 0 6 4 = cadabra$
9 1 0 0 10 6 = dabra$
10 1 0 0 1 2 = racadabra$
11 0 0 0 0 9 = ra$

.

At this point, SA[i] is partitioned into 6 buckets according to the first symbol
of each suffix: $, a, b, c, d, r. Suffixes in SA[i] for i = {0, 8, 9} are already

18

sorted and hence their buckets are singleton. We scan SA[i], consider one
h-bucket at time and perform the following operations:

Algorithm 1: The MM algorithm
1 procedure MM(T, n)

Input: T — input string, n — input string length.
Output: Sorted lexicographically suffixes of T stored in SA.

2 Define integer arrays: SA(n), ISA(n), Count(n)
3 Define boolean arrays: Bh(n), B2h(n)
4 Initialize∗SA, Bh and B2h

5 h← 1
6 while ∃ non-singleton h-bucket do
7 for each bucket[a, b]† do
8 Count [a]← 0
9 for i ∈ [a, b] do

10 ISA[SA[i]]← a
11 end
12 end
13 Cnt [ISA[n − h]]← Cnt [ISA[n − h]] + 1
14 B2h[ISA[n − h]]← true
15 for each bucket[a, b] do
16 for i ∈ [a, b] do
17 s ← SA[i]− h
18 if s ≥ 0 then
19 head ← ISA[s]
20 ISA[s]← head + Cnt [head]
21 Cnt [head]← Cnt [head] + 1
22 B2h[ISA[s]]← true
23 end
24 end
25 for i ∈ [a, b] do
26 s ← SA[i]− h
27 if s ≥ 0 and B2h[ISA[s]] then
28 u← min{t : t > ISA[s] and (Bh[t] or not B2h[t])}
29 for v ∈ [ISA[s] + 1, u− 1] do
30 B2h[v]← false
31 end
32 end
33 end
34 end
35 for i ∈ [0, n− 1] do
36 SA[ISA[i]]← i
37 Bh[i]← Bh[i] or B2h[i]
38 end
39 h← 2h
40 end
41 for i ∈ [0, n− 1] do
42 ISA[SA[i]]← i
43 end
44 return SA
45 End

∗Initialization is explained in the text.
†We denote by bucket[a, b] the bucket that is currently being scanned in SAh, where a

is the left and b is the right boundaries of this bucket.

19

Scanning bucket 1: T10 is moved to the position 1 of its bucket, SA[0] −
1 = 10, ISA[10] = 1, set ISA[10] = 1 + Cnt [1], B2h[1] = 1 and increment
Cnt [1]. Scanning bucket 2: T2 is moved to the position 10 of its bucket,
SA[2] − 1 = 2, ISA[2] = 10, set ISA[2] = 10 + Cnt [10], B2h[10] = 1 and
increment Cnt [10]. T4 is moved to the position 8 of its bucket, SA[3]−1 = 4,
ISA[4] = 8, set ISA[4] = 8 + Cnt [8], B2h[8] = 1 and increment Cnt [8]. T6
is moved to the position 9 of its bucket, SA[4] − 1 = 6, ISA[6] = 9, set
ISA[6] = 9 + Cnt [9], B2h[9] = 1 and increment Cnt [9]. T9 is moved to the
position 11 of its bucket, SA[5]−1 = 9, ISA[9] = 10, set ISA[9] = 10+Cnt [10],
B2h[11] = 1 and increment Cnt [10]. B2h[11] is set to 0 (by scanning the
bucket again). Scanning bucket 3: T0 is moved to the position 2 of its
bucket, SA[6] − 1 = 0, ISA[0] = 1, set ISA[0] = 1 + Cnt [1], B2h[2] = 1 and
increment Cnt [1]. T7 is moved to the position 3 of its bucket, SA[7]− 1 = 7,
ISA[7] = 1, set ISA[7] = 1 + Cnt [1], B2h[3] = 1 and increment Cnt [1].
B2h[3] is set to 0 (by scanning the bucket again). Scanning bucket 4: T3
is moved to the position 4 of its bucket, SA[8] − 1 = 3, ISA[3] = 1, set
ISA[3] = 1 + Cnt [1], B2h[4] = 1 and increment Cnt [1]. Scanning bucket
5: T5 is moved to the position 5 of its bucket, SA[9]− 1 = 5, ISA[5] = 1, set
ISA[5] = 1 + Cnt [1], B2h[5] = 1 and increment Cnt [1]. Scanning bucket 6:
T1 is moved to the position 6 of its bucket, SA[10] − 1 = 1, ISA[1] = 6, set
ISA[1] = 6 + Cnt [6], B2h[6] = 1 and increment Cnt [6]. T8 is moved to the
position 7 of its bucket, SA[11]− 1 = 8, ISA[8] = 6, set ISA[8] = 6 + Cnt [6],
B2h[7] = 1 and increment Cnt [6]. B2h[7] is set to 0 (by scanning the bucket
again). At the end of stage h = 1, we have:

i Bh[i] B2h[i] Cnt [i] ISA[i] SA[i]
0 1 1 1 2 11 = $
1 1 1 5 6 10 = a$
2 1 1 0 10 0 = abracadabra$
3 0 0 0 4 7 = abra$
4 1 1 0 8 3 = acadabra$
5 1 1 0 5 5 = adabra$
6 1 1 2 9 1 = bracadabra$
7 0 0 0 3 8 = bra$
8 1 1 1 7 4 = cadabra$
9 1 1 1 11 6 = dabra$
10 1 1 2 1 2 = racadabra$
11 0 0 0 0 9 = ra$

.

Notice that during h-bucket scan, we derived new positions for suffixes Ti−h
and stored them into ISA[i]. At the end of the stage, we performed the actual

20

moving, which is demonstrated in Algorithm 1 in lines 35-38. Additionally,
we merged the values of Bh and B2h by performing logical OR operation
between them and storing the results into Bh.
At the beginning of stage h = 2, we have:

i Bh[i] B2h[i] Cnt [i] ISA[i] SA[i]
0 1 1 0 2 11 = $
1 1 1 1 6 10 = a$
2 1 1 0 10 0 = abracadabra$
3 0 0 0 4 7 = abra$
4 1 1 0 8 3 = acadabra$
5 1 1 0 5 5 = adabra$
6 1 1 0 9 1 = bracadabra$
7 0 0 0 2 8 = bra$
8 1 1 0 6 4 = cadabra$
9 1 1 0 10 6 = dabra$
10 1 1 0 1 2 = racadabra$
11 0 0 0 0 9 = ra$

.

The number of buckets increased from 6 to 9. From the previous stage the
algorithm successfully sorted three suffixes: T3, T5 and T10. At this point, we
have 6 singleton buckets and 3 buckets that still needs to be sorted. We reset
the Cnt [i] and B2h[i] by setting Cnt [i] = 0 for all i, B2h[ISA[n − h]] = 1 and
incrementing Cnt [ISA[n − h]]. Then we compute new values for ISA[i] that
are derived from the new bucket numbers. We perform same operations as
in previous stage but with values from the table above. As a result, at the
end of stage h = 2, we have:

i Bh[i] B2h[i] Cnt [i] ISA[i] SA[i]
0 1 1 0 2 11 = $
1 1 1 1 7 10 = a$
2 1 1 2 11 0 = abracadabra$
3 0 0 0 4 7 = abra$
4 1 1 1 8 3 = acadabra$
5 1 1 1 5 5 = adabra$
6 1 1 2 9 8 = bra$
7 1 1 0 3 1 = bracadabra$
8 1 1 1 6 4 = cadabra$
9 1 1 1 10 6 = dabra$
10 1 1 2 1 9 = ra$
11 1 1 0 0 2 = racadabra$

.

21

We moved T9 to 10, T8 to 6, T5 to 5, T1 to 7, T3 to 4, T6 to 9, T2 to 11, T4 to
8, T0 to 2, T7 to 3.
At the beginning of stage h = 4, we have:

i Bh[i] B2h[i] Cnt [i] ISA[i] SA[i]
0 1 1 0 2 11 = $
1 1 1 0 7 10 = a$
2 1 1 0 11 0 = abracadabra$
3 0 0 0 4 7 = abra$
4 1 1 0 8 3 = acadabra$
5 1 1 0 5 5 = adabra$
6 1 1 1 9 8 = bra$
7 1 1 0 2 1 = bracadabra$
8 1 1 0 6 4 = cadabra$
9 1 1 0 10 6 = dabra$
10 1 1 0 1 9 = ra$
11 1 1 0 0 2 = racadabra$

.

From the previous stage we uniquely sorted suffixes T1, T2, T8, and T9. As a
result, at the beginning of this stage, we have 10 out of 11 singleton buckets.
Only two suffixes have the same rank T0 and T7 and hence needs to be sorted.
After executing lines 7-39, we obtain the following results at the end of stage
h = 4,:

i Bh[i] B2h[i] Cnt [i] ISA[i] SA[i]
0 1 1 0 3 11 = $
1 1 1 0 7 10 = a$
2 1 1 2 11 0 = abracadabra$
3 0 1 0 4 7 = abra$
4 1 1 1 8 3 = acadabra$
5 1 1 1 5 5 = adabra$
6 1 1 1 9 8 = bra$
7 1 1 1 2 1 = bracadabra$
8 1 1 1 6 4 = cadabra$
9 1 1 1 10 6 = dabra$
10 1 1 0 1 9 = ra$
11 1 1 1 0 2 = racadabra$

.

We moved T7 to 2, T6 to 9, T3 to 4, T1 to 7, T4 to 8, T0 to 3, T2 to 11, and T5
to 5. The algorithm updates SA and Bh. The main while loop terminates

22

since all buckets are sorted. The algorithm reconstructs ISA[i] from SA[i]
for all i and outputs the suffix array SA.

3.1.2 Larsson and Sadakane Algorithm

Bucket sorting is one of the main factors affecting the efficiency of prefix-
doubling SACAs. Manber and Myers [53] (MM) were first to describe and
apply the prefix-doubling technique in their SACA using linear-time bucket
sorting. The working principles of the MM algorithm are based on scan-
ning suffixes at h-order, implicitly sorting them by moving to the top of
their bucket and relabeling buckets in 2h-order. This whole process takes
linear time. However, MM is inefficient in practice due to a large amount of
redundant work [74].

According to [11, 17, 74], Larsson and Sadakane [45] (LS) algorithm is one
of the most efficient implementations based on the prefix-doubling technique
in the non-parallel setting. Although its time complexity is the same as the
MM algorithm, O(n log n), in practice, it runs much faster. The LS algorithm
is based on the MM algorithm with several important adjustments. First,
the LS eliminates unnecessary scanning. Second, it avoids a large amount
of redundant work such as idle regrouping of already sorted parts of ISA.
Third, it keeps the memory space at the same level as the MM.

The LS algorithm does not scan the whole array; instead, it keeps track
of sorted buckets and ignores them in further rounds. The LS explicitly sorts
each h-bucket using the Bentley-McIlroy quicksort (BMQS) [8]. The BMQS
is an optimized version of the quicksort that employs split-end partitioning
and incorporates an efficient solution for elements swapping. The BMQS
groups equal elements and brings them to the middle of the array, while
only distinct elements are recursively sorted. This method is highly efficient
for inputs with a large number of equal elements, as it takes less time to
swap equal elements and bring them to the middle of the array than to make
recursive calls on them.

Larsson and Sadakane formulated the problem as follows. Let T [0 . . . n] =
T [0]T [1] . . . T [n] be a string comprised of n+1 characters, such that the actual
input string occupies the subarray T [0 . . . n) and T [n] = $ is the sentinel. In
each stage h, an integer array I stores suffixes in their h-order. Values of I
are integers that belong to the interval [0, n]. In other words, integer array I
is a suffix array that orders suffixes lexicographically according to the first h
symbols. I is in the final state when each suffix can be uniquely distinguished.
Algorithm LS employs the following observation of Manber and Myers:

23

Observation 2. When we scan suffixes in h-order, we can use the rank of
suffix Ti+h as a sorting key for suffix Th to place it in its 2h-order.

Observation 2 finds its application in the LS algorithm in the following way.
Initially, we place all suffixes in their 1-order by sorting them lexicographi-
cally considering only the first character of each suffix. Next, when h ≥ 1,
h = 2i, the position of the suffix Ti + 2h−1 computed in ‡stage h − 1 is a
sorting key for suffix Ti. In each iteration, we double h and consider twice as
many symbols per suffix as in the previous iteration. In total, this process
takes O(log n) iterations until we turn every bucket into a singleton one.

Larsson and Sadakane introduce the following concepts in the description
of their implementation. A subarray I[i . . . j] containing a maximal number
of adjacent suffixes that are lexicographically equal according to the first h
symbols is a group. The group number of a group is a position of the last
suffix belonging to this group, i.e., for all suffixes in the group I[i . . . j] the
group number is j. A group that holds only one suffix is a sorted group;
otherwise, the group is unsorted. All neighboring sorted groups are merged
into a combined sorted group.

The LS algorithm maintains three integer arrays I, V , and L. The role
of I and V is similar to the role of the h-order suffix array and its inverse.
Larsson and Sadakane use I to store suffixes in their h-order. We use V
to map each h-order suffix to its rank computed from the group number it
belongs to. Compared to the MM approach, Larsson and Sadakane label
groups by the position of the rightmost suffix in each group. We use L to
keep track of the groups’ lengths and facilitates the process of merging the
sorted groups. If a group occupying a subarray I[i . . . j] is unsorted then we
set L[i] = j − i+ 1, and if it is a combined sorted group then we negate the
value and set L[i] = −(j − i+ 1). Negative values that are used to mark the
length of the combined sorted group enable the algorithm to jump over the
sorted groups.

In the first step, we assign a position to each suffix directly from the input
string T . Then suffixes are sorted by their initial positions and stored into
I. The algorithm associates each suffix Ti with its position i. Each suffix is
sorted by its first character, that is for every suffix Ti, the algorithm uses T [i]
as a sorting key and its position i as a value. Then the algorithm initializes V
by assigning the group number to each suffix, identifies sorted and unsorted
groups and stores the results into L. This concludes the initialization stage
and yields the 1-order. The algorithm keeps sorting I in stages doubling the
value of h in each stage. Note that

∗Stage h = 0 takes place when we sort suffixes according to the first symbol.

24

Observation 3. When suffixes are in h-order, each suffix Ti that belongs to
a sorted group has a distinct rank deduced from its i+ h prefix.

This means that once some groups are sorted, the positions of suffixes in these
groups are fixed in I. The problem is reduced to rearranging the unsorted
groups. We sort each unsorted group I[j . . . k] by using V [I[i]+h] as a sorting
key for suffix i, for all i ∈ I[j . . . k]. Unique group numbers obtained from
V [I[i] + h] define the partition of I[j . . . k] into new groups. This places I in
2h-order. We compute group numbers for 2h-order and update L accordingly.
A high-level description of the LS algorithm (basic version) is given below:

1. Fill I with a sequence of numbers from 0 to n representing the starting
position of each suffix in the input string x = x0x1 . . . xn. Sort I using
xi as the key for i. Set h to 1.

2. For each suffix i, 0 ≤ i ≤ n, set V [i] = j, where j is the rightmost
position of each group in I which contains suffix i.

3. For each unsorted group occupying the subarray I[i . . . j] set L[i] =
j − i+ 1, and if it is a combined sorted group set L[i] = −(j − i+ 1).

4. Process each unsorted group occupying the subarray I[k . . . l] with
BMQS, using V [I[i] + h] as the key for each suffix i in I[k . . . l].

5. For each pair of unique keys V [I[i]+h] and V [I[j]+h], such that i 6= j,
where suffix i and suffix j are in unsorted group I[k . . . l] mark the
splitting positions i and j.

6. Double h. Combine the length of sorted groups, use splitting positions
to partition I into new groups, updating V and L accordingly.

