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Fast Object Retrieval Using Direct Spatial Matching
Zhiyuan Zhong, Jianke Zhu, Member, IEEE, and Steven C. H. Hoi, Senior Member, IEEE

Abstract—The  conventional bag-of-visual-words (BoW)
model is popular for the large-scale object retrieval system but
suffers from the critical drawback of ignoring spatial information.
RANSAC-based methods attempt to remedy this drawback,
but often require traversing all the feature matches for each
hypothesis, leading to the heavy computational cost which limits
the number of gallery images to be verified for each online query.
We propose an efficient direct spatial matching (DSM) approach
to directly estimate the scale variation using region sizes, in which
all feature matches voted for estimating geometric transformation.
DSM is much faster than RANSAC-based methods and
exhaustive enumeration approaches. A logarithmic term
frequency-inverse document frequency (log tf-idf) weighting
scheme is introduced to boost the performance of the base system.
We have conducted extensive experimental evaluations on four
benchmark datasets for object retrieval. The proposed DSM
method, together with a carefully-tailored reranking scheme,
achieves the state-of-the-art results on the Oxford buildings and
Paris datasets, which demonstrates the efficacy and scalability of
our novel DSM technique for large scale object retrieval systems.

Index Terms—Images reranking, log tf-idf, object retrieval,
spatial matching.

I. INTRODUCTION

HE goal of an object retrieval system is to retrieve the

items containing the target object from a large image
corpus. A typical object retrieval engine is based on the tech-
niques of matching local features such as SIFT [1] and its
various extensions [2], [3].

Although achieving the promising retrieval performance, the
bag-of-visual-words (BoW) [4] model suffers the drawback of
ignoring spatial information, which is crucial to find object lo-
cations in images. Generally, the spatial matching is important
to boost the retrieval performance and conduct query expansion
on the geometrically verified gallery images.

To this end, Philbin et al. [5] proposed a fast spatial matching
(FSM) approach based on RANSAC [6], which is currently
adopted by many systems [5], [7], [8], [2], [3]. Although FSM
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Fig. 1. Locating the near-duplicate structures using direct spatial matching by
performing non-maximal suppression on voting map (bottom left).

can efficiently generate the hypothesis from single pair of cor-
respondence, it remains very time-consuming as it requires to
traversing all feature matches to obtain the inliers, where only
the top ranked images are considered.

Recently, Shen et al. [9] presented a spatially-constrained
similarity measure (SCSM) method that employs Hough voting
scheme [10] to simultaneously compute the ranking score and
locate the object. It estimates the scale variations by exhaus-
tively enumerating a certain number of scales, which is linear
with respect to the computational cost and storage requirement.
Furthermore, SCSM may fail to correctly estimate the object
whose scale change is out of the scope.

We address the above limitations by taking advantage of a
generalized Hough voting scheme [10] with the star model. In-
spired by [9], we try to locate the object by searching the peaks
in the voting map, as shown in Fig. 1. Moreover, our method
only traverses each match once in the inverted file, which is
much faster than RANSAC-based methods. Furthermore, it is
quite easy to locate duplicate structures by finding multiple
peaks using the non-maximal suppression, and Fig. 1 shows
a typical example. Instead of exhaustively searching over the
enumerated scale variations like SCSM [9], we directly cal-
culate the scale ratio for each matched feature points through
the parameters of ellipse shape, which is not limited to certain
ranges. To effectively pre-filter the gallery images, we imple-
ment a base system using log tf-idf, which performs much
better than the standard weighting scheme. Additionally, we
suggest a modified k-nearest neighbor reranking method [9]
and combine it with average query expansion [7] to further
boost the object retrieval performance.

In summary, the main contributions of this paper are: (1) we
propose a very efficient direct spatial matching (DSM) method
for geometric verification, which estimates the local scale
variations from ellipse region parameters so as to compute the
ranking score and locate the object simultaneously; (2) a log
tf-idf weighting scheme is presented to tackle the burstiness



issue in visual words; (3) we suggest an effective combina-
tion of average query expansion and the modified k-nearest
neighbor reranking; and (4) we have conducted extensive
experimental evaluation on a set of benchmark testbeds. We
achieve a new state-of-the-art performance on OxfordSK,
Oxford105K and Paris dataset. Besides significant performance
gain, our main contribution is that the proposed DSM method
is much faster than the existing spatial reranking method. To
demonstrate the efficacy of our presented method, we make the
full source code of our implementation publicly available at
https://github.com/jkzhu/dsm.

