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Abstract

As computing units move to higher transistor integration densities and
computing clusters become highly heterogenous, studies begin to predict
that, rather than being exceptions, data corruptions in memory and pro-
cessor failures are likely to become more prevalent. It has therefore be-
come imperative to improve the reliability of systems in the face of in-
creasing soft error probabilities in memory and computing logic units of
silicon CMOS integrated chips.

This thesis introduces a new class of algorithms for fault tolerance in
compute-intensive linear and sesquilinear (“one-and-half-linear”) data com-
putations on integer data inputs within high-performance computing sys-
tems. The key difference between the proposed algorithms and existing
fault tolerance methods is the elimination of the traditional requirement
for additional hardware resources for system reliability.

The first contribution of this thesis is in the detection of hardware-induced
errors in integer matrix products. The proposed method of numerical
packing for detecting a single error within a quadruple of matrix out-
puts is described in Chapter 2. The chapter includes analytic calcula-
tions of the proposed method’s computational complexity and reliability.
Experimental results show that the proposed algorithm incurs compara-
ble execution time overhead to existing algorithms for the detection and
correction of a limited number of errors within generic matrix multiplica-
tion (GEMM) outputs. On the other hand, numerical packing becomes
substantially more efficient in the mitigation of multiple errors. The
achieved execution time gain of numerical packing is further analyzed
with respect to its energy saving equivalent, thus paving the way for a
new class of silent data corruption (SDC) mitigation method for integer
matrix products that are fast, energy efficient, and highly reliable.

A further advancement of the proposed numerical packing approach for
the mitigation of core/processor failures in computing clusters (a.k.a., fail-
stop failures) is described in Chapter 3 . The key advantage of this new
packing approach is the ability to tolerate processor failures for all classes
of sum-of-product computations. Because multimedia applications run-
ning on cloud computing platforms are now required to mitigate an in-
creasing number of failures and outages at runtime, we analyze the ef-
ficiency of numerical packing within an image retrieval framework de-
ployed over a cluster of AWS EC2 spot (i.e., low-cost albeit terminable)
instances. Our results show that more than 70% reduction of cost can
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be achieved in comparison to conventional failure-intolerant processing
based on AWS EC2 on-demand (i.e., higher-cost albeit guaranteed) in-
stances.

Finally, beyond numerical packing, we present a second approach for reli-
ability in the case of linear and sesquilinear integer data computations by
generalizing the recently-proposed concept of numerical entanglement.
The proposed approach is capable of recovering from multiple fail-stop
failures in a parallel/distributed computing environment. We present
theoretical analysis of the computational and bit-width requirements of
the proposed method in comparison to existing methods of checksum gen-
eration and processing. Our experiments with integer matrix products
show that the proposed approach incurs 1.72% − 37.23% reduction in pro-
cessing throughput in comparison to failure-intolerant processing while
allowing for the mitigation of multiple fail-stop failures without the use
of additional computing resources.
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Chapter 1

Introduction and Literature

Review

The exponential growth in the sophistication and processing power of

computer chips, brought about by miniaturization and increase in CMOS

integration density, has been the driving force in technological advance-

ments in the past decades. In addition, today, computing clusters and

virtualization provide for significant parallelism possibilities in compari-

son to conventional desktop multicore systems. These systems, together

with the corresponding parallel algorithms that run on them, find nu-

merous applications in multimedia processing systems, especially with

the increase in the availability of large datasets and the requirement for

real-time data processing. However, despite the throughput acceleration

offered by multi-core and multi-processor systems, modern computing

clusters are now beginning to exhibit unreliable operation even under

nominal conditions [10, 11]. This is as a result of the radiation and ther-

1



mal sensitivity exhibited by CMOS electronics stemming from technology

downscaling, aging and other manufacturing non-idealities [12, 13] that

lead to the so-called soft errors or silent data corruption (SDC) in mem-

ory and logic. An example of the sensitivity of silicon electronics to circuit

noise as a result of downscaling is illustrated in Fig. 1.1. The figure shows

a basic CMOS inverter circuit, together with its DC characteristics at dif-

ferent supply voltage levels. It is straightforward to observe the increased

susceptibility of this circuit to voltage deviations/current pulses (circuit

noise) as the supply voltage is scaled to near-threshold levels [14]. More

explicitly, Fig. 1.1(c) illustrates a circuit level voltage deviation masked

by the inverter when operated at VDD = 3V and VDD = 5V . However, when

operated at VDD = 1V and the amplitude of the deviation is greater than

Vth1, the logic state of the inverter output is reversed. The propagation

and manifestation of such flips within data input/output or control logic

can lead to degraded outputs or even complete system malfunction (e.g.

infinite loops).

Thus, future CMOS technologies now require increased levels of resilience

to transient arithmetic, memory or logic faults caused by process varia-

tions and other soft errors (e.g., caused by particle strikes, circuit over-

clocking or voltage scaling) [15,16] .

Beyond externally-induced errors, soft errors may arise due to self-induced

changes in a computing system. For instance, one of the major bottle-

necks in the increase of CMOS integration density is increased power

dissipation [14]. In a bid to reduce the increases in power incurred by the

increase in number of transistors per chip, voltage scaling is becoming
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Figure 1.1: (a) Schematic of CMOS inverter (b) Voltage transfer charac-
teristics of a CMOS inverter for different supply voltages [1];(c) Supply
voltage deviation and equivalent output voltage response due to circuit
noise.
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increasingly used by processor designers [14, 17]. However, given that

voltage scaling increases the probability of occurrence of soft errors [17],

its detriment is that it raises the need for strong error detection and cor-

rection mechanisms, especially for soft errors occurring on data cache

memories [17, 18] that remain undetected because they do not lead to a

system halt or crash.

Furthermore, the proliferation of high-end distributed computing plat-

forms with thousands of processing nodes imply that the overall mean

time to failure (MTTF) estimates of such systems continue to decrease,

with the highest root causes of failures being hardware and software ab-

normalities [19]. Schroeder et. al. [20] show that the failure rate of a

system is indeed proportional to the number of processors that consti-

tute the system. Presently, a plethora of high performance computing

(HPC) failure logs report average typical MTTF of popular HPC systems

to be in the order of days or even hours [19–21]. Therefore, to ensure long

running scientific and data processing algorithms, fault tolerance is unar-

guably indispensable both now and for the future especially as we move

to the exascale computing era with MTTF estimates in the order of tens

of minutes [22]. Similarly, cloud computing clusters today provide for sig-

nificant parallelism possibilities at the cost of decreased MTTF character-

istics in comparison to conventional desktop multicore systems [23, 24].

For example, high-performance clusters can now be deployed using Ama-

zon Web Services Elastic Compute Cloud (AWS EC2) spot instances with

substantially-reduced billing cost [25]. However, AWS reserves the right

to terminate EC2 spot instances at any moment with little or no prior
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notice. In addition, service interruptions may occur at unpredictable in-

tervals, since processor cores in spot instance reservations may not be

solely dedicated to the cluster under consideration. More broadly, other

types of disruptions, such as vibration, power, or network-induced per-

formance degradations, are also frequently reported in large computing

clusters [24, 26]. Such interruptions tend to result in substantial reduc-

tion in processing throughput and are therefore extremely detrimental in

the performance of high-volume, low-latency, multimedia applications on

cloud computing clusters [27,28].

System reliability has thus become a challenge of increasing importance

for prevalent applications in mobile, desktop and high-performance sys-

tems, such as: webpage or multimedia retrieval [29, 30], relevance rank-

ing (e.g., identifying webpage significance via Google’s PageRank algo-

rithm [31]), object or face recognition in video for machine learning and

security applications [32, 33], etc. The algorithmic part within all these

systems is based on [34]: power iterations, backpropagation training,

transform decompositions, covariance matrix calculations, block Lanc-

zos iterations, etc, and the input data comprise real numbers (image/au-

dio samples, document/webpage features, etc). Within all these algo-

rithms, the compute- and memory-intensive parts comprise linear and

sesquilinear operations on real number inputs using integer or floating

number representations. Specifically, it is well known that large sum-of-

product computations, i.e., inner and outer products, generic matrix mul-

tiplication (GEMM) [11,35–40], and multidimensional convolution/cross-

correlation (CONV) operations [41, 42] are the building block of most
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multimedia and digital signal processing routines. These operations are

typically performed using vectorized integer sum-of-product routines, or

optimized single/double-precision floating-point libraries [e.g., sGEMMand

dGEMMroutines of a mathematics kernel library (MKL)] [35,36,43]. There-

fore, ensuring the robustness of these operations to processing unit fail-

ures and SDCs at critical processing stages is of paramount importance

for large-scale multimedia application deployment in cloud computing

clusters exhibiting low MTTF characteristics.

In this thesis, we present a set of algorithms for the mitigation of fail-

stop (core/processor failures) and fail-continue (SDC) failures devoid of

the traditional requirement for additional computing resources for im-

proving overall system reliability. In the proposed numerical-packing

based and numerical-entanglement based algorithms for fault tolerance,

bits within the numerical representation of data inputs are harnessed

for system reliability purposes. Thus, the proposed algorithms trade

off output dynamic range of application data for increased levels of re-

silience. For example, it will be shown in this thesis that the structure

of the generic matrix multiply routine (GEMM), which forms the core

compute-intensive unit of several signal processing algorithms allows for

a methodical interleaving of several data elements within a single num-

ber representation in such a way as to ensure precise extraction of the

constituent units after processing. Specifically, through packing pairs of

input matrix rows and kernel matrix columns using low-overhead inte-

ger bit-shift operations, we are able to pinpoint the local set (usually four

matrix outputs) of erroneous matrix outputs, thereby offering low-cost
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error correction capability via re-computation of the flagged output ele-

ments. We show that the complexity of pre- and post-processing of matrix

data for our fault tolerance method is up to two orders of magnitude less

that the ensuing GEMM computation when no SDCs are detected, while

performing substantially better than existing checksum methods for mul-

tiple error cases.

An alternative packing method capable of recovering data under fail-

stop failures (or detecting SDCs in the absence of failures) is described

in Chapter 3. The proposed method systematically packs/encodes both

input and kernel matrix data elements before parallel processing within

an L−core/processor/node computing cluster, such that a limited number

of processing units (PUs1), N (N < L), is sufficient for producing all L pro-

cessed results at the output. Signal processing algorithms that support

efficient packing and reliable recovery via the proposed method include

all sum-of-product computations such as GEMM, multi-dimensional con-

volution/ cross-correlation (CONV) and Kronecker products. Experiments

within shared and distributed memory computing clusters highlight the

efficiency of the proposed algorithm when taking into account the cost

of data communication accrued for data transfer required for pre- and

post-processing of the proposed algorithm.

Finally, in order to simultaneously tolerate a higher number of fail-stop

failures within the class of linear and sesquilinear integer processing rou-

1In this work, a processing unit (PU) refers to an individual unit of a parallel/dis-
tributed computing platform, performing a fraction of the workload and with indepen-
dent failure characteristics. Therefore, a thread in a single core CPU, or a node with
multiple processors within a HPC system is referred to as a PU, provided the system
can continue operation even in the event of a PU failure.
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tines, we introduce an asymmetric packing method that unlike the pre-

vious proposals, allows for the overlap of data elements within the en-

closing representation. Our method extends the previous proposal from

Anam and Andreopoulos [44] and, because it allows for the superposition

of multiple elements, it has been termed as generalized numerical entan-

glement. By simplifying the exposition and derivations to the case of data

stream entanglement, we show for the first time, the possibility of recov-

ering the set of L data streams when up to F streams are lost (L ≥ 2F + 1)

without the use of checksum data groups.

The derivations of this work thus pave the way for a new class of al-

gorithms that provide an application level power-aware fault tolerance

mechanism. These derivations are in line with the recommendations

from researchers including DARPA [18], for a robust cross-layer fault

tolerance model, capable of alleviating the rising energy costs that are

synonymous with hardware redundancy models. [18,45,46].

1.1 Literature Review

We start our review of literature in the field of fault tolerance by dis-

cussing the evolution of soft errors in semiconductor devices as well as

its propagation across components of the system stack in order to pro-

duce visible erroneous or catastrophic results. In section 1.1.2, the fail-

stop failure model is described with emphasis on likely failure causation,

while also highlighting the limitations of existing mitigation methods.

Since the proposals of this work target fault tolerance on the application
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layer of system hierarchy, we discuss existing algorithms in this field,

which form the basis of comparative analysis carried out in the later part

of this work. We conclude this chapter by discussing the importance of

SDC detection and correction within error tolerant applications.

1.1.1 Soft Errors and Silent Data Corruption

Soft errors are random, non-destructive short lived disturbances in semi-

conductor devices, usually caused by electrical noise, fluctuations in sig-

nal voltage, inductive coupling effects, particle strikes, clock skew ef-

fects, CMOS process variations and other external factors beyond the

system designer’s control [47]. For example, when charged particles (typ-

ically stemming from radioactive materials in chip packaging), cosmic

rays and other high energy particles interact with semiconductor mem-

ory elements [48, 49], single or multiple bits of the stored value at the

memory location are flipped. When these flips go undetected, subsequent

computations with these erroneous data elements are likely to propagate

silently to the application layer thereby producing erroneous outputs or

degrading system performance (cf. Fig.1 of [50]) and in severe cases, fail-

ures. Thus, although a soft error may not be damaging to the device

in itself, its proliferation as silent data corruption (a.k.a, fail continue

failures) poses great reliability challenges for end users. Previously, it

was assumed that soft errors were specifically problematic only for space

and aviation-based electronic devices since they are continuously exposed

to high energy particles (e.g. neutrons from cosmic rays) that generate

electron-hole pairs when they come in contact with semiconductor de-
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vices [51–53]. These electron-hole pairs result in the appearance of large

number of charges such that when a given critical threshold is exceeded,

the operating circuit responds by erroneously flipping the state of a logic

or memory at the location of the high energy particle impact [48, 51, 54].

However, the impact of soft errors has been amplified with the emergence

of deep sub-micron semiconductor electronics that increase the sensitiv-

ity of terrestrial-level devices to radiation and thermal noise by reduc-

ing the critical charge required to upset a logic/memory state [51, 53].

More specifically, by dynamically reducing the operating voltage of tran-

sistors as obtained in the dynamic voltage and frequency scaling (DVFS)

technology, the critical charge threshold of transistors is further reduced

thereby increasing the susceptibility of processors to the effect of soft er-

rors [55, 56]. These erroneous responses of a system to non-idealities

that do not necessarily cause a system failure but may propagate unno-

ticed through applications depending on time and location of the flip are

known as soft-errors, transient faults, single event transients (SET) or

single event upsets (SEU). Specifically, SEUs refer to soft errors arising

from glitches in sequential logic cells (e.g memory cells, flip-flops) while

SETs are used to refer to abnormalities arising from combinational logic

circuits that are propagated to sequential logic elements [57,58].

Existing soft error mitigation techniques for both sequential and combi-

national logic units at the lower level of the system abstraction layer in-

clude: (i) circuit-level methods such as hardware replication based radia-

tion hardening techniques [59–61], voltage and current monitoring tech-

niques [62–64] and selective concurrent error detection designs [58, 65];
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(ii) architecture level coding techniques such as the Reed-Solomon code

[66], Hamming code [67], variants of error correcting codes (ECC) [17,68,

69] and arithmetic codes for combinational logic units [70–72]. Though

an efficient implementation of some of these techniques for protection of

memory cells have been shown to reduce SRAM soft error rates (cf. Fig-

ure 7 of [54] and Figure 9 of [12]), increasing combinational logic SER

along with the complex corruption patterns (e.g., burst errors and multi-

bit upsets) found in aggressively-scaled systems require increasingly- so-

phisticated fault tolerance methods. These methods are known to in-

cur substantial area, performance and power overheads [12, 54, 73–75].