7. If all groups are sorted, i.e. L[0] = −n, then stop. Otherwise, go to 4.

We run the LS algorithm with the input string abracadabra$. During the
initialization (steps 1-3), we sort the suffixes using xi as the key for i and store
the result into I. First, we fill I with numbers that represent the starting
positions of suffixes

0 1 2 3 4 5 6 7 8 9 10 11
I = a b r a c a d a b r a $,

then we sort suffixes according to the first symbol and create groups with
lexicographically equal symbols

11 0 3 5 7 10 1 8 4 6 2 9
I = $ a a a a a b b c d r r,

25

where each group is separated by the vertical bar and the starting position of
each h-order suffix is displayed above it. Next, we compute group numbers
by using the rightmost position of the suffix in each group as we scan I left
to right. We create new groups, assign group numbers to each suffix in the
input string and store the result into V :

0 5 7 8 9 11
$ a a a a a b b c d r r ⇒ 5 7 11 5 8 5 9 5 7 11 5 0

V = a b r a c a d a b r a $.

In the next step, we compute the length of each group and place them in L:

−1 5 2 −1 −1 2
L = $ a a a a a b b c d r r.

Thus groups are arranged as follows: group 5 has length 5, group 7 and 11,
both have length 2. Groups 0,8, and 9 have a negative length and considered
sorted.

Example 3.1. We run the LS algorithm (basic version) with the input string
x = abracadabra$ and a sentinel symbol $ appended to the end of the
string. The algorithm proceeds from top to bottom. At the beginning of
each doubling stage h, we list the keys V [I[i] + h] that are used to sort
suffixes I[i] in each unsorted group. We demonstrate the content of V , L
and how it is updated across different stages.

i 0 1 2 3 4 5 6 7 8 9 10 11
h xi a b r a c a d a b r a $

I[i] 11 0 3 5 7 10 1 8 4 6 2 9
V [I[i]] 0 5 5 5 5 5 7 7 8 9 11 11
L[i] −1 5 2 −2 2

1 V [I[i] + h] 7 8 9 7 0 11 11 5 5
I[i] 10 0 7 3 5 1 8 2 9
V [I[i]] 1 3 3 4 5 7 7 11 11
L[i] −2 2 −2 2 −2 2

2 V [I[i] + h] 11 11 4 1 8 0
I[i] 0 7 8 1 9 2
V [I[i]] 3 3 6 7 10 11
L[i] −2 2 −8

4 V [I[i] + h] 8 0
I[i] 7 0
V [I[i]] 2 3
L[i] −12
I[i] 11 10 7 0 3 5 8 1 4 6 9 2

26

In Example 3.1, once the group is sorted, we underline the suffix it hosts to
show that its position is fixed in I and to help the reader to visualize and
track down the final result. To compare h-order suffixes lexicographically we
use the following symbol — ∨.

At the beginning of stage h = 1, we have three unsorted groups 5,7, and
11. To sort suffixes of the group 5, we need to compare them according to
the first two symbols: ab ∨ ac ∨ ad ∨ ab ∨ a$. Since the suffixes are already
sorted according to their first symbols, the task is reduced to comparing
b ∨ c ∨ d ∨ b ∨ $. We call BMQS and supply the following V [I[i] + 1] keys
7, 8, 9, 7, 0 and corresponding 0, 3, 5, 7, 10 values. The result of the sorting
is 0, 7, 7, 8, 9 which places suffixes in the following order 10, 0, 7, 3, 5. We
mark the splitting positions defined by unique keys 0, 8, 9 and process the
next unsorted group. Processing the unsorted groups 7 and 11 we notice that
suffixes in these groups yield equal V [I[i]+1] keys and cannot be distinguished
lexicographically at this stage. The algorithm proceeds to the next stage
updating V and L accordingly.
At the beginning of stage h = 2, we have:

11 10 0 7 3 5 1 8 4 6 2 9
I = $ a a a a a b b c d r r,

and the groups are arranged as follows

0 1 3 4 5 7 8 9 11
$ a a a a a b b c d r r ⇒ 3 7 11 4 8 5 9 3 7 11 1 0

V = a b r a c a d a b r a $.

All groups, except 3, 7, and 11 are sorted. The keys V [I[i] + 2] for suffixes in
group 3 are V [0 + 2] = 11 and V [7 + 2] = 11. Since the keys are not unique,
the algorithm proceeds to the next unsorted group. The keys for suffixes in
group 7 are V [1 + 2] = 4 and V [8 + 2] = 1. The keys for suffixes in group
11 are V [2 + 2] = 8 and V [9 + 2] = 0. In this pass, groups 7 and 11 are
fully sorted, as the keys for suffixes in these groups are unique. Splitting
positions are 1,2,8, and 9. They are used to update V and L accordingly. At
the beginning of stage h = 4, we have:

11 10 0 7 3 5 8 1 4 6 9 2
I = $ a a a a a b b c d r r,

and the groups are arranged as follows

0 1 3 4 5 6 7 8 9 10 11
$ a a a a a b b c d r r ⇒ 3 7 11 4 8 5 9 3 6 10 1 0

V = a b r a c a d a b r a $.

Only group 3 is left unsorted. The algorithm proceeds to group 3 and com-
putes V [I[i] + 4] keys. The key for suffix 0 is V [0 + 4] = 8 and the key
for suffix 7 is V [7 + 4] = 0. Suffix 7 comes before suffix 0 according to the
keys. The algorithm marks splitting positions 0 and 7, updates V and L. All
groups are now sorted, the algorithm terminates and outputs I.

27

3.2 Recursive Algorithms

The skew algorithm (also referred as DC3) [36] is a linear-time recursive
SACA for integer alphabets developed by Kärkkäinen and Sanders [37]. Re-
cursive SACAs have three steps: (1) Construct a subset of suffixes of size 2/3
or less. Recursively sort this subset. (2) Construct a subset of the remain-
ing suffixes and sort it using the result of (1). (3) Merge both subsets into
one. To illustrate this approach, we describe the method of Kärkkäinen and
Sanders.

Let T [0, n) = t0t1 . . . tn−1 be the input string of n characters over the
alphabet Σ = {1, 2, . . . , σ} and let tj = $ for j ≥ n be a special charac-
ter (called sentinel) smaller than any other alphabet character. The skew
algorithm takes the following steps:

1. Build an array of suffixes starting at positions S12 = {i : i mod 3 6= 0}.
Define

S1 = {i : i mod 3 = 1} and S2 = {i : i mod 3 = 2}.

2. Sort S12 uniquely:

(a) Construct strings

R1 = [t1t2t3][t4t5t6] . . . [tmax S1tmax S1+1tmax S1+2],

R2 = [t2t3t4][t5t6t7] . . . [tmax S2tmax S2+1tmax S2+2],

where [titi+1ti+2] is a triple of first three characters from S1 and
S2 suffixes. Let R = R1R2 be the concatenation of R1 and R2.

(b) Encode each triple of R with a corresponding value of R1R2.

(c) Obtain a lexicographic naming for each triple of R by running
radix sorting on it and mapping a rank to its position in R.

(d) If lexicographic naming is not unique, run recursively the skew
algorithm by passing ranks of R as input.

3. Sort S0:

(a) For each i mod 3 = 0, generate a tuple (T [i], ISA12[i + 1]), where
T [i] is a single character at position i and ISA12[i+ 1] denotes the
rank in S12 of the suffix i+ 1.

(b) Apply Radixsort to the tuples (T [i], ISA12[i+ 1]).

4. Merge S0 and S12:

28

(a) If j ∈ S1 then compare formed tuples

(T [j], ISA12[j + 1]) ∨ (T [i], ISA12[i+ 1]).

(b) If j ∈ S2 then compare formed triples

(T [j], T [j + 1], ISA12[j + 2]) ∨ (T [i], T [i+ 1], ISA12[i+ 2]).

The execution of the algorithm is illustrated using the string

0 1 2 3 4 5 6 7 8 9 10
T [0, 10] = a b r a c a d a b r a,

where the final suffix array will be SA = (10, 7, 0, 3, 5, 8, 1, 4, 6, 9, 2).

Step 1. We construct S1, S2, and S12:

S1 = {1, 4, 7, 10}, S2 = {2, 5, 8}, and S12 = {1, 4, 7, 10, 2, 5, 8}.

Step 2. To sort S12 we form the following strings of triples:

R1 = [bra][cad][abr][a$$], and R2 = [rac][ada][bra].

Concatenating R1 and R2 we get:

R = [bra]
1

[cad]
4

[abr]
7

[a$$]
10

[rac]
2

[ada]
5

[bra].
8

Radix sorting and generating lexicographic ranks:

[a$$]
1

[abr]
2

[ada]
3

[bra]
4

[bra]
4

[cad]
5

[rac].
6

Mapping ranks to triples in R:

R = [bra]
4

[cad]
5

[abr]
2

[a$$]
1

[rac]
6

[ada]
3

[bra].
4

Let T12 = (4, 5, 2, 1, 6, 3, 4) be an array of lexicographic ranks of R. Since rank
4 appears twice, ranks are not distinct, the algorithm is applied recursively
returning the array (4, 5, 1, 0, 6, 2, 3), whose positions refer to the positions in
T12. Mapping them to positions in T we get S12 = (10, 7, 5, 8, 1, 4, 2), which
is uniquely sorted.

Step 3. To sort S0, we form tuples according to the protocol and then
compare them. Composed tuples:

0: abracadabra → (a, ISA12[1]) → (a, 5)
3: acadabra → (a, ISA12[4]) → (a, 6)
6: dabra → (d, ISA12[7]) → (d, 2)
9: ra → (r, ISA12[10]) → (r, 1)

29

Running Radixsort we get

T [0] < T [3] < T [6] < T [9] because (a, 5) < (a, 6) < (d, 2) < (r, 1).

Thus sorted S0 = (0, 3, 6, 9).

Step 4. To illustrate the merging procedure we construct a Table 3.1 and
fill it with tuples and triples as defined in the algorithm protocol.

S0 S12

0 3 6 9 10 7 5 8 1 4 2

(a, 5) (a, 6) (d, 2) (r, 1) (a, 0)(a, 4) (b, 7)(c, 3)

(a, b, 7)(a, c, 3)(d, a, 4)(r, a, 0) (a, d, 2)(b, r, 1) (r, a, 6)

Table 3.1: In our running example, we have that T [10, 12) < T [0, 12) since
(a, 0) < (a, 5). Also we have that T [9, 12) < T [2, 12) since (r, a, 0) < (r, a, 6).
In the following table we include all possible tuples and triples which are used
for comparison in a merging routine.

Merging routine yields a final suffix array SA = (10, 7, 0, 3, 5, 8, 1, 4, 6, 9, 2).
Each step except the recursive call runs in time O(n). The recursive call is
executed over a string T12, whose length is d2n/3e. Thus, the running time
of the algorithm is defined by recurrence T (n) = T (2n/3)+O(n). By Master
Theorem [94], the solution to this recurrence is T (n) = O(n), which is linear
as expected.

3.3 Induced Sorting Algorithms

Induced sorting technique deduces the order of unsorted suffixes from the
set of already-sorted suffixes that are classified according to some criteria.
Induced sorting SACAs are efficient and fast in practice. For instance, libdi-
vsufsort [61] is based on induced sorting, and it is considered by [21, 22, 35]
to be the fastest SACA in practice that operates in main memory.

To illustrate this approach, we describe the method of Nong et al. [67],
that incorporates a combination of LMS -substrings to reduce the problem
and a pure induced sorting to facilitate the propagation of the order of suf-
fixes.

30

Let X[1, n] = x[1]x[2] . . . x[n] be the input string of n characters over an
indexed alphabet Σ and let the last character of x be the sentinel such that
x[n] = $.
S-type and L-type suffixes. A suffix X[i, n] is classified as S-type (smaller)
suffix if X[i, n] < X[i+ 1, n], otherwise if X[i, n] > X[i+ 1, n] it is classified
as L-type (larger) suffix. In case, when X[i, n] = X[i + 1, n], then X[i, n] is
classified as type of X[i + 1, n]. A suffix that consists of only the sentinel,
such that X[n, n] = $, is classified as S-type.
LMS-type suffixes and substrings. A suffix X[i, n], for 1 < i ≤ n, is
classified as LMS-type (leftmost S-type) suffix if X[i] is S-type suffix and
X[i − 1] is L-type suffix. A substring X[i, j] is classified as LMS-type sub-
string if both X[i, n] and X[j, n] are LMS-type suffixes, and the type of suffix
X[k, n], i < k < j is not LMS-type. A suffix that consists of only the sentinel,
such that X[n, n] = $, is also considered as LMS-type substring.

The order of LMS-type substrings is determined by comparing them lex-
icographically. In case, when the characters of both substrings are equal, we
break the tie by checking the type of corresponding suffixes. S-type suffixes
have higher priority than L-type suffixes.
LMS-type prefixes. A prefix X[1, i] is classified as LMS-type prefix if it
consists of a single LMS-type suffix, or a suffix X[j, n] is classified as LMS-
type suffix, where j is the first position after i. If suffix X[i, n] is classified
as S-type suffix, then a LMS-prefix X[1, i] is also of S-type. Similarly, if
suffix X[i, n] is classified as L-type suffix, then a LMS-prefix X[1, i] is also of
L-type.

Algorithm 2: The SAIS algorithm

1 function SAIS (X, SA, n, σ);
Input : X is the input string, SA is an empty suffix array, n is the

length of X, σ is the size of indexed alphabet Σ.
Output: SA containing sorted lexicographically suffixes (their

starting positions) of X.
2 Define four integer arrays: t(n), X1(n), P1(n), B(n);
3 Classify all the S-type and L-type suffixes and store them in t;
4 Classify all the LMS -substrings and store them in P1;
5 Induced-sort all the LMS -substrings with the aid of P1 and B;
6 Create X1 using the names of LMS -substrings;
7 if each character in X1 is unique then
8 SA1[X1[i]] = i for all i;
9 else

10 Recursively call SAIS(X1, SA1, n1, σ1);
11 end
12 Induce SA from SA1;
13 return

31

The implementation of Nong et al. is described in Algorithm 2. Below, we
provide a running example of this algorithm using the input string X =
abracadabra$. We assume that X is a zero-indexed array of characters that
ends with a sentinel $. Initially, we scan X, classify S/L-type suffixes and
store the result in type array t. We mark all the LMS-type suffixes by ∗ and
proceed to execute the algorithm in three steps.

Step 1. We classify suffixes 3, 5, 7, and 11 to be LMS-type. Next, we identify
and label the buckets as follows. We call a bucket containing consecutive
identical characters i as bucket i. The algorithm groups suffixes with identical
first character into 6 buckets associated with characters $, a, b, c, d, and
r, as illustrated in lines 5 and 6. We set all values of SA to negative one
and scan X to assign all LMS-type suffixes into corresponding buckets. Since
LMS-type suffixes 3, 5, and 7 begin with the identical character a, they are
all put into bucket a. LMS-suffix 11 is put into bucket $. At this point, all
LMS-prefixes of length one are sorted.

Step 2. For illustration purpose, we mark with ^ the head of the bucket
that is currently being scanned. Additionally, we use the symbol @ to show
which element of SA is currently being processed. When we are processing
the first element in SA, which is SA[0] = 11 (line 9), we use this value to
discover that suffix 10 starts with character a and is L-type. Then we add
it to bucket a and shift the head one step forward. We repeat this process
until we reach the end of SA. By that time, all the L-type LMS-prefixes in
SA are sorted (line 18). When ^ points to the space between two buckets,
then one of them or both are full.

Step 3. Now, we use the sorted L-type prefixes to induce the order of the all
LMS-prefixes with length larger than one. We mark the right boundary of
each bucket with ^ and scan SA from right to left. When we are processing
the last element in SA, which is SA[11] = 2 (line 21), we use this value to
discover that suffix 1 starts with character b and is S-type. Then we append
it to the bucket b and shift ^ one step to the left. We repeat this procedure
until we reach the beginning of SA. When scanning SA is completed, all the
LMS-prefixes are arranged according to the order deduced from the sorted
L-type prefixes (line 33). Next, to reduce the problem and apply a divide-
and-conquer approach, we divide X into a smaller array X1 and fill it with
the names generated for LMS -substrings as follows. We map suffixes 3, 5,
7 and 11 to 2, 3, 1, and 0 (line 35). Since each value of X1 is unique, we
compute SA1 directly from X1. The algorithm induces SA from SA1 and
outputs the result.