II. RELATED WORK

The conventional BoW model [4], [5] is easy to implement
and yields promising results in practice. However, it has two
limitations: (1) the discriminative power of SIFT descriptors is
reduced after quantization and (2) spatial of SIFT points are
discarded in the standard tf-idf ranking scheme.

To address the first problem, Jegou ef al. [11] proposed the
VLAD method to quantify the image via the aggregated resid-
uals. Arandjelovic and Zisserman [12] exploited intra normal-
ization to deal with the problem of visual words burstiness [13].
Tolias et al. [14] proposed a selective match kernel framework,
where Hemming Embedding, BoW and VLAD can be modeled
with different kernels. Arandjelovic and Zisserman [2] found
that the proper normalization on SIFT descriptor can greatly en-
hance the retrieval performance.

To tackle the second issue, various methods attempt to impose
geometric constraints to rerank the retrieval results, which can
be roughly categorized into the following two groups.

The first group performs post verification based on the esti-
mation of geometric transformation. Philbin et al. [5] presented
a fast spatial matching method (FSM) by RANSAC. Tolias and
Auvrithis [15] employed a pyramid matching scheme to speed up
spatial verification, which is able to rerank one order of magni-
tude more images than FSM.

The second group of research aims to embed the geometric
information into the ranking procedure. Wu et al. [16] bun-
dled features into group and encode local spatial configurations
in MSER regions. Zhang et al. [17] considered the coordinate
offset between two matches and code them as geometry-pre-
serving visual phrases. Zhou et al. [18] captured the spatial re-
lations of horizontal and vertical directions using binary code.
Liu et al. [19] presented a coordinate system with the position
and orientation of feature points to divide the plane into sev-
eral parts. However, most of these methods only take into ac-
count of the translation invariance while neglecting the scale
and rotation invariance. In [20], Stewenius et al. proposed a
novel scoring method by unifying candidate extraction and geo-
metric verification. Perdoch et al. [3] encoded the local affine
parameters as integers to obtain efficient geometry representa-
tions. Jegou et al. [21] included scale and angle in inverted files
while ignoring translation. They managed to remove some false
matches by embedding the scale and orientation of the extracted
features into the inverted file as weak geometry consistency. Ad-
ditionally, Shen et al. [9] employed the offset between the fea-
ture points and center of the query rectangle to vote its center

in gallery images, where the query time is proportional to the
product of selected enum scale and orientation.

Query expansion is able to greatly improve the performance
for an object retrieval system [7], [22], [9]. Average query
expansion (AQE) intended to find the average BoW representa-
tion of the spatial-verified images, which is a good compromise
between the accuracy and computational cost [7], [22]. Arand-
jelovic et al. [2] presented discriminative query expansion
(DQE) approach by training a linear classifier to identify the
results. Shen et al. [9] introduced a novel k-nearest neighbor
(k-NN) reranking method, in which the top k& spatial-verified
images are employed as new queries to calculate the final
ranking result. Recently, Xie et al. [23] employed link analysis
to iteratively conduct reranking.

III. EXPERIMENTAL TESTBED AND BASE SYSTEM

In this section, we first describe the experimental dataset and
evaluation methodology, and then present the implementation
of our base system for object retrieval.

A. Testbed and Evaluation

We employ four publicly available datasets as testbed:
Oxford 5K, Oxford 105K,! Paris 6 K,2 and Holidays.? For
Holidays dataset, we resize the image into the maximum width
or height with 1024 pixels. In our implementation, we extract
SIFT features with gravity vector constraints [3]. Although
several specific descriptor learning methods [24] improve the
performance of baseline system, we exploit the standard fast
approximate A-means clustering algorithm based on FLANN
[25] to build the visual codebook. RootSIFT [2] is employed
to boost the retrieval performance. To facilitate fair compar-
ison, we adopt the same setting to build the vocabulary for
each dataset. Specifically, 1M visual words are extracted from
Oxford5K dataset, which is used in the evaluation for both
Oxford5K and Oxford105K dataset. Similarly, we build the
vocabulary of 1M visual words for Paris 6 K dataset and 200 K
visual words for Holidays dataset, respectively. Since there is
no specific input rectangle in Holidays dataset like others, the
whole image is directly treated as query. As Holidays dataset
includes the rotated images, the gravity vector assumption does
not hold. Therefore, we manually rotate the images as in [3]. In
our experiments, mean Average Precision (mAP) is employed
as the performance metric.