This is why the Exascale Study Group [18] put forward that mitigation

of SDC bursts should also be based on fault-tolerant software/algorith-

mic designs rather than solely depending on expensive circuit-level tech-

niques [18]. This has led to a growing number of research proposals for

developing cross-layer system reliability designs [46, 76–78], which en-

sure that systems remain reliable under unreliable hardware.

1.1.2 Hard Error Models: The Case of Fail-Stop Sys-

tems

Beyond non-persistent/transient soft errors, system errors can be further

classified based on the duration of their occurrence into: (i): intermittent

errors, which are characterized by the re-occurrence of a fault at a certain

frequency and (ii): hard errors that tend to be permanent and can only be

mitigated by a reconfiguration (sometimes involving removal and repair)
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of the affected component of the system [70, 79]. Hard errors can arise

from manufacturing irregularities, circuit aging, power failure, software

failure or human error [80]. In this work, we focus on a class of hard error

causing failures known as fail-stop failures as opposed to byzantine fail-

ures (i.e., permanent failures that remain undetected). That is, fail-stop

failures comprise a class of system failures that assumes that the overall

system is aware of the failure/removal of a subsystem [81,82]. Therefore,

fail-stop failures within processing units are analogous to erasure chan-

nels in communication networks [83]. Within HPC environments, exist-

ing parallel computing frameworks like fault-tolerant Message Passing

Interface (FT-MPI) [84] and Parallel Virtual Machine (PVM) [85], depend

on a scheduled “alive” response from participating nodes within the net-

work, without which the node is flagged as failed. In order to recover lost

data on the failed node(s), failure mitigation techniques are employed to

either recompute the lost data, or recover the data using error recovery

algorithms similar to forward error correction codes in communication

networks [83].

Recovery from fail-stop failures in parallel compute-intensive routines is

currently achieved via roll-back or roll-forward methods. Roll-back meth-

ods are based on periodic checkpointing and recomputation if failures are

detected. The vast majority of roll-back methods comprise backward er-

ror recovery (BER), where system states are stored periodically and com-

putations are restarted from the last stored state when a failure happens

in the computing environment [23, 82, 86–88] . Several advances in this

area including Plank et. al.’s diskless checkpointing [89], Oliner et. al.’s
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cooperative checkpointing [90] and multilevel checkpointing by Moody

et. al. [91] aim at improving the efficiency of checkpointing intervals

and reducing the significant communication overhead that characterize

checkpoint and restart systems. However, recent BER studies show that,

depending on the desired level of resilience to core failures, substantial

resources may be spent on checkpointing, system state storage/recovery,

and recomputation. This has been identified as a major challenge for fu-

ture exascale systems [23,92], which calls for alternative methods of fault

tolerance with reduced storage and communication requirements [18].

Above all, the need for increased processing throughput requires failure

mitigation techniques devoid of expensive re-computation of failed pro-

cesses [86]. Forward error recovery (FER) techniques are therefore an

alternative to BER that ensure continuous processing even in the face of

failures.

From a system perspective, module replication is perhaps the de facto

FER method for highly reliable systems as employed for example in mis-

sion critical systems [93] and HPC systems with very long continuous

operational lifetime [94]. However, the two- or three-fold increase in

resources required to maintain the minimum form of redundancy is of-

ten unacceptable in practical deployments [95]. Specifically, the power

requirements in order to achieve reliability by replication have been a

problem of growing concern. This is why there is an increasing number

of calls for more energy aware fault tolerant systems that are algorithm

specific [18] and also for increased research in the area of cross-layer ap-

proaches for reliability [46].
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Roll forward methods, similar to error correction codes for robust data

communication, have been employed for error detection, correction and

failure recovery in data processing tasks [96–99]. The key considera-

tion in the design of FER codes for data processing applications is the

requirement to maintain the encoding relationship throughout the data

processing cycle [100]. However, because different arithmetic algorithms

modify data differently, the major limitation of existing encoding-based

fault tolerance techniques is their algorithm-specificity. Nevertheless, the

low-cost computational overhead offered by algorithm-based FER meth-

ods make them suitable especially for real-time and power-aware sys-

tems. In addition, because low-level fault tolerance techniques may not

be sufficient for SDC detection and correction for increasing error rates

[18], these application level techniques can seamlessly be deployed on

top of existing robust circuit-level designs for increased system resilience

[18,46]. We describe existing algorithm-based methods for fault tolerance

in the section that follows.

1.1.3 Algorithm Based Methods for Fault Tolerance in

Data Computations

Pioneering works in this area emerged in the early 80’s by Huang and

Abraham2 [7, 101, 102], who coined the term Algorithm Based Fault Tol-

erance (ABFT) that would then become the building block for advanced

2In this work, Algorithm Based Fault Tolerance (ABFT) refers to Huang and Abra-
ham’s original proposal [101], while mABFT is used to refer to various modifications and
extensions, i.e., including the use of weighted checksums and subblock partitioning.
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research in the field. ABFT methods are characterized by the use of

“checksum” data elements specifically tailored to the algorithm under

consideration for the reliable detection (and possibly correction) of up to a

limited number of SDCs [4,6,96,97,101,103,104]. Huang and Abraham’s

proposal for improving the reliability of matrix product, addition, scalar

multiplication, transpose and LU decomposition generates checksum el-

ements via a linear combination of input matrix elements in such a way

that the preserved checksum relationship after computation can be used

for error detection and correction. For example, in order to reliably com-

pute an M ×K-by-K ×N matrix product R = A×B, a column checksum ac

and a row checksum br are generated by:

ac = wT
csA

br = Bwrs

(1.1)

where wcs ∈ RM and wrs ∈ RN are unit column weight vectors. By ap-

pending the checksum vectors to their corresponding input matrices and

performing the GEMM computation as illustrated in Figure 1.2, [101]

show that the checksum relationship is preserved after computation and

can thus be used for error detection and correction. Specifically: (i) the

sum of each row and each column of R (which is contained within Rf) is

validated against the corresponding checksum elements of rr and rc; (ii)

the sum of the checksum vectors themselves is validated against rrc. If

these validations fail for a certain row and column, the index of this row

and column indicates the location of the SDC within Rf.

An obvious limitation of the traditional ABFT proposal is the inability

15



1.1. Literature Review

Figure 1.2: ABFT within a single subblock of GEMM via checksum vec-
tors

Figure 1.3: Errors in ABFT that require row and column recomputation
(rollback ABFT [2]).

to pinpoint the exact locations of SDCs in the event of multiple SDC oc-

currence. This is often mitigated by row/column recomputation, which is

termed “rollback ABFT” [2]. For example, given the ±ε and δ error pat-

tern shown in Figure 1.3, ABFT flags locations r3,1 and r3,3 as erroneous,

while two other erroneous locations, r1,1 and r1,3 go undetected due to the

cancellation effect of the given error pattern. Therefore, when multiple

SDCs are detected, the only reliable method for recovery via ABFT is to

recompute (i.e., “rollback”) the entirety of the rows and columns that have

been detected as erroneous. If a substantial number of SDCs is detected,

this will result in entire GEMM subblock recomputation, i.e., complete

execution rollback, incurring significant execution time penalty.
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More recently, modified ABFT methods have been proposed that make

use of additional checksums, constructed with specific weight vectors

with improved reliability at the cost of output dynamic range of matrix

outputs and computation complexity. Jou, Anfison et. al. [7,105] extended

ABFT with the introduction of d checksum rows and columns, d > 1. All

checksum elements beyond the first one are generated via inner prod-

ucts of rows and columns with specially-constructed weight vectors. It is

then shown that, under suitable choice of weight vectors, this extension

can guarantee the detection of up to d SDCs and correction of up to ⌊d2⌋

SDCs [6, 7, 105] per row and column of a subblock product. This comes

at the cost of increasing the size of the checksum matrices by d times. In

more detail, the first checksum of each column of A and row of B is the

one of the original ABFT; we denote this as the unweighted checksum,

ac1 and br1, respectively. For an mABFT approach with d = 2, the second

checksum of each column of A and row of B (denoted by ac2 and br2, re-

spectively) is the inner product of the column of A (resp. inner product of

the row of B). Jou and Abraham [7] proposed the column and row weight

vectors wcexp and wrexp given by:

wT
cexp = [20 21 . . . 2M−1]

wT
rexp = [20 21 . . . 2N−1]

. (1.2)

However, due to the exponential increase of the dynamic range of ac2 and

br2, the use of wexp will cause overflow problems under 32-bit or 64-bit

integer representations. Such an mABFT approach is therefore mostly

of theoretical interest, rather than of practical relevance to conventional
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numerical representations used in programmable processors.

As a remedy to the dynamic range expansion caused by the weight vector

of (1.2), Rexford and Jha [6] proposed the further partitioning of input

subblocks into smaller blocks. Complementary to this approach, Luk et.

al. [4,5] proposed the weights:

wT
clinear = [1 2 . . . M]

wT
rlinear = [1 2 . . . N]

(1.3)

instead of the exponential weights of 1.2, in order to allow for quadratic

increase of dynamic range in ac2 and br2 and quartic increase of dynamic

range for the second row-column checksum element, rr2c2. Specifically,

the quartic increase in the latter is by factor (∑M
m=1 m) ⋅ (∑N

n=1 n), or

(log2 (M +M2) + log2 (N +N2) − 1) bits. Their work shows that, under the

use of the linear weights of (1.3) and for d = 2, up to two SDCs per row or

column of the output M ×N matrix can be reliably detected and up to one

SDC can be reliably corrected.

Beyond SDC mitigation for matrix products, algorithm-based techniques

have also been developed for fault tolerance in compute-intensive rou-

tines as well as a FER method for fail stop failures. These methods ei-

ther employ the use of checksums as proposed by Huang and Abraham,

or exploit the properties of the algorithm for error detection. For example,

Hoemmen and Heroux [106] as well as Chen [107] show that algorithmic

properties such as convergence time and vector orthogonality can be em-

ployed within iterative methods for SDC detection. On the other hand,

the use of checksums have been applied to several linear algebra and
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signal processing routines including: parallel matrix products [96, 100],

matrix factorization [8,108], fast Fourier transforms (FFT) [109,110] and

sparse matrix-vector-matrix multiplication [11].

For these checksum-based methods, the overarching concept is the pro-

duction of checksum rows and columns (or entire checksum matrices) so

that the performed computation can be applied to the checksum elements

alongside the input matrices or vectors. These additional elements can

then be used for FER/SDC detection and correction by solving a system

of linear equations if failures are detected. Therefore, most existing algo-

rithm level approaches incur overhead due to the storage and processing

of the checksum vectors or matrices. Moreover, the requirement of ad-

ditional computing nodes for checksum processing in FER decreases the

achievable peak performance, as less nodes are dedicated to actual input-

data computations. For example, in order to mitigate a single process fail-

ure during parallel GEMM computation on an L2 process grid, Bosilca

et. al. [96] and Chen and Dongarra [100], show that 2L − 1 processing

nodes must be reserved for checksum storage and processing. The impli-

cation of this setup was that for a single fail-stop failure mitigation, 25%

of processing throughput must be sacrificed when running on an 8−by-

8 process grid. Improved throughput values are recorded for increasing

process grid sizes. Similar results recorded in [111] show that in compar-

ison to a fault-intolerant GEMM computation on a graphics processing

unit (GPU), ABFT-protected GEMM incurs 11% ∼ 125% execution time

overhead for square matrix sizes ranging from 4096 ∼ 32. Finally, Pilla et

al [112] reports a 41% average execution time overhead for detecting radi-
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ation induced errors in a GPU performing 1D FFT computations. These

results show that most existing checksum based methods only become

efficient at large matrix/vector computations as well as for failure miti-

gation within larger cluster sizes.

Overall, for failure resilience in compute-intensive routines like GEMM

and CONV, roll-forward methods are preferable to roll-back methods, as

they achieve higher throughput and can immediately mitigate the effect

of failures without service interruption [82,95,100,113,114].

1.1.4 Fault tolerance for Error Tolerant Systems

One of the proposals of this thesis focuses on SDC mitigation for inte-

ger matrix products, which are often encountered in multimedia appli-

cations where low precision processing may be sufficient for the desired

throughput/processing results (a.k.a error tolerant systems) [40]. Thus,

the question of the need for detecting and correcting errors in systems

that can inherently tolerant errors often arises in the community. In-

deed, detecting SDCs in error-tolerant multimedia applications like im-

age/video rendering or pixel-level processing is of limited interest. How-

ever, it has been shown in [115–117] that there is need to differentiate

between “critical/perceptible” and “uncritical/imperceptible” soft errors in

various applications. The former category comprising applications that

process compacted data (or data that is subsequently used as inputs for

further processing). For example, many video retrieval, video database

and video editing applications exhibit critical dependency on the accu-
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racy of large matrix products between non-pixel values, e.g., compacted

descriptor data or compact projections [9, 118]. In such cases, mitiga-

tion of soft errors is imperative, especially when outputs from such sec-

tions are reused for subsequent computations and processing, e.g., the

generation and presentation of a ranked list of results based on sorting

and thresholding of the GEMM outputs. Therefore, despite the error-

tolerance of pixel-based video processing applications, the sensitivity of

non-pixel based processing in video systems stresses the need for error

tolerance in these applications, especially since video retrieval and video

database applications are now gaining significant traction.

1.2 Thesis Objective

In this thesis, our aim is to introduce a new class of low-complexity, al-

gorithm and application-specific fault tolerant methods. The proposed

designs are expected to be deployable either as a stand-alone reliability

mechanism, or as a component within existing fault tolerant system de-

signs within a cross-layer resilience framework [18, 46, 78]. Importantly,

by reducing/eliminating all forms of physical or temporal redundancy

synonymous with generic fault tolerant designs [89, 95], the proposals

of this thesis are expected to incur lower implementation overhead, re-

duced resource utilization and increased processing throughput. For ex-

ample, because the GEMM performed within multimedia processing [32]

and linear system solutions [34] have different precision and through-

put requirements, a generic replication or checksum-based fault tolerant
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GEMM may degrade the performance requirements of such applications.

Therefore, by focusing on the class of error-tolerant applications where

reduced precision processing is acceptable, our goal is to design relia-

bility solutions that are fast, energy efficient and tailored for increased

processing throughput.

1.3 Thesis Structure

The remaining parts of this thesis consists of four chapters. In Chapter

2, we introduce the concept of numerical packing as proposed in previous

work for throughput acceleration and show how a redesign of the GEMM

algorithm introduces reliability at a reduced cost. Furthermore, the the-

oretical complexity and reliability aspects of numerical packing for SDC

detection and correction are investigated in comparison to existing meth-

ods of checksum generation and modular redundancy. We also analyze

in this chapter, the execution time and energy consumption overhead of

SDC mitigation methods via an SDC-injection campaign experiment us-

ing an open source low-level virtual machine (LLVM) based fault injection

tool, the Kontrollable Utah LLVM Fault Injector (KULFI) [3,119].