32

00 Index: 00 01 02 03 04 05 06 07 08 09 10 11

01 X: a b r a c a d a b r a $

02 t: S S L S L S L S S L L S

03 LMS: * * * *

04 Step 1:

05 Bucket: $ a b c d r

06 SA: {11} {-1 -1 07 03 05} {-1 -1} {-1} {-1} {-1 -1}

07 Step 2:

08 SA: {11} {-1 -1 07 03 05} {-1 -1} {-1} {-1} {-1 -1}

09 @^ ^ ^ ^ ^ ^

10 {11} {10 -1 07 03 05} {-1 -1} {-1} {-1} {-1 -1}

11 ^ @ ^ ^ ^ ^ ^

12 {11} {10 -1 07 03 05} {-1 -1} {-1} {-1} {09 -1}

13 ^ ^ @ ^ ^ ^ ^

14 {11} {10 -1 07 03 05} {-1 -1} {-1} {06} {09 -1}

15 ^ ^ @ ^ ^ ^ ^

16 {11} {10 -1 07 03 05} {-1 -1} {-1} {06} {09 02}

17 ^ ^ @ ^ ^ ^ ^

18 {11} {10 -1 07 03 05} {-1 -1} {04} {06} {09 02}

19 ^ ^ ^ ^ ^ ^

20 Step 3:

21 SA: {11} {10 -1 07 03 05} {-1 -1} {04} {06} {09 02}

22 ^ ^ ^ ^ ^ @^

23 {11} {10 -1 07 03 05} {-1 01} {04} {06} {09 02}

24 ^ ^ ^ ^ ^ @ ^

25 {11} {10 -1 07 03 05} {08 01} {04} {06} {09 02}

26 ^ ^ ^ ^ @^ ^

27 {11} {10 -1 07 03 05} {08 01} {04} {06} {09 02}

28 ^ ^ ^ @^ ^ ^

29 {11} {10 -1 07 03 05} {08 01} {04} {06} {09 02}

30 ^ ^ ^ @ ^ ^ ^

31 {11} {10 -1 00 03 05} {08 01} {04} {06} {09 02}

32 ^ ^ ^ @ ^ ^ ^

33 {11} {10 07 00 03 05} {08 01} {04} {06} {09 02}

34 ^ ^ ^ ^ ^ ^

35 X1: 2 3 1 0

33

Chapter 4

GPU Parallel Programming

This chapter covers key aspects and formulations of the GPU programming
that were applied in practice during the implementation stage. We discuss
and demonstrate the application of a broad spectrum of parallel primitives
that we incorporated into our implementation. We focus on three high-
performance libraries that were employed to accelerate and optimize our
GPU algorithm.

We begin with a brief introduction to GPU architecture and CUDA. In
Section 4.2, we discuss the essential features of the Thrust library that found
its application in our solution. Section 4.3 is dedicated to parallel primitives,
state-of-the-art algorithms that significantly improved the performance of
our implementation.

4.1 Compute Unified Device Architecture

The GPU architecture is different from the universal CPU architecture in the
sense that it has a predetermined specialization incorporated in it. Graphics-
intensive applications imply parallel data processing and GPU was origi-
nally intended for parallel computations. GPU architecture is organized in a
way to support the execution of the massive number of concurrent threads.
GPU is equipped with a relatively large number of arithmetic logic units
(ALU’s), which are combined into groups, and implement the parallel com-
puting model.

A modern GPU is equipped with many cores, where a single core is called
a streaming processor and a set of cores is a streaming multiprocessor (SM).
SMs are organized in a grid, where for each SM there is a block of cores
that belong to it. The number of threads per core may be on the order of
few thousands. Each core implements a single-instruction, multiple-thread

34

(SIMT) model that controls the execution of threads. The threads that
belong to the same block can share common resources, communicate with
one another, and they can be synchronized [4, 40, 65].

The GPU is oriented for computation-intensive tasks and takes advantage
of a single-instruction, multiple-data (SIMD) parallelism. To exploit the pro-
ductivity of the SIMD parallelism and leverage the power of massively par-
allel GPU architecture, NVIDIA introduced in 2006 Compute Unified Device
Architecture (CUDA). Today, CUDA is a popular platform and model for
programming NVIDIA GPUs. CUDA provides affordable many-core paral-
lelism with a low learning curve for C and C++ developers. CUDA supports
cross-platform development and offers wrappers for other popular program-
ming languages such as Python and Java. For the remainder of this thesis,
we will refer to CUDA C simply as CUDA [48].

CUDA program can be logically divided into two parts, the first part
(controlling) is executed on the CPU, the second part (computational) is
executed on the GPU. In CUDA terminology, the CPU is called the host and
the GPU is called the device [92]. The host has access to system resources
and hardware. It controls the workflow, initiates the communication with
the device, delegates the work to the device, and collects the results from
the device. The device can be viewed as a workhorse, that performs every
computationally-intensive task that the host assigned to it, and reports back
the results. CUDA allows a programmer to specify which part of the CUDA
code will execute on the CPU and which part will execute on the GPU
[20, 88].

CUDA employs kernels to run the device-wide code. A kernel is a CUDA
function that is launched by the host by specifying the number of thread
blocks and the number of threads associated with each block [85]. The thread
hierarchy of each kernel is organized into a grid composed of thread blocks.
Each thread block is scheduled to run on the available SM. In which particular
order SMs execute thread blocks is unknown to the user. The SM executes
one thread block at a time. To leverage the SIMD parallelism, the SM
partitions each thread block into a block of 32 threads that is called a warp.
Warps run in parallel and are controlled by the SIMT unit [14, 75].

The programmable device memory is classified into the following types:
global memory, shared memory, constant memory, local memory, texture
memory, and registers. Global memory resembles the CPU RAM in the sense
that it is the largest and the slowest memory on the device. All threads can
access it during the lifespan of the active SM that they belong to. When
the host sends data to the device, it is typically copied into global memory.
Constant memory is located in the constant cache module of the SM. It is
an immutable type of memory that is useful for storing read-only data and

35

it provides fast access when all threads from a warp read from the same
memory location. Texture memory is oriented for graphics applications and
is tuned for the two-dimensional spatial locality. Similarly to constant mem-
ory, it is a read-only cached on the chip. Shared memory is declared within
the kernel and the access to it is shared between all threads from the same
thread block. Its lifespan coincides with the lifespan of the kernel in which it
was declared. Shared memory is much more superior than local and global
memory in terms of speed because it is on-chip memory (similar to the CPU
level one cache) that exhibits high throughput and low latency. Registers
and local memory are used within the kernel scope and allocated during the
kernel runtime execution. When a user declares automatic variables inside
the kernel, they are stored in registers, which provide the fastest memory
access. Automatic variables, arrays, large data structures that are declared
inside the kernel and cannot be stored in registers, are stored in local mem-
ory, which is a subdivision of global memory. Thus, local memory is as slow
as global memory, due to low throughput and high latency [13, 25].

4.2 Essentials of the Thrust Library

The Thrust library is a collection of high-performance massively parallel
algorithms oriented for CUDA programming. Parallel primitives offered by
the Thrust library are based on C++ templates adapted for CUDA ecosystem.
Thrust creates a high-level abstraction layer on top of CUDA that enables
the development of accelerated massively parallel applications and facilitates
the implementation of the code. The Abstract Programming Interface (API)
of the Thrust library allows the developers to convert CUDA code into a
form supported by Thrust and vice versa. The thrust programming model is
based on C++ Standard Template Library (STL) which significantly reduces
the learning curve of CUDA ecosystem for experienced C++ developers [28].

The high-level abstractions provided by Thrust facilitate rapid develop-
ment and deployment of the application since Thrust takes over the control
of repetitive, time-consuming and tedious routines like determining kernel
launch parameters and launching kernels, managing device memory alloca-
tions, deallocations, and data transfers, synchronizing threads, ensuring the
use of fast memory when possible, collecting the results [4, 14].

Thrust automates the process of launching kernel-specific routines try-
ing to perform them in a near-optimal manner, applying optimization and
following best practices whenever possible. To take advantage of the SIMD
parallelism of the GPU, Thrust aims to achieve the highest occupancy of the
kernel by maximizing the number of active threads and minimizing the num-

36

ber of idle streaming multiprocessors. It launches the kernel with parameters
that ensure the highest occupancy [20].

By delegating to Thrust the configuration of kernel launch parameters and
control over kernel execution resources we get implicit access to the automatic
occupancy calculator for our kernel. Additionally, we obtain near-optimal
use of kernel resources such as the number of registers and the amount of
shared memory. In addition to this, Thrust facilitates the robustness of
the application by checking that grid dimensions do not exceed the allowed
limit and by adjusting the size of large user-defined types to satisfy the
requirements of the compute capabilities of the device [40, 57].

4.2.1 Host and Device Vectors

The data structures that are used by Thrust to store data are called host and
device vectors. Thrust vectors are similar to C++ STL vectors in the sense
that they can be resized dynamically, they are generic, and they automat-
ically control memory allocation and deallocation. Host vectors live in the
CPU memory while device vectors live in the GPU memory.

Listing 4.1. Basic application of Thrust vectors.

1 int main(void) {

2

3 host_vector<int> h_v(1 << 14);

4 generate(h_v.begin(), h_v.end(), rand);

5 device_vector<int> d_v = h_v;

6 sort(d_v.begin(), d_v.end());

7 copy(d_v.begin(), d_v.end(), h_v.begin());

8

9 return 0;

10 }

Basic application of Thrust vectors can be found in Listing 4.1. In line 3,
we create the host vector of size 214 integers. We then fill it with random
numbers using Thrust’s generate function. In line 5, we can see how to
create a device vector, allocate the device memory for it and copy the content
of the host vector to the device vector. All it takes just one line. We invoke
Thrust’s sort function that sorts in parallel all values of device vector on the
GPU. Finally, we copy the sorted values back into the host vector [13, 77].

37

Listing 4.2. Printing elements of the device vector.

1 void print(const device_vector<int>& d_vec) {

2 for (int value : d_vec)

3 cout << " " << value;

4 cout << "\n";

5 }

Vectors can be read or modified using the array subscript notation or using
a range-based for loop as shown in Listing 4.2. This comes handy when
we need to debug our application and observe how vector data was modified
after some operation. However, each time we access data from the device
vector, Thrust performs in the background a data transfer from the device
to the host. Therefore, this operation is resource-demanding and should be
used only for debugging purpose [83].

Listing 4.3. Different ways to create and initialize device vectors.

1 int main(void) {

2

3 device_vector<int> v1(1000);

4 device_ptr<int> v_ptr = v1.data();

5 device_vector<int> v2(v1);

6 device_vector<int> v3(v_ptr, v_ptr + 1000);

7 device_vector<int> v4(v1.begin(), v1.end());

8

9 return 0;

10 }

There are different ways to initialize and populate Thrust vectors [25, 75].
Listing 4.3 demonstrates different ways to declare and initialize device vec-
tors. In line 3, we create a vector v1 of 1000 integers. We then obtain a
reference to the vector v1 and store it into device pointer v ptr. Vector v2

is created and initialized from copying v1 to v2. Vector v3 is initialized from
iterator range in ”pointer style”. The last vector v4 is initialized from itera-
tor range in ”STL style”. The flexibility of Thrust vectors allows to initialize
them even from C++ STL vectors in a similar way as was demonstrated in
Listing 4.3.

4.2.2 Interoperability

Thrust’s interoperability is an important feature that allows the program-
mer to switch easily between Thrust environment and CUDA environment

38

in both directions. This property provides an opportunity to combine the
compactness and robustness of the Thrust code with the raw efficiency of
CUDA. For example, the programmer can use Thrust vectors and the device
memory occupied by them in CUDA kernels with some minor code modifi-
cation. In addition to this, the interoperability between Thrust and CUDA
makes it possible to connect some high-efficient CUDA libraries like CUB
and ModernGPU to harness the power of their parallel primitives and to
improve the overall performance of the program [86, 88].

The transition between Thrust and CUDA is straightforward, and com-
parable with interfacing C++ STL to standard C code. We can get a CUDA
pointer to the GPU memory occupied by the device vector via the raw pointer
cast. The raw pointer of the device vector is obtained by calling the built-in
Thrust function.

Listing 4.4. Translating code from Thrust to CUDA.

1 size_t N = 2048;

2 // create device vector of size N

3 device_vector<int> d_v(N);

4 // extract raw pointer to device memory occupied by d_v

5 int *d_ptr_raw = raw_pointer_cast(d_v.data());

6 // use d_ptr_raw in built-in CUDA functions

7 cudaMemset(d_ptr_raw, 0, N, sizeof(int));

8 // launch CUDA kernel passing a raw pointer

9 cuda_kernel<<<N/256, 256>>>(N, d_ptr_raw);

10 // memory is automatically freed

In Listing 4.4, the code snippet shows how to convert code from Thrust
to CUDA. Thrust provides a function raw pointer cast to obtain the raw
pointer d ptr raw from the device vector d v. We can then use this pointer
as we would if we obtained it from cudaMalloc call. For example, we can
pass it as a parameter to CUDA kernels or CUDA built-in functions such as
cudaMemset [1, 40].

The reverse process of translating code from CUDA to Thrust is also
straightforward. Listing 4.5 illustrates this approach. To wrap a raw pointer
by a device pointer we invoke the function device pointer cast. Once the
cast is completed, the device pointer d ptr stores the memory address of the
raw pointer, which used a cudaMalloc call to reserve a piece of memory on
the GPU. From the device pointer, Thrust retrieves all information about
the device memory that it points to. This information includes the starting
address of the memory, the type of data it can store, and the size of allocated
memory. Now, the device pointer can be used in Thrust functions and its
memory can be accessed from the host [4, 20].

39

Listing 4.5. Translating code from CUDA to Thrust.

1 size_t N = 2048;

2 // declare raw pointer

3 int *d_ptr_raw;

4 // allocate memory for d_ptr_raw on the GPU

5 cudaMalloc(&d_ptr_raw, N, sizeof(int));

6 // wrap raw pointer with device pointer

7 device_ptr<int> d_ptr = device_pointer_cast(d_ptr_raw);

8 // use device pointer in Thrust function

9 sort(d_ptr, d_ptr + N);

10 // write to device memory from the host via d_ptr

11 d_ptr[0] = 5;

12 // free device memory occupied by d_ptr_raw

13 cudaFree(d_ptr_raw);

4.2.3 Anonymous Kernels

Lambda expressions or simply lambdas allow to implicitly define functions
that are not bound to an identifier. This type of functions are called anony-
mous functions. The basic signature of C++ lambda includes the capture
clause, the parameter list, and the lambda body. The capture clause speci-
fies the type and method of the capture. The parameter list and the body
resemble the definition of the explicit function. Lambdas can be executed
asynchronously.

GPU lambdas made their debut in CUDA 7.5 toolkit. Their syntax is
similar to the syntax of C++ lambdas. In the context of CUDA, GPU lambdas
define kernels implicitly in a more compact way. They automate the process
of kernel launch and termination. GPU lambdas can be executed both on
the host and on the device. To activate this feature, the programmer should
specify the execution type by placing host device specifier between
the capture clause and the parameter list specifiers. CUDA application that
contains GPU lambdas must be compiled with -expt-extended-lambda flag.

The code snippet in Listing 4.6 demonstrates how to create and execute a
heterogeneous lambda. In this example, lambda is annotated with host

device specifier to facilitate heterogeneous programming. Based on the
conditional statement, we can launch it either on the GPU or the CPU. In
both cases the for each construct will run in asynchronous setting.
GPU lambdas are built around ”parallel-for” construct that enables asyn-
chronous code execution inside the lambda block, which acts as an implicitly
defined kernel body and can be considered as the anonymous kernel. The

40

anonymous kernel is launched using for each construct that is defined in
Thrust and specifying the iterator range, the method of capture and explicit
arguments.