B. Base System

As discussed in [13], the burstiness of visual words com-
monly occurs in the image with duplicate structures, which
tends to corrupt the visual similarity measure. Most of previous
approaches employ standard tf-idf with L, distance to build the
based system, where the words of burstiness may be weighted

![Online]. Available: http://www.robots.ox.ac.uk/~vgg/data/oxbuildings
2[Online]. Available: http://www.robots.ox.ac.uk/~vgg/data/parisbuildings
3[Online]. Available: http://lear.inrialpes.fr/~jegou/data.php



TABLE I
PERFORMANCE COMPARISON OF VARIOUS BASE SYSTEMS WITHOUT SPATIAL
RERANKING. MAP IS EMPLOYED AS THE PERFORMANCE METRIC

[ Datasets [ tf-idf | log tf-idf | square root [ visualindex |
Oxford5K 0.771 0.814 0.803 0.750
Oxford105K 0.640 0.755 0.726 0.612
Paris 0.751 0.782 0.770 -
Holidays 0.708 0.723 0.728

too much by directly multiplying the term frequency. To ad-
dress this problem, we introduce the logarithm tf-idf weighting
scheme [26] to the object retrieval task

wi :{(ngtfi,j)log X iftfi ;>0 0

0, otherwise

where w; ; is the weight of word 7 in images j, and tf; ; is the
integer-based term frequency. IV is the total number of images,
and n; is the number of images containing word . Note that
our down-weighted function is different from the log function
in [13]. The proposed log tf-idf is motivated from the sub-linear
term frequency scaling in text retrieval [26], which calculate log
term frequency before normalization.

Since cosine similarity yields better result in our empirical
study, we employ it as distance measure. Both vectors are very
sparse, the similarity score can be computed very efficiently.

To reduce the computational cost for the online object re-
trieval, the term frequency of each word in gallery images is
stored in an inverted file. Instead of using four bytes integer,
we simply employ unsigned char with single byte to represent a
term frequency, as it rarely exceeds 255 even for a large vocabu-
lary. Thus, we can precompute the logarithm value range from 1
to 255, which saves around 1/3 computational time to calculate
log term frequency for each visual word. The proposed method
can consistently boost the performance of base system without
requiring extra computational cost. In our experiments, ranking
105 K images only costs 6 milliseconds by taking advantage of
the inverted file structure.

Table I shows the experimental results on the base systems.
In [13], square root is used to handle burstiness. Visualindex is
provided by Dr. Andrea Vedaldi on Github.4 It can be seen that
our proposed logarithm tf-idf approach outperforms the stan-
dard weighting scheme on all datasets. Moreover, the improve-
ment is more significant especially with large dataset, i.e., nearly
18% performance gain achieved on Oxford105K.

IV. DIRECT SPATIAL MATCHING

To boost the object retrieval performance, the spatial
matching is an important technique to verify the relevant
images and perform spatial reranking.

A. Problem Formulation

Spatial matching aims to find the geometric transformation
between the query and gallery images. Generally, affine trans-
formation is employed to verify the geometric consistency in
object retrieval.

4[Online]. Available: https:/github.com/vedaldi/visualindex>

Letx = [z y]' denote the location of feature point, where
z and y are the image coordinates. To avoid the computational
intensive pairwise feature matching, the correspondences are
implicitly built by associating the different feature points with
the same visual word. Given a pair of matched feature points
{x,,x,}, the main goal of spatial matching is to estimate the
mapping between the point x, in query window and x, in
gallery image x, = Mx, + t, where M € R?*? is the scale
and rotation matrix for the matched feature points, and t is the
translation vector.