In Chapter 3, we present a numerical packing based single core/pro-

cessor failure FER algorithm for sum-of-product computations. Given

that our algorithm can only be used for integer data computations, we

focus on large-scale, low-latency, multimedia applications that require

high-throughput integer-to-integer sum-of-product computations [40]. To
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quantify the complexity of the proposed approach, we derive its over-

head in terms of arithmetic operations in comparison to the equivalent

checksum-based method. We also present experimental results on (i) an

18-core, shared-memory, AWS EC2 instance3, and (ii) a StarCluster [120]

of AWS EC2 spot instances that are terminated and migrated to AWS

EC2 on-demand instances for the duration that the spot price exceeds a

predetermined threshold. For the former, we demonstrate that the pro-

posed method achieves substantially-higher peak performance against

the equivalent FER method based on checksums, both under failure-free

and failure-occurring conditions. For the latter, we show that our ap-

proach provides for substantial reduction in deployment cost, especially

in comparison to the failure-intolerant approach that cannot use spot in-

stances.

In order to generalize our FER methods to recover from multiple failures,

we propose a new FER method for linear and sesquilinear operations per-

formed in integer data streams in Chapter 4. We present generalization

for the mitigation of K failures when L data streams (also processing core

data) are “entangled” together and show that the proposed algorithm can

also be used for SDC detection and correction in the absence of failures.

Finally, we conclude this thesis in Chapter 5 while outlining possible fu-

ture research directions based on the proposals of this work.

3This is a c4.8xlarge AWS EC2 instance composed of multiple dual-nanocore
physical processors (Intel Haswell) with hyperthreading.
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Chapter 2

Numerical Packing for

Fault-tolerance in GEMM

T
HE generic matrix multiply (GEMM) routine comprises the compute

and memory-intensive part of many information retrieval, rele-

vance ranking and object recognition systems that process integer inputs.

Because of the prevalence of GEMM in these prominent applications, en-

suring its robustness to transient hardware faults is of paramount im-

portance for highly-reliable systems. Mitigation techniques for SDCs

are especially important for matrix products performed during descrip-

tor matching, power iterations, backpropagation, transform decomposi-

tions, random projections, kernel methods, covariance matrix calcula-

tions and block Lanczos iterations within information retrieval, object

detection and tracking, machine learning, and classification applications

[9,32,39,118,121–125]. This is because: (i) matrix-product computations

comprise the bulk of processing in such applications; (ii) subsequent pro-
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cessing stages apply low-complex-yet-noise-sensitive thresholding, sort-

ing and clustering operations [9,116,117,126] and any undetected SDCs

in the matrix-product stage can have severe repercussions in the final

results. Many such matrix products utilize integer inputs and are typ-

ically performed with an integer generic matrix multiply (GEMM) rou-

tine, or the single- or double-precision floating-point GEMM (sGEMM

or dGEMM) routines of a high-performance mathematics kernel library

(MKL) [35,36]. Thus, ensuring that integer matrix products remain reli-

able against SDCs is of paramount importance for such multimedia sys-

tems.

In Section 2.1, we summarize the operation of high-performance GEMM

routine highlighting existing optimization techniques available on mod-

ern processors. We describe the proposed algorithm of numerical packing

in Section 2.2, including the requirement of a low-cost checksum inner-

product computation for increased reliability. Section 2.3 provides dis-

cussion on dynamic range, computational complexity and reliability of

existing SDC mitigation techniques. We make some concluding remarks

in Section 2.6.

2.1 Structure of Generic Matrix Multiplica-

tion (GEMM) Routine

Consider the GEMM design depicted in Figure 2.1, which follows the gen-

eral structure found in optimized linear algebra kernels [36] (e.g Intel
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Figure 2.1: Top-level processing of GEMM R = A × B, highlighting the
input subblocks used for the computation of the subblock result R2,1

MKL, ATLAS, gotoBLAS). The application calls GEMM for an M ×K by

K×N matrix multiplication, which is further subdivided into T ×T “inner-

kernel” matrix products. For our approach, T is specified by (k ∈ N⋆):

T = 2k ×
SIMDbits

brepr
(2.1)

with: SIMDbits the number of bits of each SIMD register (SIMDbits = 256

in this work); brepr ∈ {32, 64} the number of bits for floating-point or inte-

ger representations. The inner-kernel result R2,1 of the example shown

in Figure 2.1 comprises the sum of multiple subblock multiplications

A2,tBt,1:

R2,1 =

K
T
−1

∑
t=0

A2,tBt,1. (2.2)

If the matrices’ dimensions are not multiples of T , some “cleanup” code

[36] is applied at the borders to complete the inner-kernel results of the

overall matrix multiplication. This separation into top-level processing

and subblock-level processing is done for efficient cache utilization. Specif-

ically, during the initial data access of GEMM for top-level processing,

data in matrix A and B is reordered into block major format: for each

T ×T pair of subblocks Ai,t and Bt,j multiplied to produce inner-kernel re-
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sult Ri,j , 0 ≤ t < K
T , 0 ≤ i < M

T , 0 ≤ j < N
T , the input data within Ai,t and Bt,j is

reordered in rowwise and columnwise raster manner, respectively. Thus,

sequential data accesses are performed during each subblock matrix mul-

tiplication and this enables the use of SIMD instructions, thereby leading

to significant acceleration. A detailed exposition on matrix ordering for

GEMM and available optimizations can be found in [127].

From this description it is evident that the top-level processing simply

administers the computation (and, optionally, error detection) at the sub-

block level and the core operations are performed within each subblock

independently, before being aggregated to produce the final results.

2.2 Numerical Packing: A New Numerical Rep-

resentation Method for Information Re-

dundancy

The concept of numerical packed processing is based on the fact that

multiple low precision data inputs can be stacked within a single input,

in such a way as to ensure simultaneous and accelerated data process-

ing [42,128,129]. Packed processing algorithms for throughput accelera-

tion in convolution [128] show acceleration gains between 27% and 158%

in comparison to conventional processing, with acceleration for matrix

product [129], block matching [130] and cross correlation [42,130] follow-

ing similar trends.
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Figure 2.2: Bit layout of signed inputs packed within a 16-bit integer
data representation via arithmetic shifting using a packing factor, k = 5.
MSB/LSB shows the most/least significant bit locations.

Since the proposed method is built upon the concept of numerical pack-

ing, we briefly summarize this idea within integer data representation.

Consider three integer inputs, a0, a1, a2, that must be processed with an

integer kernel, such that the range of output values, r0, r1, r2 is within

[−16, 16]. Conventional implementation on general purpose processors us-

ing, for example, the C programming language, would represent each ai

(and the corresponding output ri) using 8-bit signed char representa-

tion. We show in Fig. 2.2(a), the two’s complement integer representation

of these inputs, a0, a1, a2.

In order to achieve packed processing, we define a packing factor, k given

by:

k > log2 (max
∀i
∣ri∣) + 1 (2.3)

Nk ≤W (2.4)

where N is the number of inputs packed within one number representa-

tion, and W the data bitwidth used for packed processing.
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The packing factor of (2.3) and (2.4) ensure that the total number of bits

do not exceed the available bitwidth of the utilized integer representa-

tion. Though the packed representation of Fig. 2.2(b) depicts an overlap

especially for negative input values, we show in the sections that follow,

that all output values are indeed extractable using basic arithmetic oper-

ations.

Packed processing is achieved via arithmetic shift and summation opera-

tions. Specifically, the packed input â is computed by:

â =
N−1

∑
i=0

ai ≪ (i ⋅ k) (2.5)

Kernel processing can subsequently be carried out using â in place of

ai (0 ≤ i < N), provided the constraints of (2.3) and (2.4) are maintained.

The inverse operation (unpacking) is performed on the packed output,

r̂ using the reverse bitshift operations and conditional subtractions of

previously-extracted results that depend on the sign of the extracted in-

formation (cf. Section III of [131]).

We now focus on the numerical packing construct for GEMM computation

and its utilization for fault tolerance in GEMM.

2.2.1 Numerical Packing for GEMM

To facilitate the exposition, we shall be referring to the illustrations of

Figure 2.3(d)–(g) and Figure 2.4, which present the steps of the described

methods for the elementary case of a 2 × 2 matrix produced via a 2 × 1 by
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1 × 2 vector product. In addition, the conventional (fault-intolerant) ap-

proach is illustrated in Figure 2.3(a)–(c). Finally, beyond this elementary

case, our analytic exposition will be based on the general case of a T × T

subblock product.

In packing for integer subblock multiplication R = AB, only one input

subblock is packed, i.e., either A or B (asymmetric packing). This se-

lection does not affect the performance in the case of GEMM, as both

subblocks have been reordered in block-major format. Assuming A is

chosen, the packing process creates block Â with T
2 × T coefficients given

by (∀m,n ∶ 0 ≤m,n < T, m̂ = ⌊m2 ⌋):

âm̂,n = Sk {a2m̂,n} + a2m̂+1,n (2.6)

where k is the utilized packing coefficient, k ∈ N⋆, and Sk {a} is the left bit

shift operator defined in the notational conventions table of pg. xix. The

utilized value for k depends on the maximum possible value of the matrix

product, as it will be elaborated in the following. An illustration of the

packing of (2.6) for the two elements of a 2 × 1 vector a is given in Figure

2.3(d), i.e., for n = m̂ = 0.

Notice that (2.6) operates along the columns of Â in order to pack rows

2m̂ and 2m̂ + 1 together. This means that, in order to use integer SIMD

instructions for accelerated computation of (2.6), we can group SIMDbits
brepr

consecutive elements of each row and apply each arithmetic shift and

add operation of (2.6) to them using appropriate SIMD instructions. Once

(2.6) is completed, processing occurs via R̂ = ÂB (∀m,n ∶ 0 ≤m,n < T, m̂ =
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Figure 2.3: (a)–(c) Conventional integer subblock multiplication for the
case of a 2×1 by 1×2 vector product. (d)–(g) Packing for the same product
with packing coefficient k = 10. The partitioning within the rectangles
shows the location (shifts by k bits) of inputs/outputs when packed within
a single number.
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⌊m
2
⌋):

r̂m̂,n =
T−1

∑
j=0

âm̂,jbj,n (2.7)

= (Sk {
T−1

∑
j=0

a2m̂,jbj,n}) +
T−1

∑
j=0

a2m̂+1,jbj,n

The packed output of (2.7) contains both rows of the results, r̂2m̂,n and

r̂2m̂+1,n, packed together. An example is shown in Figure 2.3(f) for n =

m̂ = 0. Importantly, if they do not overlap in the packed representation

and the numerical representation used can accommodate both packed

outputs, both rows can be computed concurrently via (2.7). For the packed

processing of two inputs shown in (2.6) and (2.7), these two conditions are

met when the packing coefficient satisfies the below constraint [41, 129,

130]:

• For 32/64-bit integer representation: k > log2 (max∀m,n ∣rm,n∣) + 1 and

2k ≤W , with W ∈ {32, 64}.

Any high-performance T
2 × T by T × T subblock code for 32/64-bit GEMM

(integer or floating-point) can be used for the computation of (2.7). Fol-

lowing the completion of the processing, unpacking of the results can be

performed by the following process [41,129,130] (∀m,n ∶ 0 ≤m,n < T, m̂ =

⌊m
2
⌋).

The first output, r̃2m̂,n, which is packed at the most significant bits of r̂m̂,n,

is extracted by:

r̃2m̂,n = S−k {r̂m̂,n} (2.8)
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The extracted output is then removed from r̂m̂,n:

r̃2m̂+1,n = r̂m̂,n − Sk {r̃2m̂,n} , (2.9)

The result is then converted into its signed representation. Specifically,

if r̃2m̂+1,n ≥ 2k−1, then r̃2m̂+1,n ← (r̃2m̂+1,n − 2k).

Finally if r̃2m̂+1,n < 0, then the result extracted from the most-significant

bits must be incremented by one, i.e.: r̃2m̂,n ← (r̃2m̂,n + 1).

2.2.2 Proposed Fault-tolerant Packing

We utilize the packing concept in order to provide highly-reliable integer

matrix products within each GEMM call. Our method uses standard 64-

bit integer representations and off-the-shelf GEMM subblock kernels to

process 32-bit inputs, as detailed in the following1.

Packing Process

The proposed approach performs two packings of matrix A into Âi and

Âj and one packing of B into B̂, as shown in the example of Figure 2.4(a).

The figure illustrates only the case of an elementary 2 × 1 by 1 × 2 vector

product with k = 10 and, due to the small input vector dimensions, the

packed matrices are in fact scalars âi, âj and b̂. For the general case of a

T ×T by T ×T subblock product, the process is identical for all other pairs

1In general, double bit-width representation is required by the proposed method in
order to accommodate a comparable data range.
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of inputs within A and B and is expressed by (∀m,n ∶ 0 ≤ m,n < T, m̂ =

⌊m
2
⌋ n̂ = ⌊n2 ⌋):

âi,m̂,n = Sk {a2m̂,n} − a2m̂+1,n (2.10)

âj,m̂,n = Sk {a2m̂+1,n} − a2m̂,n (2.11)

b̂m,n̂ = Sk {bm,2n̂} + bm,2n̂+1 (2.12)

Each packing “stacks” two inputs together in a single 64-bit integer num-

ber (assuming 32-bit inputs) and can be done during initial reading and

reordering of each subblock in GEMM [36, 129]. Notice that, in com-

parison to conventional packing presented in the previous section [and

illustrated in Figure 2.3(d)–(g)]:

• (2.10) and (2.11) invert the sign of the elements of A that are left

shifted by k-bits;

• A is packed twice with reverse “ordering”, as shown in (2.10) and

(2.11);

• B is packed as well.

This setup enables packed processing to be used for error detection.

Packed GEMM computations

Two (T
2 × T ) × (T × T

2
) subblock multiplications ensue via the use of two

standard subblock GEMM calls (using either 64-bit integer or 64-bit float-

ing point representation), producing all required results, as well as a
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Figure 2.4: Illustration of highly-reliable integer subblock multiplication
via numerical packing for the case of a 2 × 1 by 1 × 2 vector product with
packing coefficient k = 10. The partitioning within the rectangles shows
the location (shifts by k or 2k bits) of inputs/outputs when packed within
a single number.

number of “entangled” results within the numerical representation of the

packed outputs. An example for the two packed products of elementary

2 × 1 by 1 × 2 vectors is shown in Figure 2.4(b)–(c). For the general case of

an T ×T by T ×T subblock product, the elements packed within R̂i and R̂j
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are expressed mathematically by (∀m,n ∶ 0 ≤m,n < T, m̂ = ⌊m2 ⌋ , n̂ = ⌊n2 ⌋):

r̂i,m̂,n̂ =
T−1

∑
t=0

âi,m̂,t̂bt,n̂

= S2k {
T−1

∑
t=0

a2m̂,tbt,2n̂} − Sk {
T−1

∑
t=0

a2m̂+1,tbt,2n̂}

+Sk {
T−1

∑
t=0

a2m̂,tbt,2n̂+1} −
T−1

∑
t=0

a2m̂+1,tbt,2n̂+1

= S2k {r̃2m̂,2n̂} + Sk {r̃2m̂,2n̂+1 − r̃2m̂+1,2n̂}

− r̃2m̂+1,2n̂+1 (2.13)

r̂j,m̂,n̂ =
T−1

∑
t=0

âj,m̂,t̂bt,n̂

= S2k {
T−1

∑
t=0

a2m̂+1,tbt,2n̂} − Sk {
T−1

∑
t=0

a2m̂,tbt,2n̂}

+ Sk {
T−1

∑
t=0

a2m̂+1,tbt,2n̂+1} −
T−1

∑
t=0

a2m̂,tbt,2n̂+1

= S2k {r̃2m̂+1,2n̂} + Sk {r̃2m̂+1,2n̂+1 − r̃2m̂,2n̂}

− r̃2m̂,2n̂+1 (2.14)

Unpacking of the Results

Subsequently, unpacking occurs within each element of R̂i and R̂j based

on the process presented below, which extends the unpacking of the previ-

ous section in order to handle the three packed results within each output

r̂i,m̂,n̂ and r̂j,m̂,n̂, illustrated in Figure 2.4(d).