Listing 4.6. Application of the heterogeneous lambda.

1 void sum_lambda(float *u, float *v, float c, int n) {

2

3 using namespace thrust;

4 auto t = counting_iterator(0);

5 int limit = 10000000;

6

7 auto lmd = [=] __host__ __device__ (int j) {

8 v[j] = c * u[j] + v[j];

9 };

10

11 if(n > limit)

12 for_each(device, t, t + n, lmd);

13 else

14 for_each(host, t, t + n, lmd);

15 }

Listing 4.7. Running anonymous kernel with device vectors.

1 void vector_sum(device_vector<int>& a,

2 device_vector<int>& b, device_vector<int>& c) {

3

4 int *d_a = raw_pointer_cast(a.data());

5 int *d_b = raw_pointer_cast(b.data());

6 int *d_c = raw_pointer_cast(c.data());

7

8 int n = a.size();

9 auto t = counting_iterator<int>(0);

10

11 for_each(t, t + n, [=] __device__(int j) {

12 d_c[j] = d_a[j] + d_b[j];

13 });

14 }

Listing 4.7 demonstrates how to add two vectors by running an anonymous
kernel with pointers to device vectors. Function vector sum receives three
references to devices vectors, which are then converted to raw pointers. Next,
we query the size of vectors and set the range for the iterator. We then call

41

for each construct that works as a for loop running from 0 until n in parallel
where thread index is passed to variable j. The rest of the body performs the
same routine as if it was executed inside the CUDA kernel, with an exception
that in lambda case Thrust controls thread pool and ensures that the code
inside for each body stops being executed when iterator reaches its upper
limit.

4.3 Parallel Primitives

In this section, we introduce the reader to the parallel primitives that we
used in our GPU implementation. By parallel primitives, we mean a highly
tuned parallel constructs optimized for the GPU programming model that
provide state-of-the-art algorithms to enhance the performance of the appli-
cation. We will discuss the essential parallel primitives that we borrowed
from three CUDA libraries: Thrust, CUDA Unbound (CUB), and Modern
GPU (MGPU).

CUB provides high-level abstractions for complex parallel operations wh-
ich can be expressed in a few lines of code and executed sequentially despite
the complexity of underlying parallelism. Performance-wise, CUB’s parallel
algorithms are more efficient than Thrust’s analogs. CUB supports generic
programming and multivariate compile-time parametrization. It targets high
granularity to achieve better performance and applies adaptive tuning scheme
for choosing the best parameters to accommodate kernel specialization and
resource usage [58].

MGPU is a high-performance library for accelerated CUDA program-
ming. It is a collection of header files written in C++ and adapted for
CUDA ecosystem. MGPU provides some unique parallel primitives such
as segmented sort that is highly tuned, highly efficient, user-friendly, and
performance-wise the best solution for its task that is available today [6].

4.3.1 Radix Sort

Although Thrust’s CUDA backend has some significant performance im-
provements over previous releases and assuming the fact that is built on top
of CUB, the performance of CUB’s radix sort showed some slight advantages
over Thrust’s radix sort as shown in Figure 4.1.

In this section, we cover CUB’s radix sort for sorting 4-byte key-value
pairs. In CUB’s context, this operation can be accomplished by running
cub::DeviceRadixSort::SortPairs algorithm, which sorts key-value pairs
into increasing order. The input key-value pairs remain unaltered as the

42

Figure 4.1: Performance comparison of device-wide radix sort using 32 mil-
lions of unsigned integer key-value pairs. [58]

algorithm uses temporary buffers of size 2n, where n is the size of the key
array, to store the intermediate and final results [58].

Listing 4.8. Key-value radix sort demonstration.

1 void radix_sort(int *d_in_keys, int *d_out_keys,

2 int *d_in_vals, int *d_out_vals, int n) {

3

4 void *d_tmp = NULL;

5 size_t tmp_size = 0;

6

7 DeviceRadixSort::SortPairs(d_tmp,

8 tmp_size, d_in_keys, d_out_keys,

9 d_in_vals, d_out_vals, n);

10

11 cudaMalloc(&d_tmp, tmp_size);

12

13 DeviceRadixSort::SortPairs(d_tmp,

14 tmp_size, d_in_keys, d_out_keys,

15 d_in_vals, d_out_vals, n);

16

17 cudaFree(d_tmp);

18 }

Example 4.9. Running the algorithm with the following values:

Input Data Output Data
d in keys 5, 3, 2, 8, 6, 7, 4, 1 d out keys 1, 2, 3, 4, 5, 6, 7, 8
d in vals 1, 2, 3, 4, 5, 6, 7, 8 d out vals 8, 3, 2, 7, 1, 5, 6, 4

.

43

The code snippet of CUB’s key-value radix sort can be found in Listing 4.8.
The function radix sort accepts five parameters: d in keys — a pointer of
type int to the keys stored in the device memory, d out keys — a pointer
of type int to the device memory location where sorted keys will reside,
d in vals — a pointer of type int to values stored in the device memory,
d out vals — a pointer of type int to the device memory location where
sorted values will reside and the number of key-value pairs to sort.

Initially, we define a temporary buffer, and its size initialized to null.
Then we run SortPairs routine from DeviceRadixSort class which will
determine the required number of bytes for temporary buffer. In line 11,
we call cudaMalloc to allocate a required number of bytes for a temporary
buffer in the device memory. Finally, we run SortPairs again which will use
temporary buffer to store intermediate results and then write final results to
the output data containers. The memory allocated for the temporary buffer
is later released.

4.3.2 Select-Flagged

This parallel primitive is available in DeviceSelect module of CUB, which
provides filters and compacts selected items according by specified criterion
applied on data that reside in the device memory. Figure 4.2 illustrates
DeviceSelect::Flagged performance on different NVIDIA GPUs using 32-
bit integers as input. [58].

Figure 4.2: Performance comparison of device-wide select-flagged using 32
millions of integers, where 16 millions of them were randomly selected. [58]

44

The select-flagged operation is straightforward and comes handy when an
array of items should be filtered according to the array of flags. The general
idea is schematized in Figure 4.3.

1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0

Figure 4.3: High-level scheme of select-flagged operation. [58]

The algorithm scans the flag array. Whenever it encounters a set flag, it
checks its position and copies the item from input array located at that
position into the compacted output array maintaining the original relative
ordering.

Listing 4.10. Select-flagged demonstration.

1 void select_flagged(int *d_in, uint8_t *d_bits, int *d_out,

2 int *d_n_bits, int n) {

3

4 void *d_tmp = NULL;

5 size_t tmp_size = 0;

6

7 DeviceSelect::Flagged(d_tmp, tmp_size,

8 d_in, d_bits, d_out, d_n_bits, n);

9

10 cudaMalloc(&d_tmp, tmp_size);

11

12 DeviceSelect::Flagged(d_tmp, tmp_size,

13 d_in, d_bits, d_out, d_n_bits, n);

14

15 cudaFree(d_tmp);

16 }

Example 4.11. Running the algorithm with the following values:

Input Data Output Data
d in 3, 6, 9, 8, 7, 0, 5, 1 d out 3, 6, 8, 1, 0, 0, 0, 0
d bits 1, 1, 0, 1, 0, 0, 0, 1 d n bits 4

.

45

The code snippet of select-flagged parallel primitive is available in Listing
4.10. The function select flagged accepts five parameters: d in — a
pointer of type int to the input data stored in the device memory, d bits

— a pointer of type unsigned char to the array of bits (flags), d out — a
pointer of type int to device container that will store values that satisfy the
selection criterion, d n bits — a pointer of type int to the device memory
location that will store number of selected values and the size of input data.

Similarly to the CUB’s radix sort algorithm, we define an empty tempo-
rary buffer and do one pass of Flagged algorithm with the intent to deter-
mine the size of the temporary buffer. Once we know the size, we allocate
the device memory for it. In the second pass, it is used to store intermediate
results and serves as a helper data structure in the algorithm’s behavior. In
the end, we destroy the temporary buffer and free memory.

4.3.3 Inclusive Prefix Sum

There are several GPU libraries that provide a parallel solution to compute
inclusive prefix sum. However, the algorithm from CUB’s library showed
better performance than Thrust’s alternative operation as shown in Figure
4.4. This parallel primitive can be found in CUB’s DeviceScan class, which
hosts parallel constructs for running a prefix scan on data stored in the GPU
memory.

The idea of the prefix scan implies element-wise reduction according to the
binary associative operator. Prefix sum is the instance of prefix scan, where
the binary operation is the addition. It is a straightforward process of adding
each prefix to the sum of prefixes before it. Formally, let U = {u1, u2, . . . , un}
be the sequence of input elements. The prefix sum of U is the output sequence
V = {v1, v2, . . . , vn} defined as

v1 = u1,

v2 = v1 + u1,

· · ·
vn = vn−1 + un.

(4.1)

Prefix sum is inclusive when ui is included in the computation of the output
vi. CUB’s device-oriented scan module is implemented with a ”decoupled
look-back” approach, described in Merrill and Garland [59] report. This
approach requires only a single pass to conduct a global prefix scan and
performs approximately 2n data access operations. Authors claim that it is
as fast as memcpy operation. A high-level scheme of the algorithm design is
illustrated in Figure 4.5 [58].

46

Figure 4.4: Performance comparison of the device-wide prefix scan using 32
millions of integers. [58]

Figure 4.5: Single-pass adaptive look-back prefix scan. [59]

DeviceScan::InclusiveSum primitive works as follows. Given an input se-
quence, the algorithm generates a ”moving sum.” That is, value at position 2
is summed with the value at position 1. Value at position 3 is summed with
the value at position 2 and so on. An application of InclusiveSum primitive
can be found in Listing 4.12.

The function InclusiveSum accepts three parameters: d in — a pointer
of type unsigned char to the input data stored in the device memory, d out

— a pointer of type int to the device memory, where the output will be stored
and the size of input data.

We define an empty temporary buffer and do one pass of the inclu-

sive sum algorithm with the intent to determine the size of the temporary
buffer. Once we know the size, we allocate the device memory for it. In the
second pass, it is used to store intermediate results and serves as a helper data
structure in the algorithm’s behavior. In the end, we destroy the temporary
buffer and free memory.

47

Listing 4.12. Inclusive prefix sum demonstration.

1 void inclusive_sum(uint8_t *d_in, int *d_out, int n) {

2

3 void *d_tmp = NULL;

4 size_t tmp_size = 0;

5

6 DeviceScan::InclusiveSum(d_tmp, tmp_size,

7 d_in, d_out, n);

8

9 cudaMalloc(&d_tmp, tmp_size);

10

11 DeviceScan::InclusiveSum(d_tmp, tmp_size,

12 d_in, d_out, n);

13

14 cudaFree(d_tmp);

15 }

Example 4.13. Running the algorithm with the following values:

Input Data Output Data
d in 1, 1, 0, 0, 0, 1, 0, 1 d out 1, 2, 2, 2, 2, 3, 3, 4

.

4.3.4 Scatter

Scatter is a parallel primitive available in the Thrust library. It copies data
stored in contiguous memory into nonconsecutive memory blocks. Given
input array Ain[1 . . . n], index map M [1 . . . n] and output array Aout[1 . . . n],
scatter can be formulated as Aout[M [j]] = Ain[j] for all 1 ≤ j ≤ n. A
high-level scheme of scatter operation is illustrated in Figure 4.6 [26].

Figure 4.6: High-level scheme of scatter operation.

In context of Thrust, scatter is defined as parallel primitive that copies el-
ements from a source range into an output array according to a map [28].

48

To demonstrate the work of scatter operation we run it with the following
parameters:

M = [8, 1, 9, 0, 2, 11, 5, 3, 4, 7, 6, 10], Ain = [1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7].

Invoking Scatter(Ain,M,Aout), the algorithm uses M as a map and outputs

Aout = [2, 2, 3, 5, 6, 4, 7, 7, 1, 2, 7, 3].

Listing 4.14. Scatter demonstration.

1 void Scatter(device_vector<int> &d_in,

2 device_vector<int> &d_map, device_vector<int> &d_out) {

3

4 scatter(device, d_in.begin(), d_in.end(),

5 d_map.begin(), d_out.begin());

6 }

4.3.5 Segmented Sort

The segmented sort is a high-performance variant of merge sort that oper-
ates on non-uniform random data. Segmented sort allows us to sort adjacent
irregular-length segments of an array in parallel. Sorted intervals are defined
by an array of starting positions of each segment that are called segment
heads. MGPU provides one of the fastest if not the fastest segmented sort
parallel primitive. Furthermore, MGPU segmented sort detects when seg-
ments are fully sorted and takes advantage of early-exit opportunities, which
solves the problem of redundant resorting and improves throughput [6].

Figure 4.7: Segmented sort in action.

49

The main idea behind the segmented sort is illustrated in Figure 4.7. Given
an array of segment heads and an array of keys to be sorted in each segment.
The algorithm returns a segment-wise sorted array of keys. For better visu-
alization, we marked each segment head with a different color. All keys of
the same color belong to the same segment.

Listing 4.15. Demonstration of key-value segmented sort.

1 standard_context_t context;

2

3 vector<int> h_keys{5, 2, 3, 8, 7, 6, 4, 1};

4 vector<int> h_vals{1, 2, 3, 4, 4, 5, 6, 7};

5 vector<int> h_segs{0, 3, 5, 7, 0, 0, 0, 0};

6

7 device_vector<int> d_keys(h_keys);

8 device_vector<int> d_vals(h_vals);

9 device_vector<int> d_segs(h_segs);

10

11 int num_keys = 8;

12 int num_segs = 4;

13

14 int *keys_ptr = raw_pointer_cast(d_keys.data());

15 int *vals_ptr = raw_pointer_cast(d_vals.data());

16 int *segs_ptr = raw_pointer_cast(d_segs.data());

17

18 segmented_sort(keys_ptr, vals_ptr, num_keys,

19 segs_ptr, num_segs, less_t<int>(), context);

However, sometimes the task requires to sort both segment keys and satellite
values. MGPU solution can deal with this problem efficiently. We demon-
strate how to tackle this problem in Listing 4.15.

Example 4.16. Running the algorithm with the following values:

Input Data Output Data
keys ptr 5, 2, 3, 8, 7, 6, 4, 1 keys ptr 2, 3, 5, 7, 8, 4, 6, 1
vals ptr 1, 2, 3, 4, 4, 5, 6, 7 vals ptr 2, 3, 1, 4, 4, 6, 5, 7
segs ptr 0, 3, 5, 7, 0, 0, 0, 0 segs ptr 0, 3, 5, 7, 0, 0, 0, 0

.

We execute the code snippet in Listing 4.15 using the input values shown in
Example 4.16. First, we initialize C++ STL vectors with given values. Next,
we create device vectors and copy data to the device memory. The number
of keys corresponds to the number of values, which is 8 in this example. We
inform the algorithm that the input vector has 4 segments and their heads are

50

stored in segs ptr. Although we have 8 items in segs ptr, the algorithm will
take the first 4. We then call the MGPU function segmented sort passing
the required parameters.

51

Chapter 5

Implementations

In this chapter, we present a massively parallel GPU implementation of suffix
array construction based on the prefix-doubling method. Our implementa-
tion has good scalability and lightweight design. The essential tools that
we utilized for suffix array construction are parallel primitives such as in-
clusive prefix sum, radix sort, select-flagged, scatter, and segmented sort.
The efficiency and performance of our implementation merely depend on the
performance of these primitives. High-level abstractions provided by Thrust,
CUB and MGPU libraries allowed us to achieve a simple, memory-efficient
and compact design of our algorithm.

In Section 5.1, we discuss the feasibility of three main algorithmic methods
available for suffix array construction, in terms of how efficiently each of them
can be mapped onto GPUs. We also disclose the main reasons for choosing
the prefix-doubling method as well as the pros and cons of this method
compared to its alternatives.