B. Fast Spatial Matching

In contrast to the conventional approach, Philbin et al. [5]
presented a fast spatial matching (FSM) method to estimate
the affine transformation from single pair of feature correspon-
dence. It greatly reduces the number of possible hypotheses to
be taken into consideration, which is essentially fast in practice.
The key of FSM is to fix the orientation ambiguity of affine co-
variant points by gravity vector assumption [5], [3]. Specifically,
a point u on the ellipse shape of SIFT feature in [3] satisfies the
following equation: (u — ug) " E(u —ug) = 1, where uy is the
center of the ellipse and E € R?*? is a positive definite matrix.
Moreover, the points on ellipse can be mapped onto a unit circle
by matrix A € R?*2 where E = AT A, and the scale of ellipse

N If A is a lower triangle matrix, the corresponding

affine transformation has one eigenvector equal to [0 1]T.

For a pair of matched feature points {x,,x,}, A, and A, are
the lower triangle decomposition matrix of their corresponding
ellipse shapes, which can be directly computed from the sym-
metric matrix E, and E,. Let R, and R, denote the orienta-
tion transformation matrix for the pair of matched points, M
denotes the scale and rotation matrix which can be estimated
with a single pair of matched points, then M ; can be written as
M, =A/7 ! RgT R, A,. According to gravity vector assumption,
the up-right orientation can still be preserved without rotation
matrix. The gravity vector assumption [5], [3] sets R;Rq =1,
then M can be directly calculated by M, = Ag‘lAq, which
is a lower triangle matrix. Thus, the translation vector can be
computed as t = x, — M, x,.

Since FSM requires to traverse all the matched points in order
to calculate the inliers for each hypotheses generated by single
pair of feature correspondence, its time complexity is O(n?). n
is the total number of feature correspondences.

C. Direct Spatial Matching

To address the above limitations of FSM, we try to tackle
the spatial matching problem through generalized Hough voting
scheme [10]. Motivated by spatially-constrained similarity mea-
sure (SCSM) method [9], we employ a star model to vote the
object center along with scale and orientation using the feature
correspondences. As shown in Fig. 1, we intend to locate the ob-
ject in gallery image by estimating its center of rectangle along
with the scale and orientation changes.

Let ¢, denote the center of rectangle in the query image. Sim-
ilarly, ¢4 is the center of located object in the gallery image.
Therefore, the affine transformation between the centers of two
rectangles can be represented as below ¢, = Mc, +t. As M,



is known, we can directly estimate the object center from single
pair of match by ¢, = x4 + M, (c, — x,).

We rasterize images into an N x N grid, where IV is empir-
ically set to 24 in our implementation. According to our empir-
ical study, the voting cell size for DSM only has the slight impact
on performance. More specifically, we have evaluated the sev-
eral voting cell sizes on Oxford5K dataset: 16, 24, 32 and 48.
In our empirical study, their mAPs are quite close: 0.856, 0.851,
0.840 and 0.843, respectively. Furthermore, a voting map is em-
ployed to account for all the feature correspondences, in which
each pair of co-occurred words in inverted file votes its corre-
sponding node with the value as in [9]: %, where idf is
the inverse document frequency, tf; ; and tf; , is standard term
frequency for the j-th gallery image and query image, respec-
tively. We just enumerate tf; ; x tf; ; possible feature matches if
the term frequency is unequal to one. To deal with deformations
along with encoding loss and viewpoint changes, we smooth the
neighborhood voting cells with Gaussian filter with size of 3 x 3.
Thus, we vote on a 3 X 3 window around the estimated center
grid for each matched pair. Moreover, Gaussian weighted func-
tion is defined as: w = exp(—d/a?), where d is the distance
between the estimated center and the voting cell. In this paper,
we empirically set o2 = 2.5. Therefore, the voting score for
each grid is the initial value multiplied by w.

Since M is a lower triangle matrix, it accounts for the affine
transformation with 5 DoF of anisotropic scaling and vertical
shear. If only the diagonal elements in M are used, we can ob-
tain the anisotropic scale affine transformation with 4 DoF. Fur-
thermore, an isotropic scale affine model only takes considera-
tion of the scale changes and translation, which has 3 DoF. As
discussed in [5], the number of DoF in affine transformation
model has little impact on the object retrieval performance. We
draw the similar conclusion in our empirical study on the Ox-
ford5K and Paris dataset.

