6 research outputs found

    Fast Object Retrieval using Direct Spatial Matching

    Get PDF

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page

    Voronoi-Based Compact Image Descriptors: Efficient Region-of-Interest Retrieval With VLAD and Deep-Learning-Based Descriptors

    Get PDF
    We investigate the problem of image retrieval based on visual queries when the latter comprise arbitrary regionsof- interest (ROI) rather than entire images. Our proposal is a compact image descriptor that combines the state-of-the-art in content-based descriptor extraction with a multi-level, Voronoibased spatial partitioning of each dataset image. The proposed multi-level Voronoi-based encoding uses a spatial hierarchical K-means over interest-point locations, and computes a contentbased descriptor over each cell. In order to reduce the matching complexity with minimal or no sacrifice in retrieval performance: (i) we utilize the tree structure of the spatial hierarchical Kmeans to perform a top-to-bottom pruning for local similarity maxima; (ii) we propose a new image similarity score that combines relevant information from all partition levels into a single measure for similarity; (iii) we combine our proposal with a novel and efficient approach for optimal bit allocation within quantized descriptor representations. By deriving both a Voronoi-based VLAD descriptor (termed as Fast-VVLAD) and a Voronoi-based deep convolutional neural network (CNN) descriptor (termed as Fast-VDCNN), we demonstrate that our Voronoi-based framework is agnostic to the descriptor basis, and can easily be slotted into existing frameworks. Via a range of ROI queries in two standard datasets, it is shown that the Voronoibased descriptors achieve comparable or higher mean Average Precision against conventional grid-based spatial search, while offering more than two-fold reduction in complexity. Finally, beyond ROI queries, we show that Voronoi partitioning improves the geometric invariance of compact CNN descriptors, thereby resulting in competitive performance to the current state-of-theart on whole image retrieval

    Fault Tolerant Integer Data Computations: Algorithms and Applications

    Get PDF
    As computing units move to higher transistor integration densities and computing clusters become highly heterogeneous, studies begin to predict that, rather than being exceptions, data corruptions in memory and processor failures are likely to become more prevalent. It has therefore become imperative to improve the reliability of systems in the face of increasing soft error probabilities in memory and computing logic units of silicon CMOS integrated chips. This thesis introduces a new class of algorithms for fault tolerance in compute-intensive linear and sesquilinear (“one-and-half-linear”) data computations on integer data inputs within high-performance computing systems. The key difference between the proposed algorithms and existing fault tolerance methods is the elimination of the traditional requirement for additional hardware resources for system reliability. The first contribution of this thesis is in the detection of hardware-induced errors in integer matrix products. The proposed method of numerical packing for detecting a single error within a quadruple of matrix outputs is described in Chapter 2. The chapter includes analytic calculations of the proposed method’s computational complexity and reliability. Experimental results show that the proposed algorithm incurs comparable execution time overhead to existing algorithms for the detection and correction of a limited number of errors within generic matrix multiplication (GEMM) outputs. On the other hand, numerical packing becomes substantially more efficient in the mitigation of multiple errors. The achieved execution time gain of numerical packing is further analyzed with respect to its energy saving equivalent, thus paving the way for a new class of silent data corruption (SDC) mitigation method for integer matrix products that are fast, energy efficient, and highly reliable. A further advancement of the proposed numerical packing approach for the mitigation of core/processor failures in computing clusters (a.k.a., failstop failures) is described in Chapter 3 . The key advantage of this new packing approach is the ability to tolerate processor failures for all classes of sum-of-product computations. Because multimedia applications running on cloud computing platforms are now required to mitigate an increasing number of failures and outages at runtime, we analyze the efficiency of numerical packing within an image retrieval framework deployed over a cluster of AWS EC2 spot (i.e., low-cost albeit terminable) instances. Our results show that more than 70% reduction of cost can be achieved in comparison to conventional failure-intolerant processing based on AWS EC2 on-demand (i.e., higher-cost albeit guaranteed) instances. Finally, beyond numerical packing, we present a second approach for reliability in the case of linear and sesquilinear integer data computations by generalizing the recently-proposed concept of numerical entanglement. The proposed approach is capable of recovering from multiple fail-stop failures in a parallel/distributed computing environment. We present theoretical analysis of the computational and bit-width requirements of the proposed method in comparison to existing methods of checksum generation and processing. Our experiments with integer matrix products show that the proposed approach incurs 1.72% − 37.23% reduction in processing throughput in comparison to failure-intolerant processing while allowing for the mitigation of multiple fail-stop failures without the use of additional computing resources
    corecore