In Section 5.2, we describe and discuss the details of our implementation.
In particular, we provide a high-level pseudo-code of our implementation. We
follow this pseudo-code step by step explaining the role of each part of our
algorithm as well as listing the source code of key functions and elaborating
on their role in solving the suffix array construction problem.

We conclude this chapter by presenting a fast and lightweight algorithm
for checking the correctness of the suffix array. We call this algorithm the suf-
fix array checker. The theory behind its work is summarized in the theorem
proposed by Burkhardt and Kärkkäinen [11]. They stated three conditions
that must be satisfied to decide on the correctness of the suffix array. We
elaborate on these conditions and describe our implementation approach.

52

5.1 Choosing the Algorithm

Deo and Kelly [17] noted that data dependencies in parallelizing across induc-
ing steps and lack of an efficient solution for sorting irregularly sized strings
are major bottlenecks in mapping SACAs based on induced sorting method
to GPU.

Due to insufficiently researched parallelization capabilities of the induced
sorting method for GPUs∗, the choice of the algorithm that could be effi-
ciently mapped to GPUs is reduced to prefix-doubling or DC-recursive based
methods. Although, in theory, the running time of Kärkkäinen and Sanders
skew algorithm [37] is linear, in practice, it was shown [74] that it has worse
performance than some algorithms running in O(n log n) time.

According to Wang et al. [89] there are two significant disadvantages
of mapping the skew algorithm to GPUs. The recursive nature of the skew
algorithm eliminates the possibility to parallelize across recursive calls, which
in turn greatly restricts the parallelism efficiency. Additionally, the skew
algorithm performs a large amount of redundant work by resorting triplets
that are already sorted as there is no simple way to indicate which triples
are fully sorted and ignore them in further iterations.

From our observations, we noticed that it is rather difficult to debug the
skew algorithm on the GPU due to its recursive structure. CUDA debugging
alone can be a very cumbersome process, and the recursive formulation con-
siderably increases debugging difficulty. Some ”bug” in the recursive part of
the skew algorithm on GPU can be challenging to spot and fix as the recur-
sive part consists of several kernels and there are no simple ways to monitor
data modification between the iterations.

The drawbacks of the prefix-doubling method with respect to paralleliza-
tion are less more critical compared with the drawbacks of the recursive skew
approach. According to Osipov [73], the MM [53] prefix-doubling algorithm
does not distinguish between fully sorted buckets and those that still require
sorting, which results in redundant work done on resorting singleton buckets.
On the other hand, the LS [45] algorithm filters singleton buckets and ap-
plies the BMQS to sort non-singleton buckets, but makes the load balancing
difficult due to irregularity in the size of non-singleton buckets.

The disadvantages of the skew implementation on the GPU keep us from
fully exploiting the compute capabilities of our GPU. For that reason, we
consider prefix-doubling approach a better candidate for our implementation.
Through extensive experiments and observations, we concluded that all parts

∗To best of our knowledge, by the time of writing this thesis, no one has proposed an
efficient implementation approaches to induce sorting SACAs for GPUs.

53

of the MM algorithm could be parallelized and mapped successfully onto
GPU architecture. We address the issues of load balancing by using parallel
primitives like segmented sort. In our implementation, we do not use filtering
of singleton buckets because this operation requires extra work of removing
all singleton buckets and respectively removing all elements from related data
structures that exhibit dependency with singleton buckets. Instead, we rely
on the segmented sort that is designed to deal with irregular-size bucket
sorting in the most efficient and productive way.

Much of the Thrust CUDA back-end is written in terms of CUB library,
which provides high-level abstractions for every level of CUDA ecosystem.
We use Thrust essentials like device vector, raw pointers, device lambdas,
and high-performance parallel primitives from CUB and MGPU libraries to
optimize our implementation, make it robust and lightweight. Furthermore,
debugging Thrust application is as simple as debugging CPU application,
which plays an important role for the developer.

5.2 Suffix Array Construction on the GPU

Our implementation is described in Algorithm 3. The algorithm expects three
input parameters. An input string T over the indexed alphabet. An empty
suffix array SA that will act as a h-order buffer for intermediate values and
eventually it will contain the starting positions of lexicographically sorted
suffixes of T . We also supply the length of the input string as the parameter
n.

The algorithm begins by copying input data to device vectors. That is,
T is a device vector of length n that contains the input string and SA is an
empty device vector of length n. We will use the following input to show how
our algorithm works across all stages. Let T = abracadabra$ and n = 12.
Next, we define five additional device vectors:

keys(n), b heads(n), b ranks(n), ISA(n) and num segs(1).

We will describe the role of each vector. Note that each defined vector is
of the same size n, except num segs(1). Device vector keys will serve two
purposes. Initially, it will store the alphabet values of each character in T ,
where the values are the starting position of suffixes in SA with respect to
h-order. During the prefix-doubling process, the device vector keys will store
the ranks obtained from ISA.

Device vector b heads is used to store bucket heads that are flags that
mark the beginning and the end of each bucket. They are intended to distin-
guish between different buckets and suffixes that they contain. We define a

54

bucket head to be the leftmost element in each bucket as we scan the buckets
from left to right.

Device vector b ranks is used to store bucket ranks. It assigns a unique
rank to each bucket. All suffixes of the same bucket inherit the rank of the
bucket they belong to.

As we know from Chapter 2, ISA is the inverse suffix array. In our im-
plementation ISA stores the ranks of suffixes with respect to h-order. Values
of ISA are computed from bucket ranks and are used for updating values of
keys .

Device vector num segs stands for the number of segments, i.e., buckets.
It stores a single integer value, but it must be allocated in the device memory.

Algorithm 3: GPU prefix-doubling SACA

1 procedure PD-SA(T, SA, n)
Input: T — input string, SA — empty suffix array, n — input

string length.
Output: Sorted lexicographically suffixes of T stored in SA.

2 Define device vectors: keys(n), b heads(n), b ranks(n),
3 ISA(n), num segs(1)
4 Pack32(T, keys , SA, b heads , n)
5 RadixSort32(keys , SA, n)
6 h← 4
7 while > do
8 MarkBucketHeads(keys , b heads , n)
9 if every bucket is singleton then

10 Exit loop
11 end
12 UpdateBucketHeads(b heads , b ranks , n)
13 ComputeISA(SA, b ranks , n)
14 UpdateKeys(keys , ISA, SA, b heads , b ranks , h, n)
15 GetSegmentHeads(b ranks , ISA, b heads , num segs , n)
16 SegmentedSort(keys , ISA, SA, num segs , n)
17 h← 2h

18 end
19 return SA

20 End

Once we initialized 5 device vectors listed in lines 2–3, we call the function
Pack32. This function converts 4 consecutive 8-bit characters into a single
32-bit integer. Our task is to pack as many characters as possible into a

55

single integer. It is apparent that we cannot pack more than 4 characters
into a single integer. This operation allows to compact the input string,
apply 32-bit radix sort and launch prefix-doubling loop from h = 4.

Listing 5.1. Source code of Pack32 function.

1 void Pack32(device_vector<uint8_t>& T,

2 device_vector<int>& keys, device_vector<int>& SA,

3 device_vector<uint8_t>& b_heads, int n) {

4

5 uint8_t *T_ptr = raw_pointer_cast(T.data());

6 uint8_t *b_heads_ptr = raw_pointer_cast(b_heads.data());

7 int *keys_ptr = raw_pointer_cast(keys.data());

8 int *SA_ptr = raw_pointer_cast(SA.data());

9 auto r = counting_iterator<int>(0);

10

11 for_each(r, r + n, [=] __device__(int i) {

12 b_heads_ptr[i] = 0;

13 SA_ptr[i] = i;

14

15 int p32 = T_ptr[i];

16 p32 <<= 8;

17 if (i + 1 < n) {

18 p32 |= T_ptr[i + 1];

19 }

20 p32 <<= 8;

21 if (i + 2 < n) {

22 p32 |= T_ptr[i + 2];

23 }

24 p32 <<= 8;

25 if (i + 3 < n) {

26 p32 |= T_ptr[i + 3];

27 }

28

29 keys_ptr[i] = p32;

30 });

31 }

To pack 4 characters into an integer we invoke an anonymous kernel via device
lambda. Thread controller spawns a particular number of threads, each of
which launches the anonymous kernel with its thread id. Each thread reads
4 consecutive characters from the string and packs it into a 32-bit integer by
shifting 8 bits to the left and concatenating the resulting bit sequence.

56

Listing 5.2. Source code of RadixSort32 function.

1 void RadixSort32(device_vector<int>& keys,

2 device_vector<int>& SA, uint32_t num_items) {

3

4 uint32_t *d_keys = raw_pointer_cast(keys.data());

5 uint32_t *d_values = raw_pointer_cast(SA.data());

6

7 size_t temp_storage_bytes = 0;

8 void *d_temp_storage = NULL;

9

10 DoubleBuffer<uint32_t> d_cub_keys;

11 DoubleBuffer<uint32_t> d_cub_values;

12 d_cub_keys.d_buffers[d_cub_keys.selector] = d_keys;

13 d_cub_values.d_buffers[d_cub_values.selector] = d_values;

14

15 cudaMalloc((void**) &d_cub_keys.d_buffers[

16 d_cub_keys.selector ^ 1], sizeof(uint32_t) * num_items);

17 cudaMalloc((void**) &d_cub_values.d_buffers[

18 d_cub_values.selector ^ 1], sizeof(uint32_t) * num_items);

19

20 DeviceRadixSort::SortPairs(d_temp_storage,

21 temp_storage_bytes, d_cub_keys, d_cub_values, num_items);

22 cudaMalloc(&d_temp_storage, temp_storage_bytes);

23

24 DeviceRadixSort::SortPairs(d_temp_storage,

25 temp_storage_bytes, d_cub_keys, d_cub_values, num_items);

26

27 cudaMemcpy(d_keys, d_cub_keys.d_buffers[d_cub_keys.selector],

28 sizeof(uint32_t) * num_items, cudaMemcpyDeviceToDevice);

29 cudaMemcpy(d_values, d_cub_values.d_buffers[

30 d_cub_values.selector], sizeof(uint32_t) * num_item,

31 cudaMemcpyDeviceToDevice);

32

33 cudaFree(d_temp_storage);

34 if (d_cub_values.d_buffers[1])

35 cudaFree(d_cub_values.d_buffers[1]);

36 if (d_cub_keys.d_buffers[1])

37 cudaFree(d_cub_keys.d_buffers[1]);

38 }

Additionally, we exploit the same anonymous kernel to set the values of
b heads to zero and fill SA with its indices. The implementation of Pack32
function is available in Listing 5.1.

57

After we packed all suffixes of length 4 into 32-bit integers and stored the
result into keys , we apply 32-bit radix sort. We perform a stable radix sort
by keys having SA as values. For that purpose, we call the implemented
RadixSort32 function.

For the sake of illustration of the algorithm work with the input string
T = abracadabra$, we will omit the packing, since the string is too short
and will not allow us to demonstrate the effect of each function inside the
prefix-doubling loop due to early exit, as when h = 4 all buckets are fully
sorted. Hence, let us assume that h = 1 and during the invocation of Pack32
we just copy values of T into keys and initialize b heads and SA omitting the
packing.

During initialization stage we call two functions: Pack32 which returns

T:

97 98 114 97 99 97 100 97 98 114 97 36

keys:

97 98 114 97 99 97 100 97 98 114 97 36

SA:

0 1 2 3 4 5 6 7 8 9 10 11

b_heads:

0 0 0 0 0 0 0 0 0 0 0 0

and RadixSort32 which sorts keys and SA as key-value pairs and returns

keys:

36 97 97 97 97 97 98 98 99 100 114 114

SA:

11 0 3 5 7 10 1 8 4 6 2 9

.

If we consider each value of keys as character we get:

11 0 3 5 7 10 1 8 4 6 2 9
keys = $ a a a a a b b c d r r,

where each bucket is clearly separated by vertical bar.

After initialization, our algorithm launches the main prefix-doubling loop.
The loop will run until all buckets are singleton, that is, fully sorted. Next,
we will discuss and describe in details the role of each function inside the
while loop. In line 8 of Algorithm 3, we call a function MarkBucketHeads.
The role of this function is to mark the bucket heads and store the result in
b heads . The implementation of this function is available in Listing 5.3.

58

Listing 5.3. Source code of MarkBucketHeads function.

1 void MarkBucketHeads(device_vector<int>& keys,

2 device_vector<uint8_t>& b_heads, int n) {

3

4 int *keys_ptr = raw_pointer_cast(keys.data());

5 uint8_t *b_heads_ptr = raw_pointer_cast(b_heads.data());

6 auto r = counting_iterator<int>(0);

7

8 for_each(r, r + n, [=] __device__(int i) {

9 if (b_heads_ptr[i] == 1) {

10 return;

11 }

12 else if (i == 0) {

13 b_heads_ptr[i] = 1;

14 }

15 else if (keys_ptr[i] != keys_ptr[i - 1]) {

16 b_heads_ptr[i] = 1;

17 }

18 });

19 }

We begin by casting a raw pointer to device vectors keys and b heads . We ini-
tialize b heads by setting its values to zero. Next, we execute device lambda
in line 8. The conditional statement in line 9 tells the active thread to return
if the bucket head at index i is already set. The conditional statement in line
12 tells the active thread to set the bucket head at index i if that index is
the first index in the b heads vector. By default, the bucket head for the first
bucket is always set. The last conditional statement in line 15 tests if the
key at position i−1 is different from the key at the current position i. If this
statement is true, it implies that flag at position i should be set and become
a new bucket head. This is a simple and logical criterion to check for a new
bucket head. If two adjacent keys are the same, then they belong to the same
bucket, and if they are different, they must be in different buckets as each
bucket contains lexicographically equal elements (i.e. their key values must
be the same).

Invoking MarkBucketHeads when h = 1 returns

b_heads:

1 1 0 0 0 0 1 0 1 1 1 0
.

Once the bucket heads are marked, we check if all buckets are fully sorted.
For that purpose, we scan buckets. All buckets are singleton if all flags in

59

b heads are set. We can simply check for the smallest element in b heads by
using parallel primitives like min element or reduce. If the smallest value
in b heads is 1 then we have successfully sorted all buckets, we can exit the
loop and copy the results back to the host. Otherwise, we continue with the
loop and call the function UpdateBucketRanks.

The task of the function UpdateBucketRanks is to update bucket ranks.
The implementation of this function is available in Listing 5.4.

Listing 5.4. Source code of UpdateBucketRanks function.

1 void UpdateBRanks(device_vector<uint8_t>& b_heads,

2 device_vector<int>& b_ranks, int n) {

3

4 uint8_t *b_heads_ptr = raw_pointer_cast(b_heads.data());

5 int *b_ranks_ptr = raw_pointer_cast(b_ranks.data());

6

7 void *d_temp_storage = NULL;

8 size_t temp_storage_bytes = 0;

9

10 DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes,

11 b_heads_ptr, b_ranks_ptr, n);

12

13 cudaMalloc(&d_temp_storage, temp_storage_bytes);

14

15 DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes,

16 b_heads_ptr, b_ranks_ptr, n);

17

18 cudaFree(d_temp_storage);

19 }

To update bucket ranks we perform an inclusive scan on b heads . Before
calling UpdateBucketRanks we have:

b_heads:

1 1 0 0 0 0 1 0 1 1 1 0
.

Invoking UpdateBucketRanks returns

b_ranks:

1 2 2 2 2 2 3 3 4 5 6 6
.

The result can be interpreted as follows. The first bucket is a singleton, and
its rank is 1, the second bucket contains 5 elements, and all of them have

60

rank 2, the third bucket contains 2 elements, and they both are assigned rank
3, the next two buckets are singleton, and the last bucket has two elements
with rank 6.

We then compute SA ranks and store them into ISA vector. Our task is
to compute ISA[SA[i]] = b ranks [i]. This can be achieved in different ways.
The simplest way is to run a kernel that will perform reading and writing
to global memory. This strategy can be improved by aiming for maximum
memory coalescing and using a grid-stride loop. Another way is to run a
key-value radix sort with SA items serving as keys and b ranks items serving
as values. After sorting, we perform fast device to device copy from b ranks
to ISA. Finally, we can use parallel primitive called scatter to carry out
the required computations.