We extract the components packed within r̂i following the unpacking pro-

cess described in the previous subsection, with ε̃(k0,k1),(k2,k3) indicating the

entanglement (i.e., superposition within the representation) of elements
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r̃k0,k1 and r̃k2,k3 . The first output, r̃2m̂,2n̂, which is packed at the most-

significant bits of r̂i, is extracted by:

r̃2m̂,2n̂ = S−2k {r̂i} , (2.15)

The extracted output is then removed from r̂i and relevant bitwise opera-

tions ensue to determine the sign of the entangled output, ε̃(2m̂,2n̂+1),(2m̂+1,2n̂).

We present the details of this sign check by defining two parameters, ti,1

and ti,2 as outlined below:

ti,1 = r̂i − [S2k {r̃2m̂,2n̂}] , (2.16)

ti,2 = S−k {ti,1} , (2.17)

If ti,2 ≥ 2k−1, then ε̃(2m̂,2n̂+1),(2m̂+1,2n̂) = ti,2 − 2k, else ε̃(2m̂,2n̂+1),(2m̂+1,2n̂) = ti,2.

If ε̃(2m̂,2n̂+1),(2m̂+1,2n̂) < 0, then : r̃2m̂,2n̂ ← (r̃2m̂,2n̂ + 1).

Subsequently, the intermediate result extracted by (2.17) is also removed

from the packed representation and a similar check is performed in order

to extract the signed representation of r̃2m̂+1,2n̂+1, i.e.:

ti,1 ← [ti,1 − Sk {ti,2}] (2.18)

If ti,1 ≥ 2k−1, then r̃2m̂+1,2n̂+1 = 2k− ti,1, else r̃2m̂+1,2n̂+1 = −ti,1. Finally, similarly

as before, if r̃2m̂+1,2n̂+1 > 0, then the the entangled output, ε̃(2m̂,2n̂+1),(2m̂+1,2n̂)

is incremented by one: ε̃(2m̂,2n̂+1),(2m̂+1,2n̂) ← (ε̃(2m̂,2n̂+1),(2m̂+1,2n̂) + 1) . We ex-

tract the components packed within r̂j via the following process, which is
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identical to the process described for r̂i:

r̃2m̂+1,2n̂ = S−2k {r̂j} , (2.19)

tj,1 = r̂j − [S2k {r̃2m̂+1,2n̂}] , (2.20)

tj,2 = S−k {tj,1} , (2.21)

If tj,2 ≥ 2k−1, then ε̃(2m̂+1,2n̂+1),(2m̂,2n̂) = tj,2 − 2k, else ε̃(2m̂+1,2n̂+1),(2m̂,2n̂) = tj,2. If

ε̃(2m̂+1,2n̂+1),(2m̂,2n̂) < 0, then r̃2m̂+1,2n̂ ← (r̃2m̂+1,2n̂ + 1). Subsequently:

tj,1 ← [tj,1 − Sk {tj,2}] . (2.22)

If tj,1 ≥ 2k−1, then r̃2m̂,2n̂+1 = 2k − tj,1, else r̃2m̂,2n̂+1 = −tj,1. If r̃2m̂,2n̂+1 > 0, then

ε̃(2m̂+1,2n̂+1),(2m̂,2n̂) ← (ε̃(2m̂+1,2n̂+1),(2m̂,2n̂) + 1) .

If:

• sufficient spacing is provisioned via the packing coefficient k so that

no overlapping (or “invasion”) of results occurs within the numerical

representation [41,129,130], and

• all three packed results fit within the utilized numerical represen-

tation,

then the results are guaranteed to be recoverable.

Relating to the second requirement, if 3k ≤W , then the unpacking process

determines the correct value of each output. This condition imposes that:
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• k ≤ 21 for W = 64 in 64-bit integer GEMM. Given that the sum of

two outputs must be accommodated for the packed results shifted

by k-bits (i.e., the entangled results) and one bit must be provided

to allow for the sign information to be preserved within the packed

integer representation, this allows for up to ±219 output dynamic

range without any approximation. This means that 12 bits of dy-

namic range are sacrificed in comparison to 32-bit integer GEMM

that allows for up to ±231 bits, i.e., loss of 37.5% of the bitwidth. This

loss is substantially smaller than the corresponding bitwidth loss

of ABFT and mABFT, reported in (2.24) and (2.25), respectively.

Since the computational complexity and error detectability of the

proposed algorithm is independent of the packing factor, we set k to

the maximum achievable value, i.e, k = 20 and k = 9 for 64 and 32-bit

integer processing, respectively. Further details on the mathemat-

ics of the analytic calculation of the maximum packing factor are

found in related work [41,129,130].

Error Detection by Post-Entanglement followed by Row-Column

ABFT Checksum Validation

The advantage of the proposed packing-based GEMM is that, we not only

obtain the results, but we can also validate them by post-entangling,

i.e., doing r̃2m̂,2n̂+1− r̃2m̂+1,2n̂ and r̃2m̂+1,2n̂+1− r̃2m̂,2n̂ and comparing these with

the entangled results ε̃(2m̂,2n̂+1),(2m̂+1,2n̂) and ε̃(2m̂+1,2n̂+1),(2m̂,2n̂), respectively.

An example is shown in Figure 2.4(d)–(e) for m̂ = n̂ = 0. If differences are

detected, the higher level routine (top-level processing) can be notified
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and a decision can be made by the application on whether to recompute

the erroneous results or not.

One weakness of the post-entanglement check is that, however unlikely,

it is still possible that an SDC occurs in a location in the packed results

R̂i and R̂j in a way that the operation r̃2m̂,2n̂+1− r̃2m̂+1,2n̂ or r̃2m̂+1,2n̂+1− r̃2m̂,2n̂

does not detect it. Specifically, this would be the case if both the extracted

results r̃2m̂,2n̂+1 and r̃2m̂+1,2n̂ were affected by an additive noise term δ, with

δ ∈ Z⋆. To detect the occurrence of such pathological cases, we simply uti-

lize the conventional row-column ABFT checksum by calculating a single

inner product between the sum of the columns of A with the sum of the

rows of B:

rrc =
K−1

∑
k=0

(
M−1

∑
i=0

ai,k ⋅
N−1

∑
j=0

bk,j) , (2.23)

which, similar to ABFT, can be derived during the input subblock re-

ordering. Then, after checking for SDCs based on the post-entanglement

check (and recalculating all detected SDCs), we can check if rrc produced

by (2.23) agrees with the sum of all the elements of R ∶ ∑M−1
i=0 ∑

N−1
j=0 ri,j . It is

straightforward to derive the latter when the output matrix is returned

via a raster-scan and summation. This checksum ensures no such SDCs

remain undetected.

The overall ABFT-based row-column checksum process requires produc-

ing only a single checksum per integer matrix product, i.e., rrc of (2.23),

and simply adding the results in the order they are returned to the top-

level processing of GEMM. Our experiments will demonstrate that the

overall error checking process (packing, unpacking, post-entanglement
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check and row-column ABFT checksum) incurs execution time overhead

similar to that of ABFT.

2.3 Discussion

2.3.1 Dynamic Range Aspects of ABFT in GEMM

As described in Section 1.1.3, all ABFT methods specifically tailored for

GEMM computations [96, 97, 101, 104, 111] append the input subblocks

with (redundant) checksum vectors (rows or columns), denoted by ac, br

in Figure 1.2 and highlighted in color. Due to the fact that the checksum

inputs ac and br are the column-wise or row-wise summation of inputs,

the elements of the column and row checksums, rc and rr, will have in-

creased dynamic range by log2 M and log2 N bits respectively for an M ×K

by K ×N integer GEMM. In addition, given that rrc is the sum of the el-

ements of rr and rc, this element will require log2 MN additional bits.

Therefore, in comparison to the conventional (fault-intolerant) GEMM

computation and for M = N = K = 288 and 32-bit integer representations,

ABFT incurs loss of

log2 M

16
∣
M=288

× 100% ≃ 51.06% (2.24)

of output dynamic range in order to accommodate all checksum results.

Furthermore, increased reliability offered by mABFT methods also come

at the cost of reduced output dynamic range of matrix outputs. For ex-
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ample, via the combination of partitioning of M × K and K × N input

blocks into P × P blocks2 [6] with P = 16, and the use of two checksum

rows/columns per partition (using the linear weights of (1.3)), mABFT

is capable of correcting an SDC per partition row/column of the output

matrix product. However, this comes at the loss of

log2 (P 2 + P ) − 1

16
∣
P=16

× 100% ≃ 44.3% (2.25)

of output dynamic range for 32-bit integer representations in comparison

to the conventional (fault-intolerant) GEMM computation.

By implication, the maximum absolute value of data inputs, ai, supported

by the conventional 288 × 288-by-288 × 288 GEMM computation using 32-

bit integer representation is bounded by: ∣ai∣ ≤ 2730. However, when same

computation is to be computed reliably using the ABFT and mABFT con-

structs, the absolute value of input data must not exceed ∣ai∣ = 9 and

∣ai∣ = 85 respectively. These allowable absolute values is further reduced

to ∣ai∣ = {1365, 1, 85} for the conventional, ABFT and mABFT based GEMM

computations of 1152×1152 matrices, respectively. Therefore, the practical

applicability of the single checksum row and column of ABFT for GEMM

computation diminishes as the matrix size increases.

2For simplicity of exposition, we assume that M, N and K are multiples of the parti-
tion size, P .
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2.3.2 Theoretical Analysis of Computational Complex-

ity

The following two propositions summarize the arithmetic operations (ad-

dition, multiplication and comparison) for the computation of the pro-

posed method for SDC mitigation in GEMM in reference to ABFT, mABFT

and DMR. Note that the operation counts for the proposed approach

have been scaled by two to account for the fact that the use of double-

bitwidth representations (due to the use of packing) reduces the process-

ing throughput by a factor of two. We focus on the case of square matrices

for all analysis in this section as rectangular matrices (i.e M ≠K, M ≠ N )

do not possess any complexity property of interest.

Proposition 2.1. In the absence of SDCs within a fault tolerant M ×M -

by-M ×M GEMM computation, the number of arithmetic operations of the

proposed method is:

(i): ( 11M2

2M3+7M2−1) ⋅ 100% more than that of ABFT;

(ii): (34M3−433M2+64
162M3+719M2 ) ⋅ 100% less than that of mABFT;

(iii): (2M3−19M2+1
4M2−M2 ) ⋅ 100% less than that of DMR, with all comparisons plot-

ted in Fig. 2.5(a) for M ∈ [32, 1152].

Proof. Given two M ×M matrices A and B, the proposed method requires

3M2

2 addition/subtraction operations (see (2.10) ∼ (2.12) ignoring all arith-

metic shift operations) to generate the M
2 ×M packed matrices Âi, Âj and

M × M
2 matrix B̂ since each element of the packed inputs is computed

with an addition and a bit-shift operation with the packing factor, k.
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The GEMM computation of R̂i = ÂiB̂ and R̂j = ÂjB̂ subsequently requires

2M3−M2

2 operations as both R̂i and R̂j are M
2 ×

M
2 matrices.

Assuming no SDCs occur within output GEMM results, each packed out-

put r̂i or r̂j requires 11 arithmetic operations (including comparison op-

erations) for unpacking [as elaborated in equations (2.15) – (2.22)] and

an additional subtract and compare operation for error check (cf. Sec-

tion 2.2.2). Therefore, 11M2

2 operations are required for the unpacking

of the two M
2 ×

M
2 packed outputs, R̂i and R̂j, while M2 operations are

required for error checking. The final Row-Column ABFT validation uti-

lized by the proposed approach for the detection of certain pathological

SDC cases would require (2M 2 − 2M) and M 2 + 2M − 1 operations for pre-

processing and error check respectively. In summary, assuming no SDCs

occur, 1
2(2M

3+15M2) double bitwidth and (3M2 − 1) single bitwidth arith-

metic operations are required. By doubling the number of operations

computed using the double bitwidth number representation, the number

of operations is given by:

C{no error in proposed} = 2M3 + 18M2 − 1 (2.26)

To achieve same protection for GEMM outputs using traditional ABFT,

the row-column checksum would require 2M2 − 2M addition operations

for it’s computation, while the GEMM itself will be computed with

(2M3 + 3M2 − 1) operations and the ABFT row & column checksum will be

validated with 2M2 + 2M addition and comparisons. Therefore, assuming
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Figure 2.5: Theoretical percentile complexity of numerical packing,
ABFT, mABFT and DMR for error detection and correction in compar-
ison to conventional fault intolerant GEMM for: (a) no detected error and
(b) One-row error as obtained using KULFI [3] for fault injection.
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no SDCs occurred, the operations of traditional ABFT are given by:

C{no error in ABFT} = 2M3 + 7M2 − 1 (2.27)

For mABFT, given that two checksum rows (and columns) are generated

per partition size of 16, each unweighted checksum element would require

15 add operations for it’s computation while the corresponding weighted

checksum element is computed with 31 arithmetic operations. Therefore,

46M operations are required for the checksum computation of each par-

tition, and M
16 and M

16 partitions exist the input matrices A and B respec-

tively. In total, pre-processing for mABFT would require 46M ⋅ M16 ⋅2 =
23M2

4

arithmetic operations for the calculation of the row & column checksums.

Performing GEMM between the 9M
8 ×M and M × 9M

8 matrices of mABFT

will subsequently require 81
64 (2M

3 −M 2) operations and, in order to check

for SDCs within each 18 × 18 partition of the resulting 9M
8 ×

9M
8 output

matrix, 16 (or 32) operations will be required for each unweighted row/-

column checksum error check (or each weighted row/column error check).

This implies that mABFT requires 48 ⋅2 ⋅ (81M2

64 ) ⋅ (
1
18
) = 27M2

4 operations for

error check. Therefore, the overall complexity of mABFT (assuming no

SDCs occurred) is:

C{no error in mABFT} =
1

64
(162M 2 + 719M2) (2.28)

Finally, dual modular redundancy does not require any pre or post pro-

cessing for its computation. However, 4M3−2M2 and M 2 arithmetic oper-

ations are performed for the computation of GEMM and error checking,
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respectively. Therefore, assuming no SDCs occurred, the complexity of

DMR is:

C{no error in DMR} = 4M2 −M2 (2.29)

Combining (2.26)–(2.29) leads to the ratios reported in Proposition 1.

By comparing the derived complexities of (2.26)–(2.29) with the conven-

tional fault-intolerant GEMM, we show in Fig. 2.5(a), the expected over-

head for incorporating fault tolerance within GEMM computations. Specif-

ically, we show that for the dominant case of no SDCs in practical ap-

plications, numerical packing and ABFT is expected to incur less than

1% additional for error checking. Furthermore, the analysis shows that

on the average, numerical packing is about 2% less efficient than ABFT,

while offering over 20% increased performance in comparison to mABFT

and DMR.