In the following, we only deal with the isotropic scale change
s to estimate the center of object in the gallery image ¢, =
Xg+ s(cqg —X4). SCSM [9] estimates the isotropic scale change
by enumerating several scales, i.e, 8 scales range from 0.5 to
2, which needs to calculate the voting map for each scale. The
computational cost and storage requirement are linear with the
total number of enumerated scales. Thus, SCSM method can
only handle the limited scale variations. It may fail to correctly
estimate the object with the scale changes out of the predefined
range, as illustrated in Fig. 2.

Instead of exhaustively searching multiple voting maps, we

directly compute s by the ratio between the scale of query point

and the one in the gallery image s = SZE :z . The object center

can be accurately located by mapping the peak in voting map
onto the image coordinate. We name our proposed method as
direct spatial matching (DSM). Note that only one voting map is
needed to estimate the object location in our presented method.
Since the scale variations are not bounded within a certain range
like SCSM, it can handle large scale changes as illustrated in
Fig. 2. In this case, the scale change is around 3.1, which ex-
ceed the predefined maximal scale change (typical choice is 2)
of SCSM [9]. Fig. 2(b) shows that our DSM method estimates
the correct scale change; Fig. 2(c) indicates that the enum scale

Fig. 2. Examples of geometric transformation estimation using direct spatial
matching and multiple scale enumeration SCSM method. (a) Query image.
(b) Direct spatial matching. (c) SCSM.

TABLE 11
PERFORMANCE EVALUATION ON SPATIAL MATCHING
USING VARIOUS SCALE ESTIMATION METHOD

[ Dataset [ Hesaff [3]+SCSM [9] | Lowe [1]+DSM [ Hesaff [3]+DSM |

tf-idf SCSM tf-idf DSM tf-idf DSM

Oxford5K 0.649 0.752 0.685 0.746 0.771 0.850

Paris 0.630 0.741 0.681 0.725 0.751 0.814

Holidays 0.462 0.762 0.678 0.720 0.708 0.771
TABLE III

COMPUTATIONAL TIME OF SPATIAL MATCHING METHODS IN SECONDS

[ Dataset
Oxford5K ‘

[ DSM [ SCSM[9] | FSM[3] | HPM[27] |
0.012 ’ 0.089 ‘ 0.238 ‘ 0.210 ‘

Oxford105K | 0.090 - 0.247 -

selection method obtains the scale change 2. As a result, DSM
achieves 24 inliers, while the fix scale method get just 15 inliers
with the same 31 potential matched points.

To estimate the scale change between two windows in the
query and gallery images, we introduce a simple voting method
based on histogram, which votes to select the most frequent
scale change. The scale is first enlarged by a factor of 10, which
is further rounded to the nearest integer. Thus, the precision for
the scale is 0.1. Similarly, we can deal with orientation changes
by building a histogram for the rotations.

D. Evaluation on Spatial Matching

As the proposed DSM approach relies on the scale estimation
of the specific feature detector, we first investigate the retrieval
performance of three different SIFT implementations: (1) the
baseline algorithm using Lowe’s SIFT binary [1]; (2) SIFT
detector implementation in [9]; (3) Hessian affine regions with
gravity vector assumption [3]. Table IT shows the experimental
evaluation. SCSM [9] refers to the exhaustive numeration
method; Lowe [1] + DSM employs the scale information in
SIFT detector; Hesaff [3] + DSM uses the SIFT feature with
gravity vector assumption. It can be seen that our proposed
DSM method with Hessian affine region detector outperforms
Lowe’s SIFT detector at a very large margin. DSM not only
yields better results than SCSM but also requires much less
memory for storing the voting map. As shown in Table III,
DSM is around 8 times faster than SCSM by directly estimating
the scale changes. The FSM method achieves 0.83 mAP in
visualindex implementation.