We have tried various approaches to compute ISA[SA[i]] = b ranks [i], but
the efficiency of each approach is reduced to the speed of global memory ac-
cess, which is a bottleneck in this type of computations. Since all approaches
showed similar performance, we decided to stick to the most code-saving one,
that is implemented by Thrust scatter primitive. Listing 5.5 demonstrates
our approach.

Listing 5.5. Source code of ComputeISA function.

1 void ComputeISA(device_vector<int>& SA,

2 device_vector<int>& b_ranks, device_vector<int>& ISA) {

3

4 scatter(thrust::device, b_ranks.begin(), b_ranks.end(),

5 SA.begin(), ISA.begin());

6 }

We call ComputeISA with the following input data:

SA:

11 0 3 5 7 10 1 8 4 6 2 9

b_ranks:

1 2 2 2 2 2 3 3 4 5 6 6

,

which returns

ISA:

2 3 6 2 4 2 5 2 3 6 2 1
.

Scatter copies elements from the source array b ranks into the output array
ISA according to the map SA. All indices in the map array must be unique.

61

Once we know the rank of suffixes at h-order, we can compute their 2h-order
in linear time and store the result into keys . For that purpose, we invoke the
function UpdateKeys. Its implementation is available in Listing 5.6.

Listing 5.6. Source code of UpdateKeys function.

1 void UpdateKeys(device_vector<int>& keys,

2 device_vector<int>& ISA, device_vector<int>& SA,

3 device_vector<uint8_t>& b_heads,

4 device_vector<int>& b_ranks, int h, int n) {

5

6 int *ISA_ptr = raw_pointer_cast(ISA.data());

7 int *SA_ptr = raw_pointer_cast(SA.data());

8 int *keys_ptr = raw_pointer_cast(keys.data());

9 int *b_ranks_ptr = raw_pointer_cast(b_ranks.data());

10 uint8_t *b_heads_ptr = raw_pointer_cast(b_heads.data());

11 auto r = counting_iterator<int>(0);

12

13 for_each(r, r + n, [=] __device__(int i) {

14 b_ranks_ptr[i] = i;

15 if (b_heads_ptr[i] == 1 && i == n - 1) {

16 return;

17 }

18 else if (b_heads_ptr[i] == 1 && b_heads_ptr[i + 1]) {

19 return;

20 }

21 int h_suffix = SA_ptr[i] + h;

22 if (h_suffix >= n) {

23 keys_ptr[i] = -h_suffix;

24 }

25 else {

26 keys_ptr[i] = ISA_ptr[h_suffix];

27 }});

28 }

In lines 6–10 we retrieve raw pointers to the device memory allocated for
each data structure used within the function scope. In line 13, we define an
anonymous kernel in the form of device lambda that will perform required
computations in parallel on the device side. We reuse the memory of b ranks
to store the indices that we will need to compute segment heads in the next
step.

Programming logic facilitates an early exit in case if a singleton bucket
is detected. It involves two conditional statements. The first conditional

62

statement in line 16 checks if the last bucket head is set. If so, the key at
position i remains unchanged and thread i returns. The second conditional
statement in line 20 implies that bucket i is a singleton if and only if bucket
head at position i is set and bucket head at position i+ 1 is also set.

If early exit was not triggered then we should compute h-order of suffix
i that is ISA[SA[i] + h] and store the result into keys . We may have a
situation when the index SA[i] + h of ISA is out of bound. In this case we
simply negate the value of SA[i] + h, because it must be lexicographically
less than the rest elements of the bucket.

Continuing with our example and data obtained from previous actions, we
proceed and call UpdateKeys with the following input data:

SA:

11 0 3 5 7 10 1 8 4 6 2 9

b_heads:

1 1 0 0 0 0 1 0 1 1 1 0

ISA:

2 3 6 2 4 2 5 2 3 6 2 1

.

The expected output is

Keys:

36 3 4 5 3 1 6 6 99 100 2 2

b_ranks:

0 1 2 3 4 5 6 7 8 9 10 11

.

Before we can apply bucket sorting routine, we need to determine starting
positions of each bucket and number of buckets. In the next two operations
we refer to each bucket as a segment. To obtain required parameters we call
GetSegmentHeads function. The implementation is available in Listing 5.7.

The function GetSegmentHeads copies all indices based on the flags map.
These indices constitute starting positions of each bucket or in other wo-
rds segment heads. The values of flags are the same as the values of
b heads , they assist in mapping process. Number of segments are stored
into num segs .

63

Listing 5.7. Source code of GetSegmentHeads function.

1 void GetSegmentHeads(device_vector<int>& in,

2 device_vector<int>& out, device_vector<uint8_t>& flags,

3 device_vector<int>& num_segs, int n) {

4

5 int *in_ptr = raw_pointer_cast(in.data());

6 int *out_ptr = raw_pointer_cast(out.data());

7 uint8_t *flags_ptr = raw_pointer_cast(flags.data());

8 int *num_segs_ptr = raw_pointer_cast(num_segs.data());

9

10 void *d_temp_storage = NULL;

11 size_t temp_storage_bytes = 0;

12

13 DeviceSelect::Flagged(d_temp_storage, temp_storage_bytes,

14 in_ptr, flags_ptr, out_ptr, num_segs_ptr, n);

15

16 cudaMalloc(&d_temp_storage, temp_storage_bytes);

17

18 DeviceSelect::Flagged(d_temp_storage, temp_storage_bytes,

19 in_ptr, flags_ptr, out_ptr, num_segs_ptr, n);

20

21 cudaFree(d_temp_storage);

22 }

We call GetSegmentHeads with the following values:

b_ranks:

0 1 2 3 4 5 6 7 8 9 10 11

b_heads:

1 1 0 0 0 0 1 0 1 1 1 0

,

which returns

ISA:

0 1 6 8 9 10 5 2 3 6 2 1

num_segs:

6

.

We reuse ISA memory to store segment heads. Number of segments indi-
cate the range of ISA memory that should be read to get segment heads.
To sort buckets we invoke SegmentedSort function. The implementation is
demonstrated in Listing 5.8.

64

Listing 5.8. Source code of SegmentedSort function.

1 void SegmentedSort(device_vector<int>& keys,

2 device_vector<int>& ISA, device_vector<int>& SA,

3 device_vector<int>& num_segs , int n, context_t& context) {

4

5 int *ISA_ptr = raw_pointer_cast(ISA.data());

6 int *SA_ptr = raw_pointer_cast(SA.data());

7 int *keys_ptr = raw_pointer_cast(keys.data());

8

9 segmented_sort(keys_ptr, SA_ptr, n, ISA_ptr,

10 (int) num_segs[0], less_t<int>(), context);

11 }

The segmented sort parallel primitive reads segment heads from ISA using
device vector num segs for access range. Then it sorts elements within each
segment bounded by segment heads.

We call SegmentedSort with the following inputs:

SA:

11 0 3 5 7 10 1 8 4 6 2 9

Keys:

36 3 4 5 3 1 6 6 99 100 2 2

ISA:

0 1 6 8 9 10 5 2 3 6 2 1

num_segs:

6

.

The function returns the following outputs:

SA:

11 10 0 7 3 5 1 8 4 6 2 9

Keys:

36 1 3 3 4 5 6 6 99 100 2 2

.

Recall that keys contain h-order ranks of suffixes except for already sorted
suffixes deduced from singleton buckets. If we partition keys by segment
heads we get

{36}, {3, 4, 5, 3, 1}, {6, 6}, {99}, {100}, {2, 2}

with the corresponding values of SA

{11}, {0, 3, 5, 7, 10}, {1, 8}, {4}, {6}, {2, 9}

65

Notice that at h = 1 order we can only sort three elements from the second
bucket. Elements from the third and sixth bucket are lexicographically equal
and cannot be uniquely distinguished in this round. The algorithm executes
few more rounds until buckets {0, 7}, {1, 8}, {2, 9} are fully sorted.

5.3 The Suffix Array Checker

Checking whether the implementation of an algorithm produced the correct
result is not always a straightforward process. Often it is a challenging and
even impossible task. An algorithm that serves the purpose of detecting
errors in the output is a result checker [10, 90]. The result checker is pro-
grammed to verify the result according to some criteria. To check that the
result of the suffix array satisfies its properties, we introduce the concept of
the suffix array checker. It is an algorithm that uses the information about
the input string to decide the correctness of its suffix array. In this section,
we describe a compact, fast and lightweight suffix array checker based on the
theorem proposed by Burkhardt and Kärkkäinen [11].

Theorem 1. Given an input string T [0 . . . n− 1] = T [0]T [1] . . . T [n− 1] and
an array of integers SA[0 . . . n − 1] = SA[0]SA[1] . . . SA[n − 1]. The array
SA contains lexicographically sorted suffixes of T if and only if the following
conditions are satisfied:

1. ∀ 0 ≤ i ≤ n− 1, SA[i] ∈ [0, n− 1].

2. ∀ 0 ≤ i ≤ n− 1, T [SA[i]] ≥ T [SA[i− 1]].

3. ∀ 1 ≤ i ≤ n−1 such that SA[i−1] 6= n−1 and T [SA[i−1]] = T [SA[i]],
∃ j, k ∈ [0, n − 1] such that SA[j] = SA[i − 1] + 1, SA[k] = SA[i] + 1
and j < k.

We omit the proof here. Condition 1 checks that all elements are within range
of the array. Condition 2 ensures that suffixes in SA are ordered correctly
based on the first character only. Condition 3 verifies the order of suffix i
based on the information obtained about suffix i− 1.

The first two conditions are straightforward and can be checked in O(n)
time using a single loop. Condition 3 can be checked by making use of the
inverse suffix array ISA, if it is available. In that case, we can compute k
and j directly from ISA as follows:

j = ISA[SA[i− 1] + 1],

k = ISA[SA[i] + 1].
(5.1)

66

We can construct ISA directly from SA in linear time:

ISA[SA[i]] = i, for all 0 ≤ i ≤ n− 1. (5.2)

However, this approach will require an extra O(n) memory space to store the
values of ISA. We can do better if we employ the following observation [11].

Observation 4. Consider suffixes that occupy the subarray SA[i . . . j] and
start with an identical character. Then we have:

SA[i] + 1 < SA[i+ 1] + 1 < . . . < SA[j] + 1.

The above holds for every suffix except the sentinel suffix as there is no entry
after it.

This observation gives rise to the following idea. We can create and maintain
a lookup table L of size O(σ) and O(1) access time. For each unique character
in the input string T , we generate a rank and update it accordingly (this step
will be explained in the text). As we scan the suffix array left to right, we
check SA[i] by comparing SA[i − 1] with SA[L[T [SA[i] − 1]]]. If these two
values are not the same than SA[i] values is incorrect (according to Theorem
1 and Observation 4).

We accumulated all ideas presented above into a pseudo-code available
in Algorithm 4. It presents a complete implementation of the suffix array
checker in pseudo-code. The first two conditions of the Theorem 1 are checked
in lines 2-11. Line 12 defines a lookup table L, which is an array of size σ.
Lines 13-25 describe the initialization of the table and its use in checking
the condition 3 of the Theorem 1. Verification the first two conditions of
Algorithm 4 takes O(n) time and no extra memory space. To maintain the
lookup table we need O(σ) memory space, which is a more efficient solution
than keeping the inverse suffix array which will use O(n) space. However,
the alphabet size in practice is much smaller than the input string length.
Once we have initialized the lookup table, we run a single loop and check each
entry of the suffix array only once, exploiting the property of the Observation
4 and reading from the table in O(1). As a result, we have a lightweight and
fast suffix array checker that we extensively tested on all datasets that we
used in our experiments and also on small inputs.

67

Algorithm 4: Suffix Array Checker

1 procedure SUFCHECK(T, SA, n)
Input: T — input string, SA — suffix array, n — input string

length.
Output: Success if all conditions are satisfied, Failure

otherwise.
2 for all i ∈ [0, n) do
3 if SA[i] < 0 or SA[i] ≥ n then
4 return Failure
5 end

6 end
7 for all i ∈ [1, n) do
8 if T [SA[i− 1]] > T [SA[i]] then
9 return Failure

10 end

11 end
12 Define lookup table L[σ], where σ is an alphabet size
13 for i← n− 1 to 0 do
14 L[T [SA[i]]]← i
15 end
16 L[T [n− 1]]← L[T [n− 1]] + 1
17 for i← 0 to n− 1 do
18 if SA[i] > 1 then
19 c← T [SA[i]− 1]
20 if SA[L[c]] + 1 6= SA[i] then
21 return Failure
22 end
23 L[c]← L[c] + 1

24 end

25 end
26 return Success

27 End

68

Chapter 6

Experimental Results

In this chapter, we evaluate our GPU prefix-doubling implementation of suf-
fix array construction gpu-pd and compare it with the fastest [21, 22, 34, 35],
lightweight, OpenMP-parallelized suffix array constructor, libdivsufsort [61],
which was developed by Yuta Mori for shared memory multi-core CPU ar-
chitecture. Libdivsufsort is heavily optimized by exploiting the speedup fea-
tures of OpenMP framework as well as the smart application of concurrency
aimed to harness the power of multi-core processors. The implementation
of libdivsufsort is relatively complex and advanced. It is based on induced
sorting technique with some excellent tuning. A comprehensive analysis of
the working principles of libdivsufsort was conducted by Fischer and Kurpicz
[21]. Mori compared the performance of libdivsufsort with a plethora of most
prominent CPU SACAs (some of them were parallelized and optimized for
multi-core systems) over different corpora. According to the results [63],
libdivsufsort showed the best total running time over all datasets.

6.1 Hardware Specifications

In this chapter, we will report on hardware and software specifications that
were used in our experiments.
Compute node specification. Intel Xeon Processor E5-2680 v3 running at
2.5 GHz. Microarchitecture: Haswell with 22 nm semiconductor technology.
Number of cores: 24 cores, 12 cores per CPU. Additional features: 30 MB
L3 cache, 256 GB of DDR4-2133 RAM, hyper-threading disabled.
GPU specification. NVIDIA Tesla P100 GPU running at 1328.500 MHz.
Architecture: NVIDIA Pascal with 16 nm semiconductor technology. Num-
ber of CUDA cores: 3584 CUDA cores, 56 streaming multiprocessors (SM)
and 64 cores per SM. GPU memory: 15987 MB of free memory, with a to-

69

tal of 16280 MB and 64-bit pointers. Memory clock: 715.000 MHz x 4096
bits and 732.2 GB/s maximum bandwidth. Compute capability: 6.0. Error-
correcting code memory (ECC memory) is enabled.
Software specification. Operating system: Ubuntu 16.04.5 LTS
(GNU/Linux 4.4.0-109-generic x86 64). GNU C Compiler: version gcc 5.5.0.
Cuda compilation tools: release 9.2, V9.2.88.

6.2 Performance Evaluation

To evaluate the performance of our GPU implementation we carried out
several experiments over different datasets. The goal of these experiments
was to measure the running time and throughput of our GPU implemen-
tation compared with libdivsufsort. We used different types of corpora in
each experiment. In the first experiment, we used datasets from Manzini
corpus. This corpus was commonly used for benchmarking in many research
papers related to the field of suffix array construction. The data it contains
is considered well-rounded in terms of data type, alphabet size, string length,
and correlation. In the second experiment, we used corpora generated from
several different sources and containing datasets of real-world data.

Manzini Corpus

Datasets from this corpus were partially used by Deo and Kelly [17], Osipov
[73] and Wang et al. [89]. Deo and Kelly used only three datasets from
Manzini corpus: chr22.dna (34 MB), howto (39 MB), and jdk13c (70 MB)
including mozilla (50 MB) that is not currently available in Manzini corpus.
Osipov used only two datasets from this corpus: chr22.dna (34 MB) and
howto (39 MB). Wang et al. used the following datasets from Manzini corpus:
chr22.dna (34MB), etext99 (105MB), howto (39MB), jdk13c (70 MB),
sprot34.dat (110 MB), w3c2 (104 MB), and mozilla (50 MB).