Proposition 2.2. Given x SDCs in output GEMM results, the number of

arithmetic operations of the proposed method for the GEMM computation

followed by error detection and correction, and averaged between the best

and worst case of SDC patterns, is:

(i):
M3+M2(2

√
x+26.5)+M(

√
x−6x)−30x−

√
x

3M3+M2(2
√

x+8.5)+M
√

x−
√

x−1.5
⋅ 100% less than that of ABFT;

(ii): 34M3−433M2−366Mx+1912x+64
162M3+719M2+18Mx−8x ) ⋅ 100% less than that of mABFT;

(iii): 2M3−19M2−3Mx−31.5x+1
4M3−M2+3xM−1.5x ⋅ 100% less than that of DMR, with all compar-

isons plotted in Fig. 2.5(b) for M ∈ [32, 1152], and x =M .
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Proof. Given the detection of x SDCs within the output GEMM results,

the number of computations required by all algorithms for error correc-

tion is dependent on their location. We therefore calculate the oper-

ations required for error correction as the average of the “worst-case”

and “best-case” SDC distribution in output GEMM results, where “worst-

case” refers to an SDC distribution requiring the highest number of op-

erations and “best-case” SDC distribution requires the least number of

operations.

For numerical packing, the “best-case” refers to the case of detection of

an SDC in an output ri and its corresponding output rj , i.e, i = j. In such

a case, our method of error correction re-computes x
2 locations for each of

R̂i and R̂j, thereby requiring x (2M − 1) operations for all erroneous loca-

tion re-computations, while 2 ⋅ 11 ⋅ x2 operations would be required for the

unpacking of all x locations in both matrices (as each unpacking requires

11 operations).

On the other hand, the “worst-case” SDC distribution occurs when all x

SDCs happen within either of R̂i or R̂j. Given that any SDC detected for

each ri or rj requires the re-computation of both r̂i and r̂j of the failed

location, 2x re-computations and unpackings will be required for this sce-

nario, i.e., x (4M + 20) arithmetic operations.

By averaging between the two cases, the proposed approach requires

x
2 (6M + 21) operations to correct x detected SDCs. By doubling this re-

sult:

C{x errors in proposed} = 2M3 + 18M2 − 1 + 6Mx + 30x (2.30)
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Concerning ABFT, assuming (for simplicity of exposition) that
√

x is inte-

ger, the “best-case” SDC distribution for ABFT is having the SDCs located

within a
√

x ×
√

x square in the matrix. Therefore, provided the SDCs

are all detectable, ABFT would flag
√

x rows and columns as erroneous.

When multiple SDCs are detected via ABFT, entire rows and columns

that fail the checksum test are recomputed. The “best-case” SDC distri-

bution of ABFT would therefore require a re-computation of
√

x rows and
√

x columns involving 2
√

x (2M2 +M − 1)MAC operations.

On the other hand, if x is large (e.g., x ≥ 16), entire GEMM re-computation

is more beneficial in practice in comparison to selective recomputation of

multiple rows and columns. This is because the data access irregularity,

in conjunction with the high percentage of outputs that are recomputed,

ends up incurring higher execution time penalty in comparison to simply

recomputing the GEMM. Therefore, 2M3 + 3M2 − 1 MAC operations is

required for this case.

By taking the average of these two cases and adding them to the com-

plexity of GEMM and error detection previously derived, we obtain:

C{x errors in ABFT} = 2M3 + 7M 2 + 0.5 ⋅ [2M3 + 3M2 − 1]

+ [
√

x (2M2 +M − 1)] − 1

= 3M3 +M2 (2
√

x + 8.5) +M
√

x −
√

x − 1.5

(2.31)

The mABFT implementation presented in this work can detect two SDCs

and correct one SDC for each row or column within a partition. The “best-

case” SDC distribution for this implementation would be having x SDCs
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spread in such a way that only one SDC occurs in a row or column of a

partition. Since mABFT requires one division operation for error location

and one subtraction operation for error correction [5,103] , 2x operations

would be required in order to correct the x detected SDCs.

On the other hand, the “worst-case” error location in mABFT occurs when

4 SDCs occur within a 2 × 2 sub-block in a partition such that two SDCs

are detected in each of the two rows and columns corresponding to the

sub-block error location. Since the mABFT implementation in this work

can not correct more than one SDC per row/column, entire erroneous

rows and columns of the affected partitions are re-computed. Thus, 4 ⋅

18 (2M − 1) arithmetic operations are required for the re-computation of

2 erroneous rows and 2 erroneous columns assumed to be spread across x
4

different locations. Therefore, the overall complexity of mABFT including

the correction of x SDCs is:

C{x errors in mABFT} =
1

64
(162M3 + 719M2) + x (18M − 8) (2.32)

Finally, performing same analysis for DMR, the “best-case” SDC distribu-

tion would refer to two SDCs occurring exactly at corresponding positions

of the two GEMMs. This would require re-computation of x
2 output loca-

tions. On the other hand, the “worst-case” SDC here refers to all x SDCs

occurring at different locations of one of the GEMM outputs. In such a

case, x locations would need to be re-computed for each of the output ma-

trices. Therefore, the overall complexity of DMR (including the correction
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of x SDCs) is:

C{x errors in DMR} = 4M3 −M2 + 3xM − 1.5x (2.33)

Combining the last four equations leads to the ratios reported in Propo-

sition 2.

In Fig. 2.5(b), we show how these complexities scale with increasing ma-

trix size in comparison to fault-intolerant GEMM computation. We con-

sider the case of x =M , which is the single row/column error encountered

when for example, memory bit flip(s) manifests as data error within an

input matrix element. Because this erroneous value is used for GEMM

computation, an entire row/column of matrix outputs is returned erro-

neous as will be elaborated further in Section 2.4.1. The theoretical ex-

position of (2.30)–(2.33) and the plot of Fig. 2.5(b) highlights the perfor-

mance improvement offered by numerical packing in comparison to all

existing methods of fault tolerance in GEMM, especially for the case of

multiple error detection and correction. On the average, more than 25%

performance improvement is offered by numerical packing in comparison

to ABFT, mABFT and DMR for SDC mitigation. Overall, the complexity

analysis of Propositions 1 and 2 indicates that our proposal is expected to

incur small penalty when no SDCs happen, and become highly-beneficial

when multiple SDCs occur in GEMM.
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2.3.3 Reliability Aspects

In summary, the presented method utilizes the notion of packing to create

two complementary and compacted input descriptions for A (i.e. Âi and

Âj) that are then used within two independent subblock GEMM calls (64-

bit integer or floating-point) with a compacted description for B (i.e. B̂).

This results in two M
2 ×

M
2 independently-computable subblock products

that contain all necessary results, albeit in packed and entangled form.

These can be unpacked and the entangled parts of one subblock product

can be matched with the extracted outputs of the other subblock product

by post-entangling the latter. If mismatches are detected, this means

a part of a matrix product executed erroneously. If no mismatches are

detected (or, otherwise, once all mismatched outputs are recomputed), the

results are then cross-checked with the row-column checksum of (2.23).

We can thus make the following observations:

• Two quarter-size GEMMs of double bitwidth are used instead of one

full-size GEMM for the subblock product. Thus, the storage require-

ments remain the same, with the only increase stemming from the

single additional checksum element of (2.23).

• While the proposed approach (approximately) halves the overall MAC

operations against the conventional approach, all operations are

performed in 64-bit instead of 32-bit representations. If 64-bit MAC

operations have double the cycle count in comparison to 32-bit MAC,

the overall execution time for the final results is expected to remain

comparable between the proposed approach and the conventional,
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fault-intolerant, GEMM. Specifically, while conventional GEMM per-

forms (M2 ×M) MAC operations for GEMM computation, the pro-

posed approach performs 2 (M2

2 ×
M
2 ) operations.

• The process of error checking via the post-entanglement check and

the ABFT row-column checksum of (2.23) requires only M (M + 1)

MAC operations.

In order to establish results characterizing the reliability of the proposed

approach in comparison to ABFT, partitioned and weighted mABFT and

DMR, we define the following error model concerning the results of an

individual GEMM operation. For simplicity of exposition, our analysis

is focusing on the case of a square subblock matrix product comprising

M ×M outputs; it is straightforward to extend it to non-square subblock

sizes.

Definition 2.1. Operation R = AB, with R the M ×M integer matrix of

the result and A and B matrices comprising integer inputs, is considered

to be affected by independent uniformly distributed (IUD) errors if all out-

puts, rm,n (0 ≤ m,n < M ), are susceptible to IUD bit flips with a certain

probability.

The following propositions derive the reliability of each approach under

the IUD error model of Definition (2.1). The focus is mainly on GEMM

computation using integer libraries where the effects of IUD errors are

easier to quantify.

Proposition 2.3. Under the IUD error model of Definition (2.1), the per-

centage of errors detectable by the proposed approach under two 64-bit
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packed subblock products is lower-bounded by

Re{proposed} > (1 −
2.77 ⋅ 10−32 (M2 − 4)

M6 − 6M4 + 11M2 − 6
) × 100% (2.34)

Proof. The proposed method will not be able to detect errors when all of

the following conditions are satisfied for two distinct locations, (m̂1, n̂1)

and (m̂2, n̂2), within the packed output matrices r̂i and r̂j, with (m̂1, n̂1) ≠

(m̂2, n̂2) and: 0 ≤ m̂1, n̂1 < ⌊M2 ⌋ and 0 ≤ m̂2, n̂2 < ⌊M2 ⌋.

1. Either both r̃2m̂1,2n̂1 and r̃2m̂1+1,2n̂1+1, or both r̃2m̂1+1,2n̂1 and r̃2m̂1,2n̂1+1 are

corrupted within one packed representation (r̂i and r̂j, respectively) and

also another pair, r̃2m̂2,2n̂2 and r̃2m̂2+1,2n̂2+1 (or r̃2m̂2+1,2n̂2 and r̃2m̂2,2n̂2+1), are

corrupted within same packed or another packed representation (r̂i and

r̂j, respectively).

2. Their subtraction still agrees with the entangled result extracted from

the other GEMM (i.e. ε̃(2m̂1,2n̂1+1),(2m̂1+1,2n̂1) and/or ε̃(2m̂2,2n̂2+1),(2m̂2+1,2n̂2) from

r̂i, respectively, and ε̃(2m̂1+1,2n̂1+1),(2m̂1,2n̂1) and/or ε̃(2m̂2+1,2n̂2+1),(2m̂2,2n̂2) from

r̂j, respectively).

3. The errors are complementary, such that sum of all elements of the

result matrix after unpacking matches the row-column ABFT checksum

value of (2.23).

We can establish the total number of such cases as the number of distinct

results produced by (∀ε ∈ {±1, . . . ,±2k−1}) and shown here for the case

when corruption occurs in two different sections of two different packed
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representations:

r̃2m̂1+1,2n̂1+1 ← r̃2m̂1+1,2n̂1+1 + ε

r̃2m̂1,2n̂1 ← r̃2m̂1,2n̂1 + ε

r̃2m̂2+1,2n̂2 ← r̃2m̂2+1,2n̂2 − ε (2.35)

r̃2m̂2,2n̂2+1 ← r̃2m̂2,2n̂2+1 − ε

where ε is the error injected in a complementary manner within r̃2m̂+1,2n̂+1

and r̃2m̂,2n̂ (and within r̃2m̂,2n̂+1 and r̃2m̂+1,2n̂) and k = 20 for integer represen-

tation. In all the cases of (2.35), the outputs are erroneous – yet remain

undetected.

The error, ε can take up to 2k−1 values out of the (2
32

4
) possible error values

at the four output GEMM locations. In addition, there are (
M2

4
2
) possible

ways of choosing the indices (m̂1, n̂1) , (m̂2, n̂2) in order that errors will be

undetected as opposed to a total of (M
2

4
) possible ways of choosing any

four locations in output GEMM results. Therefore, the probability of un-

detectable errors in the proposed method of numerical packing under the

error model of Definition (2.1) is:

Pr{four undetected faults in proposed} =

2k−1

(2
32

4
)
× (

# of undetect. comb. of 4 faults
# of possible comb. of 4 faults

) <

2−104 ⋅
⎛
⎜
⎝

(
M2

4
2
)

(M
2

4
)

⎞
⎟
⎠
<

2.77 ⋅ 10−32 (M2 − 4)
M6 − 6M4 + 11M2 − 6

(2.36)

with k = 20. This means that, under Definition (2.1), the proposed fault-

tolerant GEMM is expected to successfully detect the percentage of errors
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lower-bounded by (2.34).

Proposition (2.3) did not consider the case when more than four unde-

tected errors occur, as the likelihood of such cases is negligible when com-

pared to (2.34). Proposition (2.3) shows that the proposed case achieves

at least “48 nines” reliability, i.e. less than 1 in 1048 errors in the results

would remain undetected (with each error comprising one or more bit

flips).

Proposition 2.4. Under the IUD error model of Definition (2.1), the per-

centage of errors detectable by a 32-bit (M ×M) traditional ABFT-based

GEMM is lower-bounded by

Re{ABFT} > (1 −
2.42 ⋅ 10−27M

(M2 + 2M − 2) ⋅ (M2 + 2M − 1) ⋅ (M + 2)
) × 100% (2.37)

Proof. Traditional ABFT will detect all errors that do not occur in loca-

tions with coinciding row or column indices in R. Errors occurring in four

locations with coinciding row and column indices [including the column

and row checksums of the subblock, i.e., rc, rr in Fig. 1.2] will remain un-

detectable when IUD bitflips result in the erroneous addition of a value ε

in such a way that coinciding rows (also columns) lead to error cancella-

tion during the SDC detection stage of ABFT. Fig. 2.6 shows such error

patterns including the expected sign of ε. For example, in Fig. 2.6(a),

out of (2
32

4
) combinations of SDC values (ε) at the four undetectable loca-

tions, ε can only take 232 − 1 possible values. Thus, the total probability of
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(a)

(b)

(c)

(d)

Figure 2.6: Simplest error distribution patterns undetectable by the tra-
ditional ABFT for a 4 × 4 matrix output, R = AB
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undetectable errors is:

Pr{four coinciding faults in ABFT} =

232 − 1

(2
32

4
)
× (

# of undetect. comb. of 4 faults
# of possible comb. of 4 faults

)
pattern(a)

+

232 − 2

(2
32

4
)
× (

# of undetect. comb. of 4 faults
# of possible comb. of 4 faults

)
pattern(b)

+

232 − 2

(2
32

4
)
× (

# of undetect. comb. of 4 faults
# of possible comb. of 4 faults

)
pattern(c)

+

232 − 2

(2
32

4
)
× (

# of undetect. comb. of 4 faults
# of possible comb. of 4 faults

)
pattern(d)

<

2−91 ⋅
⎛

⎝

(M
1
) ⋅ (M1 )

((M+1)
2

4
)
+
(M

2
) ⋅ (M2 )

((M+1)
2

4
)
+
(M

2
) ⋅ (M1 )

((M+1)
2

4
)
+
(M

1
) ⋅ (M2 )

((M+1)
2

4
)

⎞

⎠
<

2.42 ⋅ 10−27M

(M2 + 2M − 2) ⋅ (M2 + 2M − 1) ⋅ (M + 2)
(2.38)

In (2.38), the number of undetectable combinations of four errors is de-

rived by taking the sum of the individual probabilities of the error pat-

terns shown in Fig. 2.6. Again, considering considering in Fig. 2.6(a),

any one row out of the M rows of the original matrix R, can have ±ε at

any column (out of the M columns of each row). For the error to be unde-

tectable, the corresponding checksum row, checksum column and the full

checksum location must be affected by IUD bitflips with resulting value

equal to ±ε. This means that, under Definition (2.1), a 32-bit ABFT-based

GEMM is expected to successfully detect the percentage of errors lower-

bounded by (2.38).