TABLE 1V
PERFORMANCE COMPARISONS OF SPATIAL MATCHING METHODS

[ Dataset [ DSM | SPAUGI2] | SCSM[] | FSM[3] | HPM[27] |
Oxford5K 0.850 0.838 0.752 0.786 0.789
Oxford105K | 0.836 0.767 0.729 0.723 0.730
Paris 0.814 - 0.741 - 0.725
Holidays 0.771 0.762 0.765 0.79

In contrast to FSM with RANSAC, the proposed method can
directly traverse the relevant items in the inverted file. Gener-
ally, it is inefficient to vote the images with few co-occurrence
word especially for the large dataset. In our implementation, we
first pre-filter the relevant images using the effective log tf-idf
method described in Section III. DSM turns out to be a post ver-
ification step for object retrieval. Our empirical study on the Ox-
ford105K dataset shows that the proposed scheme performs two
times faster than the method without pre-filtering. Also, there is
no noticeable performance drop.

We conduct the performance comparisons on the methods
without query expansion, as shown in Table IV. It can be
observed that our proposed DSM method yields the best results
on the Oxford5K, Oxford105K and Paris datasets. Especially,
DSM outperforms about 7% against the state-of-the-art result
[2] on Oxford105K, which takes advantage of FSM with the
spatial database-side feature augmentation (SPAUG). More-
over, there is only slight performance drop for the proposed
DSM approach on the Oxford dataset with extra 100 K distrac-
tive images, which demonstrates the robustness and scalability
of our proposed DSM approach.

We compare the computational time of various spatial
matching methods, as shown in Table III. The evaluations on
DSM were conducted on a PC with 3.4 GHz CPU. We employ
a single-threaded implementation, and calculate the average
query time over all 55 queries of Oxford5K. DSM reranks
about 2,800 images in 0.012s on Oxford5k, and about 18,500
images in 0.09s on Oxford105K. In our implementation the
number of images to be reranked can be adjusted according
to the tf-idf ranking scores, which is more robust than the
reranking scheme using the fixed length of short list. HPM
[27] reranks 1,000 images on OxfordSk in 0.21s. It takes 6
milliseconds to calculate the ranking list using log tf-idf score
on Oxford105K. It can be seen that DSM is the most efficient
approach. Given n pairs of matches, the time complexity of
FSM algorithm is O(n?). The proposed DSM method does
not need to verify the inliers for each hypothesis generated by
feature matching, while only takes O(n) time to locate the
object center and estimate the scale parameter. Typically, FSM
with early aborting scheme and HPM deal with 1,000 images
for the spatial verification and reranking. DSM is faster than
FSM and HPM, which thus can process much more images.

More importantly, our proposed DSM approach can naturally
handle the case of multiple models, which is usually difficult for
RANSAC-based methods like FSM. We employ the standard
non-maximal suppression method to find out the object center
for each model, and term frequency is treated as the confidence
measure. Moreover, the scale variation for each model is esti-
mated by calculating the mean scale ratio of the inlier votes, as
shown in Fig. 1.

TABLE V
PERFORMANCE EVALUATION ON QUERY EXPANSION STRATEGIES

Dataset

[ DSM | AQE [ DQE[2] | kNN | AQE+k-NN [ k-NNZ |

Oxford5K 0.850 | 0.928 0.929 0.932 0.951 0.950
Oxford105K | 0.836 | 0.883 0.891 0.915 0.924 0.932
Paris 0.814 | 0.891 0.910 0.896 0.912 0.915

V. QUERY EXPANSION

In this section, we study the query expansion to further en-
hance the object retrieval performance.

A. k-NN Reranking With AQE

Among various query expansion techniques, we mainly in-
vestigate two representative methods: average query expansion
(AQE) [7] and k nearest neighbor (k-NN) reranking method [9].

Generally, AQE is a good choice to rerank the retrieval re-
sults [7] due to its simplicity and high efficiency. Specifically,
AQE employs the top m spatial-verified results to form a new
query, which is the average BoW representation of the original
query and the top m results. In our implementation, m is usually
less than 50. Moreover, the voting value without idf weighting
can be viewed as the confidence to determine the inlier match.
Practically, we view the image as relevant if such value is greater
than or equal to 4.