Memory consumption analysis showed that our algorithm can success-
fully process input datasets as large as 640 MB and requires for a string of
length n a total of 25n byte storage in the GPU memory. This makes our
implementation 1.3-1.5x more memory-efficient than GPU SACAs of by Deo
and Kelly, Osipov and Wang et al..

In our experiments, we used all datasets from Manzini corpus. As you can
see in Figure 6.1, the smallest speedup of 4.1x was achieved on the w3c2 (104
MB) dataset. The largest speedup of 8.4x was achieved on the sprot34.dat

(110 MB) dataset. The smallest throughput of 49.7 millions of characters
processed per second was recorded on the w3c2 (104 MB) input. The largest

70

Figure 6.1: Runtimes (top figure) and throughputs (bottom figure) over
Manzini corpus datasets.

throughput of 89.6 millions of characters processed per second was observed
on the sprot34.dat (110 MB) input.

Corpora 600

Corpora 600 comprises of different corpus datasets that are 600 MB in size
with two datasets of 550 MB size. Corpora 600 is aimed to evaluate the
performance of our gpu-pd implementation using inputs of a size that is close
to the maximum input size that gpu-pd can process without running out of

71

memory. Datasets that are part of Corpora 600 have different alphabet size
and contain real-world data. Bellow, we will briefly describe the content and
origins of each dataset in Corpora 600:

• amazon reviews — Amazon Reviews Corpus. It contains a few million
Amazon reviews from different categories of products.

• hacker news — Hacker News Corpus. It contains a subset of all Hacker
News articles.

• twitter support — Corpus of Customer Support on Twitter. It con-
tains over 3 million tweets and replies from the biggest brands on Twit-
ter.

• articles us — Corpus of American Articles. It contains 143,000 ar-
ticles from 15 American publications.

• urban dict — Urban Dictionary Words And Definitions Corpus. It
contains 2.6 million words with ratings from urban dictionary.

• enron emails - Enron Emails Corpus. It contains 500,000 emails from
150 employees of the Enron Corporation.

• nyt comments - Corpus of New York Times Comments. It contains
comments on articles published in the New York Times.

• scotus — Corpus of American Court Decisions. It contains 130 million
words in 32,000 Supreme Court decisions from the 1790s to the current
time.

• ubuntu dialogs — Ubuntu Dialogue Corpus. It contains 26 million
turns from natural two-person dialogues.

• blog — Blog Authorship Corpus. It contains over 600,000 posts from
more than 19 thousand bloggers.

The numerical data in the name of each dataset defines its size in MB. Ex-
perimental results are illustrated in Figure 6.2.

72

Figure 6.2: Runtimes (top figure) and throughputs (bottom figure) over Cor-
pora 600 datasets.

With Corpora 600 datasets our implementation achieved the smallest speedup
of 7.1x on the enron emails (600 MB) dataset. The largest speedup of 16.1x
happened on the amazon reviews (600 MB) dataset. The smallest through-
put of 68.4 millions of characters processed per second was recorded on the
scotus (600 MB) dataset. The largest throughput of 144.7 millions of char-
acters processed per second was observed on the twitter support (550 MB)
dataset.

73

6.3 Scalability Analysis

To investigate the scalability of our implementation we carried our two differ-
ent types of experiments. In the first experiment, our task was to analyze the
scalability of our algorithm as we increased the input string length. In the
second experiment, we studied how our implementation scales when we sup-
plied the worst-case inputs. For prefix-doubling it takes place when the input
string consists of the same character repeated many times. We compared the
results against libdivsufsort.

Scalability with Dataset Size

In this experiment, our goal was to analyze how our implementation scales
compared with libdivsufsort using datasets that were uniformly partitioned
and originated from the same data source. We carried out experiments using
10 input datasets generated from the concatenation of English text files se-
lected from etext02 to etext05 collections of Gutenberg Project and a dump
of Wikipedia filtered to contain a pure English text.

The largest string length we used in this experiment is 600 MB. Small
inputs cannot fully saturate the GPU and compensate for expensive data
transfer between host and device. To compensate for this drawback the input
string length should be sufficiently large. It is apparent, that sufficiently
small inputs diminish the advantage of GPU compared to the efficiency of
the parallel CPU approaches.

More objective results are achieved when the input size is sufficiently
large to saturate all GPU cores and compensate the cost of data transfer
between the host and device. As you can see in Figure 6.3, on both charts,
the throughput of gpu-pd is increasing as the input size gets larger. On the
other hand, the throughput of libdivsufsort is slowly decreasing.

74

Figure 6.3: Top, bottom: suffix array construction throughput on plain text
enwik9 and on concatenation of English text files selected from etext02 to
etext05 collections of Gutenberg Project as a function of dataset size.

Scalability with Worst-Case Input

In this experiment, we analyze the scalability of our algorithm against lib-
divsufsort by simulating a worst-case scenario with respect to inputs. We
generate 10 strings that range in length from 150 MB to 600 MB with 50
MB step. Each string consists of a repeated character ’A’.

For prefix-doubling SACA such sequences of the same letter repeated
many times are considered hard to process because this scenario requires
the algorithm to do a lot of extra work to break a single large bucket of

75

prefixes into singleton ones. In other words, the algorithm spends more
than in average time to separate prefixes into unique buckets, because the
algorithm requires extra work to distinguish between prefixes that appear
to be lexicographically identical. Hence, the algorithm places initially all
prefixes into a single bucket and then does a lot of extra work to segment
this bucket. This scenario exhibits worst-case sorting behavior.

Figure 6.4: Suffix array construction throughput on a dataset consisting only
of the repeated letter ’A’.

Figure 6.4 shows the results of the worst-case scenario for our GPU prefix-
doubling implementation in terms of input type and size. Even with the
worst-case inputs, our algorithm shows continuous growth in throughput. For
libdivsufsort this test is easy because it is based on induced sorting method,
which is much better adapted for dealing with large substrings composed
of identical characters. Although the throughput of libdivsufsort is 2.7-3.3
times larger than the throughput of our GPU implementation over the input
size range, we can clearly see that its throughput is slowly decreasing. We
observe that on the input string of 600 MB, libdivsufsort runs in 2.85 seconds,
compared with 8.47 seconds for gpu-pd. We notice that the curves of our
algorithm in Figure 6.3 and 6.4 have relatively stable trends.

76

Chapter 7

Conclusions

In this thesis, we designed and implemented a lightweight, simple and mem-
ory efficient SACA using the CUDA programming model. We studied three
main classes of algorithms for suffix array construction (Chapter 3). We
demonstrated their working principles by describing the most prominent al-
gorithms of each class. We described the algorithm of Manber and Myers
[53], the algorithm of Larson and Sadakane [45], the algorithm of Kärkkäinen
and Sanders [37], and the algorithm of Nong et al. [67].

We analyzed the parallelization properties of each SACA and observed
the following. Induced sorting method exhibits a low level of paralleliza-
tion capabilities according to Deo and Keely [17], and it remains unknown
whether this method can be efficiently applied for suffix sorting on GPUs.
The skew algorithm has several disadvantages when it comes to mapping
it to GPU architectures. First, its recursive structure restricts parallelism
efficiency. Second, it performs a large amount of redundant work by resort-
ing triplets that are already sorted. Third, bugs (errors in the code) that
appear in the recursive part are difficult to spot and fix on the GPU. Fi-
nally, the prefix-doubling approach has the following drawbacks. First, the
original method of Manber and Myers does not distinguish between sorted
and unsorted buckets, which results in unnecessary processing of already
sorted buckets and relatively large data overhead. Second, the irregularity
in buckets partitioning may lead to performance downgrade.

By analyzing the drawbacks of each method, we concluded that prefix-
doubling SACA is the best candidate for translation to the GPU domain.
Each step of this method can be efficiently parallelized. Modern and high-
performance parallel primitives like segmented sort solve the problem of un-
necessary scanning of sorted buckets and irregularity in buckets partitioning.
Our GPU SACA is based on the prefix-doubling method. We combined some
ideas of MM and LS to achieve the best result. To achieve simplicity and

77

compactness in the design of our implementation, we used the abstractions
provided by Thrust, CUB and MGPU libraries.

We provided an overview of the basic CUDA concepts and GPU architec-
ture. Additionally, we described the most efficient GPU parallel primitives
that we incorporated into our implementation to enhance its performance,
reduce memory consumption, make it more robust, simple and compact. We
demonstrated the working principles of high-level abstractions and parallel
constructs employed in our implementation.

We then presented the design and implementation of our algorithm. First,
we formulated the principles of our implementation in a high-level pseudo-
code. Then we elaborated on the role of each data structure and subroutine
used in our implementation. We described each step of our algorithm and
presented the source code for each part of our implementation. For clarity,
we illustrated the effect of our source code by providing running examples.

Our primary goal was to design and implement a lightweight, memory-
efficient, compact, and simple GPU SACA implementation. We achieved
this goal by presenting the source code of our implementation, which is less
than 300 lines of effective code. Additionally, we designed and implemented
a fast and lightweight tool for checking the correctness of the suffix array, the
suffix array checker. We reviewed the theory behind this tool and presented
its implementation in pseudo-code. Our suffix array checker implementation
verifies the correctness of the suffix array in O(n) time and consumes O(σ)
extra memory space.

In the previous chapter, we evaluated the performance of our implemen-
tation by carrying out several experiments using real-world datasets. In our
evaluation, we compared the runtime, throughput, and scalability against
the fastest in practice multithreaded SACA, libdivsufsort. To emphasize the
memory-efficiency of our algorithm, we assembled a corpora consisting of dif-
ferent real-world datasets with 600 MB input strings which is 6 times larger
than the largest input processed by Wang et al. hybrid GPU implementa-
tion, 9 times larger than the largest input processed by Deo and Kelly, 15
times larger than the largest input processed by Osipov.

Experimentally, we established an upper bound for the memory consump-
tion of our GPU algorithm to be 25n, where n is the input length in bytes.
The runtime of our algorithm scales linearly with the input string length and
the curves of our implementation have relatively stable trends as our experi-
mental results demonstrate. Our algorithm outperformed libdivsufsort in all
experiments that we carried out, except the worst-case experiment, where
induced sorting approach showed a complete dominance over prefix-doubling
approach. Our GPU prefix-doubling implementation achieved a speedup of
16.1x over libdivsufsort on the amazon reviews (600 MB) dataset. Our al-

78

gorithm showed a relatively high throughput of 144.7 millions of characters
processed per second on the twitter support (550 MB) dataset.

We believe that there is still room for improvement. The profiling showed
that the main bottleneck in our implementation is the computation of the h-
order ISA. As we discussed in Section 5.2, there are several ways to perform
this computation. However, the efficiency of each method boils down to
random reading and writing to global GPU memory. This step could be
improved if the access to global memory is minimized or by finding a more
efficient way to compute the h-order ISA.

Another improvement involves the translation of our implementation into
a multi-GPU domain. For that purpose, one need to parallelize the archi-
tecture of our algorithm across interconnected GPUs. This task requires
finding a way how to distribute the work evenly and efficiently between mul-
tiple GPUs, and how to combine results from each GPU such that they are
consistent across different stages.

Recently, Fischer and Kurpicz [22] presented two new approaches for suf-
fix array construction in a distributed environment. They proposed and
implemented a distributed prefix-doubling SACA and a distributed induced
copying SACA. They claim that their distributed induced copying SACA
is the first of its kind and is currently the most lightweight SACA in a dis-
tributed setting. The breakthrough and advances in distributed SACA devel-
opment may get us closer to the discovery of powerful and efficient techniques
for multi-GPU SACA development.

Finally, we expect to see a GPU SACA based on an induced sorting
method. Induced sorting SACAs of Itoh and Tanaka [33], Nong et al. [67]
and Mori [61, 62] showed a great potential and efficiency. The question
remains open whether it is feasible to utilize the efficiency of induced sorting
technique for suffix sorting on the GPU. Translating this powerful algorithmic
technique into GPU domain would give rise for the use of effective approaches
to tackle some of the most challenging parallelization problems.

We conclude, that our main contribution is the design and implementa-
tion of the GPU prefix-doubling SACA that showed to be more memory-
efficient and lightweight compared to the previous GPU SACAs of Deo and
Kelly [17], Osipov [73] and Wang et al. [89]. We also showed that the design
of our implementation is simpler and more compact than in previous GPU
SACA approaches.

79

Bibliography

[1] Aamodt, T. M., Fung, W. W. L., and Rogers, T. G. General-
Purpose Graphics Processor Architectures. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2018.

[2] Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. The en-
hanced suffix array and its applications to genome analysis. In Algo-
rithms in Bioinformatics, Second International Workshop, WABI 2002,
Rome, Italy, September 17-21, 2002, Proceedings (2002), pp. 449–463.

[3] Adjeroh, D., Bell, T., and Mukherjee, A. The Burrows-Wheeler
Transform:: Data Compression, Suffix Arrays, and Pattern Matching.
Springer Science & Business Media, 2008.

[4] Barlas, G. Multicore and GPU Programming: An integrated approach.
Elsevier, 2014.

[5] Baron, D., and Bresler, Y. Antisequential suffix sorting for bwt-
based data compression. IEEE Trans. Computers 54, 4 (2005), 385–397.

[6] Baxter, S. MGPU, version 2.12, 2016. (Available from: https://

github.com/moderngpu/moderngpu) [Accessed on May 26, 2019].

[7] Baxter, S. The bzip2 and libbzip2 official home page, version 1.0.2,
2004. (Available from: http://www.sourceware.org/bzip2/) [Accessed
on May 26, 2019].

[8] Bentley, J. L., and McIlroy, M. D. Engineering a sort function.
Softw., Pract. Exper. 23, 11 (1993), 1249–1265.

[9] Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K.
A locally adaptive data compression scheme. Communications of the
ACM 29, 4 (1986), 320–330.

[10] Blum, M., and Kannan, S. Designing programs that check their
work. J. ACM 42, 1 (1995), 269–291.

80

https://github.com/moderngpu/moderngpu
https://github.com/moderngpu/moderngpu
http://www.sourceware.org/bzip2/

[11] Burkhardt, S., and Kärkkäinen, J. Fast lightweight suffix array
construction and checking. In Combinatorial Pattern Matching, 14th
Annual Symposium, CPM 2003, Morelia, Michocán, Mexico, June 25-
27, 2003, Proceedings (2003), pp. 55–69.

[12] Burrows, M., and J. Wheeler, D. A block-sorting lossless data
compression algorithm. Digital Systems Research Center Research Re-
ports 1 (1995).

[13] Cheng, J., Grossman, M., and McKercher, T. Professional Cuda
C Programming. John Wiley & Sons, 2014.

[14] Cook, S. CUDA programming: a developer’s guide to parallel comput-
ing with GPUs. Newnes, 2012.

[15] Crochemore, M., Hancart, C., and Lecroq, T. Algorithms on
strings. Cambridge University Press, 2007.

[16] Crochemore, M., and Rytter, W. Jewels of stringology. World
Scientific, 2002.

[17] Deo, M., and Keely, S. Parallel suffix array and least common prefix
for the GPU. In ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13, Shenzhen, China, February 23-
27, 2013 (2013), pp. 197–206.

[18] Erciyes, K. Distributed and Sequential Algorithms for Bioinformatics,
vol. 23 of Computational Biology. Springer, 2015.

[19] Farach, M. Optimal suffix tree construction with large alphabets. In
38th Annual Symposium on Foundations of Computer Science, FOCS
’97, Miami Beach, Florida, USA, October 19-22, 1997 (1997), pp. 137–
143.

[20] Farber, R. CUDA application design and development. Elsevier, 2011.

[21] Fischer, J., and Kurpicz, F. Dismantling divsufsort. In Proceed-
ings of the Prague Stringology Conference 2017, Prague, Czech Republic,
August 28-30, 2017 (2017), pp. 62–76.