Proposition (2.4) did not consider the cases where more than four un-

detectable errors occur in ABFT, as the likelihood of such occurrences

is negligible when compared to (2.37). As an example of the reliability
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achieved by ABFT, by using L = 576, it is evident from Proposition 2 that

ABFT-based GEMM achieves at least “38 nines” reliability, i.e. less than

1 in 1038 errors in the results would remain undetected (with each error

comprising one or more bit flips).

Proposition 2.5. Under the IUD error model of Definition (2.1), the per-

centage of errors detectable by a 32-bit (M ×M) mABFT-based GEMM

partitioned into P × P matrices (provided L is a multiple of P ) with two

checksums is lower-bounded by

Re{mABFT} > (1 −
2.84 ⋅ 10−67M 2 (P + 1) 2

∏8
i=0 [(P + 2) 2 − i]

) × 100% (2.39)

Proof. The first checksum of each column and row of the input P × P

blocks of mABFT will detect all errors within each partition as long as

they do not occur in locations with coinciding row or column indices such

that the errors cancel out as described in the proof of proposition 2.4.

Moreover, the second checksum of each column and row, rc2 and rr2, will

detect all such errors as long as they do not occur in both the weighted

checksums and the row-column weighted checksum (rr2c2) in the patterns

shown in Fig. 2.7. Therefore,the total probability of undetectable errors

when using the combined partitioned and weighted mABFT approaches
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(a)

(b)

(c)

(d)

Figure 2.7: Simplest error distribution patterns undetectable by the par-
tition and weighted mABFT approach of [4–8] using a partition size, P = 4
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of [4–8] is:

Pr{nine coinciding faults} = # of partitions×
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∏8
i=0 [(P + 2)2 − i]

(2.40)

This means that, under Definition (2.1), a 32-bit mABFT-based GEMM is

expected to successfully detect the percentage of errors lower-bounded by

(2.39).

Proposition (2.5) did not consider the cases where more than nine unde-

tectable errors occur per partition in the described ABFT, as the likeli-

hood of such occurrences is negligible when compared to (2.39). As an

example of the reliability, by using M = 576 and P = 16, it is evident from

Proposition (2.5) that partitioned ABFT-based GEMM with two checksum

vectors achieves at least “79 nines” reliability, i.e. less than 1 in 1079 er-

rors in the results would remain undetected (with each error comprising

one or more bit flips).

Proposition 2.6. Under the IUD error model of Definition (2.1), the per-
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centage of errors detectable by a 32-bit (M ×M) DMR-based GEMM is

lower-bounded by

Re{DMR} > (1 − 4.66 ⋅ 10−10M−2) × 100% (2.41)

Proof. DMR-based GEMM will detect all errors that do not occur in co-

inciding locations within the results of the two M ×M identical GEMMs.

When two errors δ and ε occur at coinciding locations of the two GEMM

outputs, out of (2
32

2
) possible combinations of δ and ε, only 232−1 conditions

will result in δ = ε. Thus, the probability of errors occurring at coinciding

locations in both 32-bit GEMM calls (i.e undetectable errors) is:

Pr{two coinciding faults in DMR} =

232 − 1

(2
32

2
)
×

# of undect. pairs of faults
# of possible pairs of faults

< 2−31 M2

M2 ×M2
< 4.66 ⋅ 10−10M−2

(2.42)

This means that, under Definition (2.1), the percentage of errors de-

tectable by an M × M 32-bit DMR-based GEMM is lower-bounded by

(2.42).

We remark that Proposition (2.6) did not consider the cases where more

than two coinciding errors occur in DMR, as the likelihood of such oc-

currences is negligible when compared to (2.41). As an example of the

reliability achieved by DMR, when M = 576 it is straightforward to de-

rive from Proposition 1 that DMR-based GEMM achieves more than “15
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nines” reliability, i.e. less than 1 in 1015 IUD errors in the results would

remain undetected (with each error comprising one or more bit flips).

Propositions (2.6) - (2.3) demonstrate that all methods are extremely re-

liable. DMR detects errors in the results with at least 15 nines reliabil-

ity, ABFT and the proposed method detect errors in the results with at

least 38 nines reliability, while mABFT detects errors in the results with

at least 79 nines reliability, but with considerable overhead. However,

this additional reliability is not significant in practice: even under the

assumption of a petaFLOP computer (i.e. assuming that 1015 results are

produced per second) and under constant IUD error patterns occurring in

all the outputs, it is expected it would take more than 1017 seconds for the

occurrence of an undetectable error in ABFT and the proposed approach,

i.e. more than 3.17 billion years. Instead, the biggest practical advantage

of mABFT, DMR and the proposed approach is that, unlike ABFT, the lo-

cations of the vast majority of all detected errors are explicitly indicated,

which allows for minimum effort in the recomputation of all failed results

in order to ensure error-free operation.

2.4 Experimental Results

In this section, we present execution time results with an Intel i7- 3632QM

2.2GHz processor (Ivy Bridge architecture with AVX support, Ubuntu

14.04.1 LTS, Clang 3.2 compiler). The BLAS routine of the ATLAS math
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library was used for all GEMM calls (sGEMM and dGEMM for 64-bit)3.

After experimenting with various subblock sizes, we selected six subblock

sizes as representative cases, ranging from 32 × 32 (below which the use

of sGEMM or dGEMM is not beneficial) to 1152 × 1152. We opted for sub-

block sizes that are multiples of the subblock size settings for sGEMM

and dGEMM within most open-source MKLs (e.g., ATLAS and GOTO)

and avoid the use of cleanup code for the borders.

The ABFT approach follows Huang and Abraham [101], while we im-

plemented the mABFT following Rexford and Jha [6], with the linear

weighted checksum vector [4, 5] of (1.3). We opted for partition block

size of 16 × 16 within each subblock in order to achieve output dynamic

range comparable to the proposed approach and at the same time limit

the overhead caused by the two additional checksum rows and columns

per block4. For the ABFT implementation, due to the detection limita-

tions analyzed in Section 2.3.1, entire rows and columns are recomputed

when multiple SDCs are detected. In addition, when ten SDCs are de-

tected in different rows and columns, the error detection process stops

and entire GEMM subblock recomputation (i.e., complete rollback) is car-

ried out, as this turns out to be less costly than complete detection and

multi-row & column recomputation for the chosen subblock sizes.

3Since all optimized math kernel libraries today support only 32/64bit floating point
number representations, we cast all integer inputs into floating point data-type after
preprocessing while casting to integer data type in order to perform error-check and
correction if required.

4Specifically, we found that, under P = 8, the overhead caused by mABFT is more
than 150% in comparison to the fault-intolerant original GEMM and P = 32 or higher
leads to unacceptable loss of dynamic range, as illustrated by (2.25).
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2.4.1 SDC Injection Technique

In order to investigate the performance of all presented approaches for

the detection and correction of soft errors, we perform an artificial fault

injection campaign using the open source LLVM [132] based fault injec-

tion tool, KULFI [3]. KULFI emulates faults occurring in CPU state el-

ements, which usually manifest as bit flips in a random computational

state chosen at run time by injecting faults at the intermediate represen-

tation (IR) code of LLVM. Because the LLVM IR code preserves variable

and function names and supports program analysis and transformations,

it allows for controlled fault injections to be performed at specific program

points, and into specific instructions. Given that such flips are somewhat

rare in computing systems today, KULFI injects a single transient fault

during every execution under investigation, albeit at a random time in-

stance. By selecting fault injection parameters5 as outlined in the au-

thor’s example code [119], and by specifying the GEMM function name as

the fault location, we observe and characterize the effect of the injected

faults during GEMM computation into three classes:

• Benign errors: errors that have no effect on the GEMM output.

• Single SDC: errors that affect a data element that are not reused

during the GEMM computation.

• Single-row SDC: errors that affect a data element that is used to

5Namely, the following parameters are used for all our fault injection
executions: iteration=100; byte_position=random; expected_fault_count=10;

total_fault_count=100; inject_once flag=1; static_fault/dynamic_fault=1;

inject_pointer_error=0; inject_data_error=1; print_fault_site=0
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compute an entire row/column of GEMM.

For example, a typical error summary when performing 100 fault injec-

tion executions (excluding segmentation and out-of-bound faults) of an

N ×N -by-N ×N GEMM is given by:

Single-row SDCs:16, Single SDC:34, Benign errors:50

In order to keep track of the number of injected errors that manifest as

SDCs, KULFI performs two executions of a given source code: error-free

and error-prone executions. We design the error-free execution to imple-

ment optimized GEMM calls (using the cblas_sgemm and cblas_dgemm

function of the ATLAS library), while the error-prone GEMM implemen-

tation is written in plain C code in such a way as to allow for error in-

jection during GEMM. In this way, GEMM execution time overhead re-

ported in Figure 2.8(a) is measured from the error-free implementation

while the performance for pre- and post processing (including error cor-

rection) of Figs 2.8(b) and 2.9 are measured from the error-prone execu-

tion.

2.4.2 Results under SDCs

The plots of the percentage execution time overhead for all presented

algorithms in comparison to the conventional fault intolerant single pre-

cision GEMM (sGEMM) computation is presented in Figures 2.8 and 2.9.

The results were obtained by averaging the execution time of all methods
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Figure 2.8: Execution time percentile overhead of numerical packing,
ABFT, mABFT and DMR for (a) GEMM computation only; (b) pre-
processing, GEMM computation, error check and post-processing in the
absence of errors.
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Figure 2.9: Execution time percentile overhead of the numerical packing,
ABFT, mABFT and DMR for error detection and correction for: (a) single
error injection and (b) One-row error injection using the KULFI fault
injection.
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after several independent runs (each using randomly-generated inputs).

For all the reported experiments, all methods detected all incurred er-

rors (i.e., the detection rate was 1.0 for all approaches). Therefore, the

reported results compare the different methods with respect to execution

time. To present a detailed analysis of the execution time performance

of all methods, four subcases are shown: (i) only the cost of GEMM calls

(i.e., not the cost of packing, unpacking, checksum generation or error

checking) where the proposed approach is computed using double pre-

cision GEMM (dGEMM) and the other approaches utilize the sGEMM

routine; (ii) everything when no SDCs occur; (iii) everything, including

error checking and correction when one SDC occurs; (iv) everything, in-

cluding the detection and correction of one row of SDCs injected using the

KULFI tool.

Theoretically, the execution time for GEMM computation (without error

tolerance) is expected to be equal for the conventional sGEMM and the

two quatersize dGEMMs performed by the proposed approach (cf. proof

of Section 2.3.2). In practice, due to the internal kernel optimizations of

the ATLAS MKL for different matrix inner blocks, the results of Figure

2.8(a) show both positive and negative GEMM execution time overhead

for the proposed approach, which subsequently affects the overall over-

head for error tolerance for the presented matrix sizes. Overall, the re-

sults show that, against fault-intolerant (conventional) GEMM design,

the proposed approach incurs execution time overhead between −24.70%

and 43.20% when no SDCs occur and 2.41% and 49.94% when mitigating

up to N SDCs in an N ×N GEMM output. On average, 12.05% to 21.21%
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overhead is incurred by the proposed scheme for tolerating up to N SDCs

in GEMM for the presented matrix sizes. Similarly, the plots show that

ABFT incurs an average execution time overhead of 12.64% to 120.34% for

the same level of fault tolerance. Overall, it is evident from the obtained

results that the proposed method incurs comparable overhead to ABFT

when no errors occur and this overhead is (approximately) 18.04% and

46.37% less than that of mABFT and DMR-based GEMM.

We note that the GEMM execution time is controlled by the optimization

offered by the utilized ATLAS MKL for different matrix sizes and data

types. For example, while experimenting with smaller subblock sizes,

we observed both positive and negative execution time overhead (i.e.,

speedup) for the two quarter-size 64-bit GEMMs computed by the pro-

posed method in comparison to the conventional fault-intolerant 32-bit

GEMM. Such behavior is well documented in the experimental results

reported with such libraries, e.g., see the experiments with small GEMM

sizes reported in [8, 36, 97]. In terms of the choice of subblock sizes used

for our experiments, the proof of Section 2.3.2 illustrates that low-cost

SDC correction techniques in matrix products (beyond the brute force

method of modular redundancy) become very valuable as the matrix size

increases, since, for small matrix sizes, SDCs can be efficiently mitigated

by recomputation. From the results of Figs. 2.8(b) and 2.9 (cf. Table I

of [131] for quantitative values), we see that, for the proposed method,

mABFT and DMR, the ratio of pre- and post-processing to the actual

GEMM computation decreases significantly as the matrix size increases.

Thus, we focus our application section on a multimedia retrieval system

with requirement for large integer GEMM computations as discussed in
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subsequent sections. Finally, in terms of even smaller sizes (like 4 × 4 or

8 × 8 blocks), the use of GEMM is not justified there because typical im-

plementations apply direct calculation of the results without requiring a

high-performance library, also exploiting the potential symmetries that

tend to exist in block transform matrices of that size (e.g., Hadamard or

DCTs used in video coding, etc.). Therefore, such small block sizes are

out of the scope of matrix products considered in our work.

The presented results in this section are in line with the theoretical pre-

dictions of Propositions 2.1 and 2.2 of Section 2.3.2 with the “best case”

single SDC case and “worst-case” one-row SDC case shown in Figures

2.5(a) and 2.5(b) respectively. As expected, the percentile overhead of all

methods tends to decrease with increased matrix size (with some fluctu-

ation for small subblock sizes due to internal kernel optimizations of the

utilized ATLAS library).

For execution time overhead when correcting SDCs, the execution time

plot of Figure 2.9(b) and the theoretical prediction of Figure 2.5(b) show

that the performance of ABFT could be worse than modular redundancy

in multiple SDC scenarios. Specifically, while the proposed algorithm,

mABFT and DMR incurs very low overhead for the correction of detected

SDCs, ABFT requires (on average) more than 50% additional overhead

for error correction. This is because, under multiple detected SDCs in

GEMM, ABFT recomputes several rows and columns of the result, or

indeed the entire GEMM subblock when ten erroneous rows/colums are

detected (“rollback ABFT” [2]). This significant increase in the incurred

overhead is also evident in the theoretical analysis of Proposition 2.2. It
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is also evident that the additional overhead for tolerating multiple SDCs

decreases considerably for all approaches, with the exception of ABFT,

as the matrix size increases. For example, numerical packing requires

53.01% additional overhead to tolerate multiple SDCs for the 32 × 32 ma-

trix, while requiring only 9.07% to tolerate the same proportion of SDCs

in the 1152×1152 matrix. This property is shared amongst all exact error-

location algorithms (like numerical packing and DMR) and is beneficial

as the requirements for low-cost SDC correction techniques are more sig-

nificant for large matrix sizes, where entire GEMM recomputation would

lead to substantial performance degradation.

In terms of error detection, by injecting IUD bit flips in all the outputs

of the two GEMM calls of the proposed approach (in the integer case)

under an extensive SDC campaign, we verified experimentally that the

locations of all SDCs were indeed detectable by the proposed approach.