Given a query ¢ and a set of gallery images G, R(g, G) de-
notes the rank of images in & for the query g. k-NN re-ranking
issues the query with the top k spatially verified images and cal-
culates the new ranking score [9] as follows:

k

1 1
c+DR(0.C) > (i-c=DR(N,G)

i=1

F(q,G) = )
where V; is the 2-th result in the original rank list. Note that
Shen et al. [9] just consider the case of ¢ = (0. However, this
will lead to the fact that the contribution of R(Ny, D) accounts
for half weight of R{g, D). If i = 1, then the denominators
are 1 for R(q,G) and 1/2 for R(Ny, G), respectively. k-NN
may not be able to decrease the ranking of the negative results.
Therefore, we may find a proper value of ¢, which can assign the
reasonable weight to the ranking score. In our empirical study,
k-NN reranking with ¢ = 0 always obtains the worst result, and
the overall retrieval performance is improved when ¢ is greater
than 2.

As described in [7], the better retrieval results can be ob-
tained by recursively conducting reranking on the previous re-
sults. Therefore, we perform k-NN twice in order to achieve
better performance than [9]. However, it is very time consuming
to estimate the object location using the spatial matching. Re-
cursive reranking using £-NN will involve the heavy computa-
tional cost. On the other hand, AQE method does not require
the post spatial verification and takes consideration of the top
ranked images only. This makes it extremely fast in practice.
Thus, we propose to perform k-NN reranking on the AQE re-
sults to obtain the better retrieval performance with less compu-
tational efforts.

B. FEvaluations on Query Expansion

Tables V and VI show the object retrieval performance and
search time with various reranking methods on the experimental



TABLE VI
RANKING TIME OF QUERY EXPANSION STRATEGIES IN SECONDS

[ Dataset [ DSM | AQE | kNN | AQE+A-NN | k-NN+ANN |
Oxford5K 0.012 | 0.020 | 0296 0312 0.602
Oxford105K | 0.090 | 0.131 | 2.071 2.130 4.101
Paris 0.018 | 0027 | 1.184 1.208 2302

TABLE VII

PERFORMANCE COMPARISONS WITH THE STATE-OF-THE-ART METHODS

[ Dataset [Ouws | 121 | O [ B [ 24 [ 1281 |
Oxford5K 0.950 | 0929 | 0.884 | 0.900 | 0.849 | 0.850
Oxford105K | 0.932 | 0.891 | 0.864 | 0.856 - 0.816
Paris 0915 | 0910 | 0911 - 0.824 | 0.855

testbed. Since most of queries in Holidays dataset only have
one or two relevant images, its query expansion result is not in-
cluded. DSM denotes reranking using direct spatial matching.
‘AQE+A-NN’ means k-NN after AQE. ‘k-NN?” denotes re-
cursively conducting k-NN reranking twice. It can be observed
that £-NN reranking performs better than AQE while requiring
much more computational cost on spatial matching. Addition-
ally, both recursively conducting k-NN twice and combing AQE
with k-NN perform better than other reference methods. Fur-
thermore, k-NN after AQE achieves similar results with around
half computational time compared to the recursive £-NN.

We compare our proposed DSM approach with query expan-
sion against the previous methods. As shown in Table VII, it can
be seen that our method achieves a new state-of-the-art perfor-
mance on three popular datasets for object retrieval including
Oxford5K, Oxford105K and Paris. Our proposed approach out-
performs SCSM [9] on Oxford5K and Oxford105K dataset at a
large margin, which indicates that our presented scale estima-
tion scheme is more effective than the exhaustive search. Note
that the evaluation result of our method on Oxford105K is even
better than the previous best record on Oxford5K [2] without
extra 100 K distractive images, which demonstrates the effec-
tiveness and scalability of our proposed spatial matching and
query expansion methods.

VI. CONCLUSION AND FUTURE WORK

This paper investigated the efficient spatial matching method
and reranking scheme for object retrieval tasks. Instead of ex-
haustively enumerating the most possible scale changes in the
conventional Hough voting scheme, we directly estimated the
affine transformation by taking advantage of the ellipse region
using the gravity vector assumption. The proposed direct spatial
matching approach is much faster than the previous methods
while retaining the high retrieval accuracy. Moreover, it can
naturally handle the multiple model fitting by finding peaks in
voting map. Furthermore, we introduced a log tf-idf weighting
scheme to build the base system, which outperforms the stan-
dard scheme without extra cost. Finally, we obtained the state-
of-the-art object retrieval results by combining average query
expansion with k-NN reranking.
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