[22] Fischer, J., and Kurpicz, F. Lightweight distributed suffix array
construction. In Proceedings of the Twenty-First Workshop on Algorithm
Engineering and Experiments, ALENEX 2019, San Diego, CA, USA,
January 7-8, 2019. (2019), pp. 27–38.

81

[23] Franceschini, G., and Muthukrishnan, S. In-place suffix sorting.
In Automata, Languages and Programming, 34th International Collo-
quium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings
(2007), pp. 533–545.

[24] Giegerich, R., Kurtz, S., and Stoye, J. Efficient implementation
of lazy suffix trees. Softw., Pract. Exper. 33, 11 (2003), 1035–1049.

[25] Guide, D. Cuda c programming guide. NVIDIA, May (2019).

[26] He, B., Govindaraju, N. K., Luo, Q., and Smith, B. Efficient
gather and scatter operations on graphics processors. In Proceedings of
the ACM/IEEE Conference on High Performance Networking and Com-
puting, SC 2007, November 10-16, 2007, Reno, Nevada, USA (2007),
p. 46.

[27] Hoare, C. A. R. Algorithm 64: Quicksort. Commun. ACM 4, 7
(1961), 321.

[28] Hoberock, J., and Bell, N. Thrust, version 1.8.2, 2015. (Available
from: https://thrust.github.io/) [Accessed on May 26, 2019].

[29] Homann, R., Fleer, D., Giegerich, R., and Rehmsmeier, M.
mkESA: enhanced suffix array construction tool. Bioinformatics 25, 8
(2009), 1084–1085.

[30] Hon, W., Sadakane, K., and Sung, W. Breaking a time-and-
space barrier in constructing full-text indices. In 44th Symposium on
Foundations of Computer Science (FOCS 2003), 11-14 October 2003,
Cambridge, MA, USA, Proceedings (2003), pp. 251–260.

[31] Huffman, D. A. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE 40, 9 (Sep. 1952), 1098–1101.

[32] Intel Corporation. Intel cilk plus, an extension to the c and c++
languages to support data and task parallelism, 2017. (Available from:
https://www.cilkplus.org/) [Accessed on May 26, 2019].

[33] Itoh, H., and Tanaka, H. An efficient method for in memory con-
struction of suffix arrays. In Sixth International Symposium on String
Processing and Information Retrieval and Fifth International Workshop
on Groupware, SPIRE/CRIWG 1999, Cancun, Mexico, September 21-
24, 1999 (1999), pp. 81–88.

82

https://thrust.github.io/
https://www.cilkplus.org/

[34] Kärkkäinen, J., and Kempa, D. Engineering a lightweight external
memory suffix array construction algorithm. In Proceedings of the 2nd
International Conference on Algorithms for Big Data , Palermo, Italy,
April 07-09, 2014. (2014), pp. 53–60.

[35] Kärkkäinen, J., Kempa, D., Puglisi, S. J., and Zhukova, B.
Engineering external memory induced suffix sorting. In Proceedings of
the Ninteenth Workshop on Algorithm Engineering and Experiments,
ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January 17-18,
2017. (2017), pp. 98–108.

[36] Kärkkäinen, J., and Sanders, P. Simple linear work suffix array
construction. In Automata, Languages and Programming, 30th Interna-
tional Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30
- July 4, 2003. Proceedings (2003), pp. 943–955.

[37] Kärkkäinen, J., Sanders, P., and Burkhardt, S. Linear work
suffix array construction. J. ACM 53, 6 (2006), 918–936.

[38] Karp, R. M., Miller, R. E., and Rosenberg, A. L. Rapid identi-
fication of repeated patterns in strings, trees and arrays. In Proceedings
of the 4th Annual ACM Symposium on Theory of Computing, May 1-3,
1972, Denver, Colorado, USA (1972), pp. 125–136.

[39] Kim, D. K., Jo, J., and Park, H. A fast algorithm for constructing
suffix arrays for fixed-size alphabets. In Experimental and Efficient Al-
gorithms, Third International Workshop, WEA 2004, Angra dos Reis,
Brazil, May 25-28, 2004, Proceedings (2004), pp. 301–314.

[40] Kirk, D. B., and Hwu, W. W. Programming Massively Parallel
Processors - A Hands-on Approach. Morgan Kaufmann, 2010.

[41] Knuth, D. Section 5.2. 4: Sorting by merging. The Art of Computer
Programming 3 (1998), 158–168.

[42] Ko, P., and Aluru, S. Space efficient linear time construction of
suffix arrays. J. Discrete Algorithms 3, 2-4 (2005), 143–156.

[43] Lao, B., Nong, G., Chan, W. H., and Pan, Y. Fast induced
sorting suffixes on a multicore machine. The Journal of Supercomputing
74, 7 (2018), 3468–3485.

[44] Lao, B., Nong, G., Chan, W. H., and Xie, J. Y. Fast in-place
suffix sorting on a multicore computer. IEEE Trans. Computers 67, 12
(2018), 1737–1749.

83

[45] Larsson, N. J., and Sadakane, K. Faster suffix sorting. Theor.
Comput. Sci. 387, 3 (2007), 258–272.

[46] Li, H., and Durbin, R. Fast and accurate long-read alignment with
burrows-wheeler transform. Bioinformatics 26, 5 (2010), 589–595.

[47] Li, Z., Li, J., and Huo, H. Optimal in-place suffix sorting. In 2018
Data Compression Conference, DCC 2018, Snowbird, UT, USA, March
27-30, 2018 (2018), p. 422.

[48] Lindholm, E., Nickolls, J., Oberman, S. F., and Montrym, J.
NVIDIA tesla: A unified graphics and computing architecture. IEEE
Micro 28, 2 (2008), 39–55.

[49] Mackenzie, C. E. Coded-Character Sets: History and Development.
Addison-Wesley Longman Publishing Co., Inc., 1980.

[50] Mäkinen, V. Compact suffix array - A space-efficient full-text index.
Fundam. Inform. 56, 1-2 (2003), 191–210.

[51] Mäkinen, V., Belazzougui, D., Cunial, F., and Tomescu, A. I.
Genome-Scale Algorithm Design: Biological Sequence Analysis in the
Era of High-Throughput Sequencing. Cambridge University Press, 2015.

[52] Malyshev, D. Archon, version 4, 2015. (Available from: https://

github.com/kvark/dark-archon/releases) [Accessed on May 26, 2019].

[53] Manber, U., and Myers, E. W. Suffix arrays: A new method for
on-line string searches. SIAM J. Comput. 22, 5 (1993), 935–948.

[54] Maniscalco, M. Msufsort, version 3, 2011. (Available from: https://

github.com/michaelmaniscalco/msufsort) [Accessed on May 26, 2019].

[55] Maniscalco, M. A., and Puglisi, S. J. An efficient, versatile ap-
proach to suffix sorting. ACM Journal of Experimental Algorithmics 12
(2007), 1.2:1–1.2:23.

[56] Manzini, G., and Ferragina, P. Engineering a lightweight suffix
array construction algorithm. Algorithmica 40, 1 (2004), 33–50.

[57] Matloff, N. Parallel computing for data science: with examples in R,
C++ and CUDA. Chapman and Hall/CRC, 2015.

[58] Merrill, D. CUB, version 1.8.0, 2018. (Available from: https://

nvlabs.github.io/cub/index.html) [Accessed on May 26, 2019].

84

https://github.com/kvark/dark-archon/releases
https://github.com/kvark/dark-archon/releases
https://github.com/michaelmaniscalco/msufsort
https://github.com/michaelmaniscalco/msufsort
https://nvlabs.github.io/cub/index.html
https://nvlabs.github.io/cub/index.html

[59] Merrill, D., and Garland, M. Single-pass parallel prefix scan with
decoupled look-back. Tech. rep., NVIDIA Technical Report NVR-2016-
002, 2016.

[60] Mohamed, H., and Abouelhoda, M. Parallel suffix sorting based
on bucket pointer refinement. In Biomedical Engineering Conference
(CIBEC), 2010 5th Cairo International (2010), IEEE, pp. 98–102.

[61] Mori, Y. libdivsufsort, version 2.0.2, 2015. (Available from: https:

//github.com/y-256/libdivsufsort) [Accessed on May 26, 2019].

[62] Mori, Y. sais, version 2.4.1, 2010. (Available from: https://sites.

google.com/site/yuta256/sais) [Accessed on May 26, 2019].

[63] Mori, Y. Suffix array benchmarking contest, 2015. (Available
from: https://github.com/y-256/libdivsufsort/blob/wiki/SACA_

Benchmarks.md) [Accessed on May 26, 2019].

[64] Navarro, G. Compact Data Structures - A Practical Approach. Cam-
bridge University Press, 2016.

[65] Nickolls, J., Buck, I., Garland, M., and Skadron, K. Scalable
parallel programming with cuda. In ACM SIGGRAPH 2008 classes
(2008), ACM, p. 16.

[66] Nong, G. Practical linear-time O(1)-workspace suffix sorting for con-
stant alphabets. ACM Trans. Inf. Syst. 31, 3 (2013), 15.

[67] Nong, G., Zhang, S., and Chan, W. H. Linear suffix array con-
struction by almost pure induced-sorting. In 2009 Data Compression
Conference (DCC 2009), 16-18 March 2009, Snowbird, UT, USA (2009),
pp. 193–202.

[68] Nong, G., Zhang, S., and Chan, W. H. Linear time suffix ar-
ray construction using d-critical substrings. In Combinatorial Pattern
Matching, 20th Annual Symposium, CPM 2009, Lille, France, June 22-
24, 2009, Proceedings (2009), pp. 54–67.

[69] Nong, G., Zhang, S., and Chan, W. H. Two efficient algorithms
for linear time suffix array construction. IEEE Trans. Computers 60, 10
(2011), 1471–1484.

[70] Ohlebusch, E. Bioinformatics Algorithms: Sequence Analysis,
Genome Rearrangements, and Phylogenetic Reconstruction. Oldenbusch
Verlag, 2013.

85

https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
https://sites.google.com/site/yuta256/sais
https://sites.google.com/site/yuta256/sais
https://github.com/y-256/libdivsufsort/blob/wiki/SACA_Benchmarks.md
https://github.com/y-256/libdivsufsort/blob/wiki/SACA_Benchmarks.md

[71] Ohlebusch, E., Beller, T., and Abouelhoda, M. I. Computing
the burrows-wheeler transform of a string and its reverse in parallel. J.
Discrete Algorithms 25 (2014), 21–33.

[72] OpenMP Architecture Review Board. OpenMP, version 5.0,
2018. (Available from: https://www.openmp.org/) [Accessed on May 26,
2019].

[73] Osipov, V. Parallel suffix array construction for shared memory ar-
chitectures. In String Processing and Information Retrieval - 19th In-
ternational Symposium, SPIRE 2012, Cartagena de Indias, Colombia,
October 21-25, 2012. Proceedings (2012), pp. 379–384.

[74] Puglisi, S. J., Smyth, W. F., and Turpin, A. A taxonomy of
suffix array construction algorithms. ACM Comput. Surv. 39, 2 (2007),
4.

[75] Rose, C. Cuda Succinctly. CreateSpace Independent Publishing Plat-
form, 2017.

[76] Ryabko, B. Y. Data compression by means of a ”book stack”. Prob-
lemy Peredachi Informatsii 16, 4 (1980), 16–21.

[77] Sanders, J., and Kandrot, E. CUDA by example: an introduction
to general purpose GPU programming. Addison-Wesley, 2011.

[78] Schindler, M. szip homepage , version 1.12, 2002. (Available from:
http://www.compressconsult.com/szip/) [Accessed on May 26, 2019].

[79] Schürmann, K., and Stoye, J. An incomplex algorithm for fast
suffix array construction. In Proceedings of the Seventh Workshop on
Algorithm Engineering and Experiments and the Second Workshop on
Analytic Algorithmics and Combinatorics, ALENEX /ANALCO 2005,
Vancouver, BC, Canada, 22 January 2005 (2005), pp. 78–85.

[80] Seward, J. On the performance of BWT sorting algorithms. In Data
Compression Conference, DCC 2000, Snowbird, Utah, USA, March 28-
30, 2000. (2000), pp. 173–182.

[81] Shun, J., Blelloch, G. E., Fineman, J. T., Gibbons, P. B.,
Kyrola, A., Simhadri, H. V., and Tangwongsan, K. Brief an-
nouncement: the problem based benchmark suite. In 24th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’12, Pitts-
burgh, PA, USA, June 25-27, 2012 (2012), pp. 68–70.

86

https://www.openmp.org/
http://www.compressconsult.com/szip/

[82] Sipser, M. Introduction to the theory of computation. SIGACT News
27, 1 (1996), 27–29.

[83] Soyata, T. GPU Parallel Program Development Using CUDA. Chap-
man and Hall/CRC, 2018.

[84] Tarhio, J., and Peltola, H. String matching in the DNA alphabet.
Softw., Pract. Exper. 27, 7 (1997), 851–861.

[85] Ujaldon, M. CUDA achievements and GPU challenges ahead. In Ar-
ticulated Motion and Deformable Objects - 9th International Conference,
AMDO 2016, Palma de Mallorca, Spain, July 13-15, 2016, Proceedings
(2016), pp. 207–217.

[86] Vaidya, B. Hands-On GPU-Accelerated Computer Vision with
OpenCV and CUDA: Effective techniques for processing complex image
data in real time using GPUs. Packt Publishing, 2018.

[87] Vitter, J. S. Design and analysis of dynamic huffman codes. Journal
of the ACM (JACM) 34, 4 (1987), 825–845.

[88] Walker, R. C., and Goetz, A. W. Electronic Structure Calculations
on Graphics Processing Units: From Quantum Chemistry to Condensed
Matter Physics. John Wiley & Sons, 2016.

[89] Wang, L., Baxter, S., and Owens, J. D. Fast parallel skew and
prefix-doubling suffix array construction on the GPU. Concurrency and
Computation: Practice and Experience 28, 12 (2016), 3466–3484.

[90] Wasserman, H., and Blum, M. Software reliability via run-time
result-checking. J. ACM 44, 6 (1997), 826–849.

[91] Williams, Jr., L. F. A modification to the half-interval search (binary
search) method. In Proceedings of the 14th Annual Southeast Regional
Conference (New York, NY, USA, 1976), ACM-SE 14, ACM, pp. 95–
101.

[92] Wilt, N. The Cuda Handbook: A Comprehensive Guide to GPU Pro-
gramming. Pearson Education, 2013.

[93] Witten, I. H., Neal, R. M., and Cleary, J. G. Arithmetic coding
for data compression. Commun. ACM 30, 6 (1987), 520–540.

87

[94] Yap, C. A real elementary approach to the master recurrence and
generalizations. In Theory and Applications of Models of Computation -
8th Annual Conference, TAMC 2011, Tokyo, Japan, May 23-25, 2011.
Proceedings (2011), pp. 14–26.

88

	Cover page
	Contents
	1 Introduction
	2 Background
	2.1 Notation and Terminology
	2.2 The Suffix Array
	2.3 The Burrows-Wheeler Transform
	2.4 Prior Work

	3 Algorithms for Suffix Array Construction
	3.1 Prefix-Doubling Algorithms
	3.1.1 Manber and Myers Algorithm
	3.1.2 Larsson and Sadakane Algorithm

	3.2 Recursive Algorithms
	3.3 Induced Sorting Algorithms

	4 GPU Parallel Programming
	4.1 Compute Unified Device Architecture
	4.2 Essentials of the Thrust Library
	4.2.1 Host and Device Vectors
	4.2.2 Interoperability
	4.2.3 Anonymous Kernels

	4.3 Parallel Primitives
	4.3.1 Radix Sort
	4.3.2 Select-Flagged
	4.3.3 Inclusive Prefix Sum
	4.3.4 Scatter
	4.3.5 Segmented Sort

	5 Implementations
	5.1 Choosing the Algorithm
	5.2 Suffix Array Construction on the GPU
	5.3 The Suffix Array Checker

	6 Experimental Results
	6.1 Hardware Specifications
	6.2 Performance Evaluation
	6.3 Scalability Analysis

	7 Conclusions