On the contrary, as detailed in Section 2.3.1, ABFT can reliably detect

and correct only up to a single SDC within each GEMM product. ABFT

requires recomputation of entire rows and columns to ensure no SDCs

remain uncorrected, as discussed in the example of Figure 1.3. This is

circumvented via the use of mABFT, which, under the utilized settings,

can reliably detect the locations of up to 32 SDCs per GEMM subblock,

albeit at the cost of substantial execution time overhead.

Overall, our theoretical analysis and experimental results demonstrate

that our proposal offers very high accuracy and reliability in the detection

of the locations of SDCs, while it comes with runtime overhead that is

similar to that of ABFT when no SDCs occur.
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2.5 Application in Energy-aware Computing

Systems under Voltage Scaling for Visual

Descriptor Matching in Image and Video

Retrieval

Voltage scaling has been proposed as a means to improve battery life in

portable devices, albeit at the risk of exposing the execution to transient

faults in memory [133, 134] . For example, Narayanan and Xie [133] re-

port that dropping the operating voltage of a 4Mbit-SRAM memory for

one hour brings significant energy savings but also increases the num-

ber of memory errors from 57 to 658. Our approach can be used as the

fault detection and mitigation framework when applying such a scenario

within integer matrix products of multimedia applications. It may be

argued that, because multimedia applications are inherently error tol-

erant [40], SDCs would always have a benign effect on the output re-

sults. However, recent studies [115–117] show that there exist “criti-

cal” sections of multimedia applications where mitigation of soft errors

is imperative, especially when outputs from such sections are reused for

subsequent computations. In view of this, in the next two subsections

we present such an example within the context of state-of-the-art image

and video retrieval algorithms and we also showcase the corresponding

energy savings obtained when SDC tolerant algorithms are used in a vul-

nerable voltage-scaled environment.
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2.5.1 Effect of SDCs on the Results of an Image or

Video Retrieval Task

Consider a large image database preprocessed using the state-of-the-art

vector of locally aggregated descriptors (VLAD) method of Jegou et. al. [9]

to produce a compact descriptor for each database image comprising M

integers, with M ∈ [288, 1152]. The database images could be standalone

pictures, or consist of frames of several video sequences. In order to

match a given query image (or video frame) with the database images, an

inner product between the compact descriptor of the query image and the

descriptor of each of the images in the database is computed [9]. Given

that multiple query images (a.k.a., image “bunch”) are matched through

the stored database at any given moment (e.g., because of many concur-

rent users, or due to the use of video that results in multiple feature

vectors per query), the matching operations are carried out via GEMM

products between the descriptors of query image bunches and the ones of

the database images.

In order to see the impact of SDCs in such a framework, we consider

matching a query bunch comprising M image descriptors within 1000

segments of M database descriptors each (i.e., 1000 M ×M -by-M ×M

GEMMs), with the descriptors extracted from the Holidays dataset [9].

The experiment is set to establish the differences occurring in the re-

trieved images when running under SDC-free conditions versus when

running under KULFI’s single-row SDC case of Figure 2.9(b). We present

an illustration of returned matches in both error free and erroneous cases
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Table 2.1: Average number of discrepancies in the VLAD matches under
one row of computed similarity measures being affected by SDCs.

Image No. of wrong

bunch size M VLAD matches

288 84.2 (28.61%)

384 111.4 (29.01%)

576 165.2 (28.68%)

1152 343.1 (29.78%)

(a)

(b)

Figure 2.10: Indicative image matches (from the Holidays dataset [9]) in
VLAD-based image retrieval when using the query image on the left for
(a) an error free case; (b) a single-row erroneous case.

in Fig. 2.10. The average difference in the obtained results for various

bunch sizes is presented in Table 2.1. It is evident that the compact na-

ture of the image descriptors (which makes them sensitive to errors) leads

to nearly 30% discrepancy between the error-free and the SDC execution

of the descriptors. This results in irrelevant images being retrieved, as

shown in Fig. 2.10. Therefore, in such image and video retrieval exper-

iments, mitigation of SDCs is imperative in order to maintain reliable

system operation.
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2.5.2 Application in Energy-aware Computing Systems

under Voltage Scaling Incurring High SDC Rates

in Data Cache Memory

We present an example of the efficacy of our proposal as a power sav-

ing technique within systems where it is imperative to ensure reliable

performance at reduced energy consumption.

Voltage scaling is commonly found today within power-aware computing

for multimedia systems [135]. Recently, voltage scaling has been pro-

posed as the means for achieving substantial reduction in energy con-

sumption at the cost of transient cell failures in large memory arrays

(e.g., data caches) [17]. We thus assume that the fault-intolerant parts of

the multimedia processing algorithm (including data input, packing—for

the proposed approach—and post-computation error detection and cor-

rection) operate at Vsafe Volt, which ensures no SDCs occur at runtime,

albeit at the cost of high power dissipation. However, the fault-tolerant

parts (i.e., the GEMM calls) operate under scaled voltage Verror Volt (with

Verror < Vsafe), selected such that transient cell failures are occasionally

encountered within the utilized data cache, while instruction cache is

protected by on-chip variable-strength error-correcting codes (VS-ECC)

that leave no errors exposed to the operating system and application lay-

ers [17].
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2.5.3 Application Context

We performed experiments where ABFT, mABFT, DMR and the proposed

approach are used to detect SDCs within the GEMM operations of the

image retrieval task described in Section 2.5.1 for database segment sizes

of 576 and 1152 images, and each image in the database represented by a

descriptor comprising 576 and 1152 integers, respectively.

2.5.4 System Description and SDC Injection

The experiments were performed on an Intel i7-4578U 3GHz processor

(Windows 8.1, Intel C++ Compiler 15.0.1). The Intel Extreme Tuning

Utility was used for all voltage adjustments in our experiments and the

Intel Power Gadget API [136] was used to measure the dynamic CPU

power dissipation for the different approaches. The Intel Power Gad-

get allows for the retrieval of Intel processor features, including the esti-

mated real time processor power and frequency [136] . By incorporating

the C++ API version of the gadget within our fault tolerant implementa-

tion, power (as well as equivalent energy) measurements were obtained

for the desired code sections. Specifically, a call to the GetPowerData()

function of the Intel Power Gadget 3.0, returns frequency, power, temper-

ature or package power limit measurements of the processor, by accessing

the relevant drivers [136]. The power data, selected by setting iMSR=1 in

the call to GetPowerData() , returns power measurement in watts (W)

and energy measurements in joules (J) and milliwatthour (mWh), for a

given code section. We selected Vsafe = 1.37 V for SDC-free operation and
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Verror = 0.98 V for scaling. The chosen value for Verror is below the recom-

mended voltage for our system, but was still found to be providing for

safe operation. Further scaling causes actual failures in our setup (blue

screen of death), but does not allow for any control in our experimen-

tal conditions. Therefore, in common with related work [126, 137–139],

we opted to operate our platform at a safe voltage level and then inject

SDCs artificially with probabilities of 10−4 and 10−5 per data cache access6.

Thus, on average, 1 SDC occurs every 10, 000 and 100, 000 accesses during

each GEMM computation, respectively. This ensures that all methods

undergo the same SDC injection campaign. In summary, the chosen ex-

perimental setup emulates the case where the fault-tolerant parts of the

application (operating at Verror V) are exposed to data-cache SDCs that

are detected and corrected at runtime.

2.5.5 Energy Consumption Results

Table 2.2 shows the average CPU energy for the different approaches.

Due to the increased number of recomputations of ABFT, its performance

drops with increased SDC rates. Table 2.2 shows that the proposed ap-

proach provides for up to 35% reduction in energy consumption against

the fault-intolerant GEMM and up to 96% reduction against the other

alternatives. This is because:

1. like DMR, it achieves highly-reliable detection of the locations of

6Related work [17, 126, 137–139] has carried out experiments and simulation stud-
ies with similar SDC rates to the ones utilized here and we have verified that KULFI
produces similar rates.

78



2.5. Application in Energy-aware Computing Systems under Voltage
Scaling for Visual Descriptor Matching in Image and Video Retrieval

Table 2.2: Average CPU energy (mJ) and percentile comparison against
the fault-intolerant (conventional) sGEMM operating at VsafeV for GEMM
computations for matching a bunch of N = 576 and N = 1152 images
against a database of images consisting of M = 576 and M = 1152 images
respectively. For each case, each image is represented by an N -element
VLAD.

Approach
SDC Measured % decrease SDC Measured % decrease

rate Energy (mJ) in Energy rate Energy (mJ) in Energy

M = 576

sGEMM at Vsafe

10−5

133.92 0

10−4

133.92 0

Proposed 127.07 5.11 133.15 0.57

ABFT [101] 238.30 -77.94 235.86 -76.12

mABFT [4–8] 148.20 -10.66 150.35 -12.27

DMR [95] 168.04 -25.47 176.00 -31.42

M = 1152

sGEMM at Vsafe

10−5

1124.28 0

10−4

1124.28 0

Proposed 730.86 34.99 1030.32 8.36

ABFT [101] 2148.78 -91.13 2154.37 -91.62

mABFT [4–8] 1349.31 -20.02 1381.31 -22.86

DMR [95] 1875.17 -66.79 2168.82 -92.91

Table 2.3: Summary of features of different methods for SDC mitigation
in integer matrix products.

```````Feature
Method Proposed Fault-tolerant ABFT mABFT Dual Modular

Numerical Packing [101] [4–8] Redundancy [95]

Memory overhead 1 checksum element 1 additional row & col 12.5% more rows & cols 100% increase

Dynamic range loss 37.5% of bitwidth equation (2.24) equation (2.25) 0

Error correction Recomputes Corrects 1 SDC; Corrects multiple Recomputes

capability erroneous pairs recomputes rows & SDCs erroneous pairs

of locations columns for >1 SDC of locations

Mean execution overhead

vs. fault-intolerant 11.50% 12.52% 52.09% 108.34%

GEMM under no SDCs

Mean execution overhead

vs. fault-intolerant GEMM 21.21% 120.34% 85.40% 127.31%

for “single-row” of SDCs

Energy decrease with

20.05% −84.54% −15.34% −46.13%voltage scaling

and SDC rate of 10−5
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the vast majority of all the erroneous computations, while ABFT re-

quires row and column recomputations given that, beyond the case

of a single SDC per GEMM subblock, it cannot pin-point the SDC

locations precisely (Figure 1.3);

2. it has substantially-reduced overhead in comparison to DMR and

mABFT-based GEMM and its processing cycles are comparable to

the fault-intolerant GEMM.

It can thus be considered as the best approach for SDC mitigation under

aggressive voltage scaling in integer GEMM operations within energy-

aware computing systems.

2.6 Conclusions

We proposed a new method for highly-reliable integer matrix products.

Our approach inserts redundancy within the numerical representation

of the inputs by exploiting the concept of numerical packing. Analysis

of our proposal using high-performance generic matrix multiply (GEMM)

routines demonstrated that high reliability comes at the cost of certain

bitwidth loss and limited additional computations in comparison to the

equivalent fault-intolerant GEMM. Specifically, we showed that when no

SDCs are detected within GEMM outputs, numerical packing is expected

to incur about 0.95% more computations than ABFT, while remaining

20.37% and 49.20% more computationally efficient than mABFT and DMR

respectively. On the other hand, when multiple SDCs are detected, the
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requirement for “rollback-ABFT” decreases its efficiency with numerical

packing being the most efficient of all algorithms. We also show that

by employing “rollback-ABFT” for error correction when more than one

error is detected in GEMM outputs using the ABFT method, all meth-

ods show a very low likelihood of bitflips going undetected. Experimental

results on an Intel Ivy Bridge processor, demonstrate that the average ex-

ecution time overhead of the proposed method against high-performance,

fault-intolerant, GEMM realizations under SDC-free conditions is lim-

ited to 11.50%. Therefore, the reliability and execution time efficiency of

our method is comparable to that of ABFT and, unlike ABFT, our method

is capable of detecting the locations of the vast majority of all possible

SDCs. This makes our method superior to ABFT, mABFT and DMR

under the occurrence of multiple SDCs in memory. A summary of the

features, requirements and performance of the proposed method in ref-

erence to ABFT, mABFT and DMR is given in Table 2.3. The summary

shows that, on average: (i) under no SDCs in the GEMM execution, our

approach incurs only 2.51% higher overhead than algorithm-based fault-

tolerance (ABFT), and is 18.04% and 46.37% more efficient than modified

ABFT (mABFT) and dual modular redundancy (DMR), respectively; (ii)

under a single-row data corruption emanating from the use of a fault in-

jection tool, KULFI, the proposed approach is 17% to 47% more efficient

than all other methods, as it can pin-point the locations of all detected

SDCs. In terms of energy consumption requirements, based on an em-

ulated SDC-injection campaign incurred in data cache memory under

voltage scaling, we show that the proposed approach performs best in

comparison to all other approaches. We therefore demonstrate that our
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proposal paves the way for a new class of SDC mitigation methods for in-

teger matrix products that are fast, energy efficient, and highly reliable.
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Chapter 3

Numerical Packing: A

Checksum-less Method for

Fail-Stop Failure Mitigation

3.1 Introduction

Distributed computing clusters today provide for significant parallelism

possibilities at the cost of decreased mean-time-to-failure (MTTF) esti-

mates in comparison to single-core systems [19,23]. For example, Schroeder

and Gibson [19] report over 20-fold increase in the annual average num-

ber of failures recorded for a 4096-processor HPC system in comparison to

its 128-processor alternative. Therefore, multimedia applications requir-

ing data-intensive and high-throughput processing (e.g., webpage or mul-

timedia retrieval [29,30], relevance ranking [31] and object or face recog-

83



3.1. Introduction

nition in video [32, 33]) on such clusters are now prone to core failures,

occurring at increasing rates. Within all these applications, the com-

pute and memory-intensive parts comprise large sum-of-product com-

putations, i.e., inner and outer products, generic matrix multiplication

(GEMM) [11,35–40], and multidimensional convolution/cross-correlation

(CONV) operations [41,42]. These operations are typically performed us-

ing vectorized integer sum-of-product routines, or optimized single/double-

precision floating-point libraries [e.g., Intel’s sGEMMand ippsConvolve_64f

library routines] [35,36,43]. Therefore, ensuring the robustness of these

operations to core failures is of paramount importance for large-scale

multimedia application deployment in cloud computing clusters exhibit-

ing low MTTF characteristics.

In this chapter, we propose a novel FER mechanism for integer matrix

multiplication and convolution operations that creates redundant results

within the numerical representation of the output results using a vari-

ant of the numerical packing algorithm of Section (2.2). Similar to the

design of algorithms to allow for SDC detection and correction, FER can

be achieved by packing pairs of inputs within one integer number1 and

carrying out the actual GEMM or CONV operations with packed inputs.

Because the packed outputs contain redundant sum-of-products, up to a

certain number of failures of consecutive cores can be mitigated based

1The proposed algorithm is presented for integer representations, with the packed
inputs being typecast to floating point in order to utilized optimized mathematics li-
braries for GEMM and CONV (e.g., sGEMM/dGEMMof Goto or Intel MKL [35, 36]). Even
though the usage of floating-point representations for integer GEMM and CONV rou-
tines may seem counter-intuitive, it is in fact commonplace today since all processors
have native support for floating point [140] and, in the case of CONV, floating point
allows for Fourier-domain implementations.
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on the available outputs. Importantly, the proposed approach does not

require the processing of additional checksum inputs. Therefore, unlike

all existing FER approaches, this is the first time a core failure recovery

mechanism is proposed that does not require additional processor cores

(e.g., for checksum computations or modular redundancy) in comparison

to the conventional (fault-intolerant) routine.

Though the proposed algorithm focuses on fail-stop failure recovery, if all

output data streams are received from all processing units, our proposal

can also be used for the detection of SDCs. This is because all results can

be retrieved by using only a subset of the entire computing cluster, thus

allowing for cross-validation of obtained results for SDC mitigation.

Given that our algorithm can only be used for integer data computations,

we focus on large-scale, low-latency, multimedia applications that require

high-throughput integer-to-integer sum-of-product computations [40]. To

quantify the complexity of the proposed approach, we derive its over-

head in terms of arithmetic operations in comparison to the equivalent

checksum-based method. We also present experimental results on (i) an

18-core, shared-memory, AWS EC2 instance2, and (ii) a StarCluster [120]

of AWS EC2 spot instances that are terminated and migrated to AWS

EC2 on-demand instances for the duration that the spot price exceeds a

predetermined threshold. For the former, we demonstrate that the pro-

posed method achieves substantially-higher peak performance against

the equivalent FER method based on checksums, both under failure-free

and failure-occurring conditions. For the latter, we show that our ap-
2This is a c4.8xlarge AWS EC2 instance composed of multiple dual-nanocore

physical processors (Intel Haswell) with hyperthreading.
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proach provides for substantial reduction in deployment cost, especially

in comparison to the failure-intolerant approach that cannot use spot

instances. Finally, the source code for the proposed approach is made

available online at https://github.com/NumericalPacking/Core-

Failure-Mitigation-Code .

3.2 Proposed Algorithm Design

Let us consider: (i) L integer matrices A0, . . . , AL−1 (L ≥ 3), comprising M ×

N dimensions each, that must be processed3 via an N ×K integer kernel

matrix B [141]; (ii) L integer input signal vectors a0, , . . . , aL−1 (L ≥ 3),

comprising N samples each, that must be filtered by a K-sample integer

kernel vector b. In both cases, each operation is performed on a different

processing unit4 (PU) in an L-PU platform. We shall present an approach

that can recover all L GEMM or CONV results for a single (F = 1) PU

failure, without requiring additional checksum inputs. In order to achieve

this, we utilize symmetric packing, where both input and kernel matrices

are packed, as elaborated in Section 2.2.2. Symmetric packing allows for

the production of redundant outputs, i.e., akin to the middle zone of k

bits in the example of Fig. 2.3(f). As shown in this thesis, if constructed

3Supported algorithms include a range of linear and sesquilinear compute-intensive
operations including GEMM, Kronecker product, and multidimensional CONV. In this
thesis we focus on the two illustrative and important cases of matrix products and one-
dimensional convolution operations since the remaining operations follow in a straight-
forward manner from these results.

4In this work, a processing unit (PU) refers to an individual unit of a parallel/dis-
tributed computing platform, performing a fraction of the workload and with indepen-
dent failure characteristics. Therefore, a thread in a single core CPU, or a node with
multiple processors within a HPC system is referred to as a PU, provided the system
can continue operation even in the event of a PU failure.
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Figure 3.1: Illustration of failure mitigation in integer matrix product
for the elementary case of three 1 × 1-by-1 × 2 matrix products in an in-
teger representation with k = 15. Assuming that the PU that computes
r̂2 failed, the results of the other two PUs (r̂0 and r̂1) are used to produce
all three outputs r̃0, r̃1 and r̃2 after unpacking. The partitioning within
the rectangles shows the location (shifts by k or 2k bits) of inputs/outputs
when packed within a single number.

appropriately, these redundant outputs allow for the recovery from a PU

failure.

3.2.1 Proposed Packing Method for Failure-tolerant

GEMM

The first step of the proposed approach packs pairs from the L input ma-

trices, thereby generating L “packed” input matrices Â0, . . . , ÂL−1 given by

(0 ≤ l < L):

Âl = Sk {Al} +A(l+1)mod L (3.1)
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where Sk{Al} is the elementwise left bit operator defined in page xiv and

k the packing factor chosen such that:

k > log2 (max
∀l
∣Rl∣) + 1 and 3k ≤W, (3.2)

with W ∈ {32, 64} if all processing is carried out in 32-bit or 64-bit integer

representations and W ∈ {24, 52} if kernel processing is carried out in

single or double-precision floating-point representations [41,142].

For example, for L = 3, we have

Â0 = Sk {A0} +A1

Â1 = Sk {A1} +A2

Â2 = Sk {A2} +A0.

(3.3)

Packing of the kernel matrix B is also performed. This packing produces

the N × K
2 matrix5 B̂ by:

B̂ = Sk {Btop} +Bbot. (3.4)

where Btop and Bbot are the sub-matrices of B defined in the notational

conventions table of pg. xix. Given that the packing factor k in (3.1)–(3.4)

will increase the dynamic range of all Âl and B̂, we utilize 64-bit repre-

sentations for Âl and B̂.

5For simplicity of exposition, we assume that K is even.
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3.2.2 Packed GEMM Computations

All M ×N -by-N × K
2 matrix products can be computed concurrently on L

processors via the use of L 64-bit GEMM calls (e.g., OpenMP framework

with MKL dGEMM),

∀l ∶ R̂l = ÂlB̂, (3.5)

thereby producing all required results, as well as a number of “duplicate”

results within the numerical representation of the packed outputs R̂l.

Fig. 3.1 illustrates the simple case of three 1 × 1-by-1 × 2 matrix products

(L = 3, M = N = 1, K = 2) after packing has been carried out via (3.3) and

(3.4). The contents of the M × K
2 output matrices R̂0, R̂1 and R̂2 can be

expressed mathematically by:

R̂0 = Â0B̂

= S2k {A0Btop} + Sk {A0Bbot +A1Btop} +A1Bbot

= S2k {R̃0,top} + Sk {R̃0,bot + R̃1,top} + R̃1,bot

(3.6)

R̂1 = Â1B̂

= S2k {A1Btop} + Sk {A1Bbot +A2Btop} +A2Bbot

= S2k {R̃1,top} + Sk {R̃1,bot + R̃2,top} + R̃2,bot

(3.7)

R̂2 = Â2B̂

= S2k {A2Btop} + Sk {A2Bbot +A0Btop} +A0Bbot

= S2k {R̃2,top} + Sk {R̃2,bot + R̃0,top} + R̃0,bot.

(3.8)
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3.2.3 Unpacking of the Results

Our key insight is that out of the L packed matrices R̂0, . . . , R̂L−1, L − 1

matrices suffice for the recovery of all L outputs. For example, for L = 3,

any two matrices out of R̂0, R̂1 and R̂2 can produce all outputs, R̃0, R̃1

and R̃2, as illustrated in Fig. 3.1. For instance, assuming R̂0 and R̂1 are

used for the recovery of R̃0, R̃1 and R̃2, the required steps are given by:

R̃0,top = S−2k {R̂0} (3.9)

T0 = R̂0 − S2k {R̃0,top} (3.10)

T1 = S−k {T0} . (3.11)

Because of the complement-two arithmetic used in integer representa-

tions in commodity hardware, all negative elements (i, j) of T1 will be

found to be larger or equal to 2k−1 (maximum positive value within a

packed output element) and R̃0,top [i, j] (contained in the most-significant

bits of R̂0 [i, j]) will be found to be one less than their correct value. To

compensate for these effects of the complement-two arithmetic, we first

define the intermediate matrix E0 to store the signed values of T1 therein,

and adjust the values of R̃0,top as follows:

• ∀i, j ∶ if T1[i, j] ≥ 2k−1 , then set E0 [i, j] = T1 [i, j] − 2k (convert to

negative number); else set E0 [i, j] = T1 [i, j] (no change);

• ∀i, j ∶ if E0 [i, j] < 0, then set R̃0,top [i, j] ← (R̃0,top [i, j] + 1).
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Next, a similar check is performed to extract the signed representation of

R̃1,bot and the values of E0 are adjusted, i.e.,

T0 ← [T0 − Sk {T1}] , (3.12)

• ∀i, j ∶ if T0 [i, j] ≥ 2k−1, then set R̃1,bot [i, j] = T 0 [i, j] − 2k; else set

R̃1,bot [i, j] = T0 [i, j] ;

• ∀i, j ∶ if R̃1,bot [i, j] < 0, then set E0 [i, j] ← (E0 [i, j] + 1).

Similarly, R̂1 undergoes the same processing as R̂0 in order to extract

R̃1,top, the intermediate matrix E1 = R̃1,bot + R̃2,top and R̃2,bot. Finally, we

perform the following operations to complete the extraction of all results:

R̃0,bot = E0 − R̃1,top (3.13)

R̃2,top = E1 − R̃1,bot. (3.14)

Importantly, the _mm256_shuffle_epi32 and _mm256_permute2f128_si256

instructions (which are intrinsically supported in modern SIMD architec-

tures [143]) can further be used to optimize the output matrix reordering

using the “top” and “bot” index subsets.

3.2.4 Proposed Approach for One-dimensional Con-

volution

The same process can be used to mitigate PU failures within L parallel

convolution/cross-correlation (CONV) operations of N -sample input sig-
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nals al with a K-sample kernel b, producing output vectors rl by (0 ≤ i <

N +K − 1, 0 ≤ l < L):

rl = al ⋆b ⇐⇒ rl [i] = ∑
K−1
k=0 al [i − k] b [k] . (3.15)

Specifically, the proposed algorithm packs the signal vectors, al, into the

packed inputs, âl, following the same procedure as for (3.1), while the

convolution kernel b is packed into b̂ as shown for GEMM in (3.4).

The convolutions (0 ≤ l < L):

∀l ∶ r̂l = âl ⋆ b̂ (3.16)

can then be carried out with any optimized library (e.g., Intel’s IPP

ippsConvolve_64f routine [43], Matlab’s conv function, etc.) in or-

der to produce the (N + K
2 − 1)-sample signals r̂0, . . . , r̂L−1. In addition,

unpacking follows the same procedure as for GEMM, except for an addi-

tional summation operation. For example, for L = 3, given the unpacked

outputs r̃0,top, r̃0,bot, r̃1,top, and r̃1,bot, the “top” vectors comprise output sig-

nal samples with indices within [0,N + K
2 − 2], while the “bot” vectors

comprise signals with indices within [K2 ,N +K − 2]. The recovered output

signals are obtained by the following concatenation operations (0 ≤ l < 3):

∀l ∶ r̃l = [r̃l,top 0K
2

] + [0K
2

r̃l,bot] (3.17)

with 0K
2

the 1 × K
2 vector of zeros.
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3.2.5 Summary of Key Results

In order to recover from the fail-stop failure models described in this

work, checksum-based methods produce up to F checksum matrices,

Ac1, . . . , AcF . The number of checksum matrices is dependent on the num-

ber of PU failures that should be tolerated in the parallel GEMM execu-

tion. The simplest checksum matrix that can be used to recover from a

single PU failure in the L GEMM products (0 ≤ l < L)

Rl = AlB (3.18)

is

Ac1 =
L−1

∑
l=0

Al. (3.19)

This checksum matrix undergoes the same GEMM operation, Rc1 = Ac1B,

which requires the usage of an additional PU. The dynamic range of Rc1

is increased by L in comparison to GEMM products AlB. If the xth PU

fails, 0 ≤ x < L, we recover Rx by Rx = Rc1 − ∑∀l≠x Rl. Additional check-

sums may be added to mitigate more than one failure by using different

linear combinations of the A0, . . . , AL−1 matrices, as shown by Stefanidis

and Luk [4, 5]. Overall, in order to tolerate F PU failures in a paral-

lel computing environment, F additional PUs are set aside to compute

the results of the linear-checksum matrices [100, 113, 114], Rcf = AcfB,

1 ≤ f ≤ F .

On the other hand, the proposed method utilizes packing to create L

cyclically-duplicated/double-bitwidth descriptions for the inputs of ma-
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trix product and convolution operations. The packed inputs that are then

used within L 64-bit GEMM or CONV operations on L PUs. The proposed

unpacking process recovers all GEMM or CONV outputs with operations

count that depends only on the number of outputs and not on the inner-

product dimension of the GEMM or CONV processing. The following four

propositions formalize these key points.

Proposition 3.1. Let the packing of (3.1) and (3.4), and the execution of

the L GEMM operations of (3.5) on L independent PUs. All output GEMM

results can be recovered under the failure of any PU.

Proof. It suffices to show that, given a PU failure with the corresponding

failed GEMM denoted by: R̂f (f ∈ [0, L − 1]), the proposed algorithm can

recover all L GEMM outputs.

Following the packing algorithm of (3.1) and (3.4), any two packed GEMM

outputs can be used for the recovery of three output results. Specifically,

we recover the set R̃f , R̃(f+L−1)mod L and R̃(f+L−2)mod L using only packed

outputs, R̂(f+L−1)mod L and R̂(f+L−2)mod L expressed by:

R̂(f+L−2)mod L = S2k {R̃(f+L−2)mod L,top}

+ Sk {R̃(f+L−2)mod L,bot} (3.20)

+ Sk {R̃(f+L−1)mod L,top}

+ R̃(f+L−1)mod L,bot,
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R̂(f+L−1)mod L = S2k {R̃(f+L−1)mod L,top}

+ Sk {R̃(f+L−1)mod L,bot} (3.21)

+ Sk {R̃f,top} + R̃f,bot.

First, the output shifted by 2k (equivalent to the “top” subset of columns

of R̃(f+L−2)mod L), is extracted from the packed GEMM of (3.20). The ob-

tained result is then removed from (3.20) in order to obtain the outputs

scaled by k and 1 (to be used in subsequent steps) by:

R̃(f+L−2)mod L,top = S−2k {R̂(f+L−2)mod L} (3.22)

T0 = R̂(f+L−2)mod L − S2k {R̃(f+L−2)mod L,top} (3.23)

T1 = S−k {T0} . (3.24)

Because of the complement-two arithmetic used in integer representa-

tions in commodity hardware, all negative elements (i, j) of T1 will be

found to be larger or equal to 2k−1 (maximum positive value within a

packed output element) and R̃(f+L−2)mod L,top [i, j] (contained in the most-

significant bits of R̂(f+L−2)mod L [i, j]) will be found to be one less than their

correct value. To compensate for these effects of the complement-two

arithmetic, we first define the intermediate matrix E0 to store the signed

values of T1 therein, and adjust the values of R̃(f+L−2)mod L,top as follows:

∀i, j ∶ if T1[i, j] ≥ 2k−1 , then set E0 [i, j] = T1 [i, j] − 2k (convert to negative

number); else set E0 [i, j] = T1 [i, j] (no change);

∀i, j ∶ if E0 [i, j] < 0, then set R̃(f+L−2)mod L,top [i, j] ← (R̃(f+L−2)mod L,top [i, j] + 1).

Next, a similar check is performed to extract the signed representation of
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R̃(f+L−1)mod L,bot and the values of E0 are adjusted, i.e.:

T0 ← [T0 − Sk {T1}] , (3.25)

∀i, j ∶ if T0 [i, j] ≥ 2k−1, then set R̃(f+L−1)mod L,bot [i, j] = T0 [i, j] − 2k; else set

R̃(f+L−1)mod L,bot [i, j] = T0 [i, j] ; ∀i, j ∶ if R̃(f+L−1)mod L,bot [i, j] < 0, then set

E0 [i, j] ← (E0 [i, j] + 1).

Similarly, R̂(f+L−1)mod L undergoes the same processing as R̂(f+L−2)mod L in

order to extract R̃(f+L−1)mod L,top, the intermediate matrix E1 = R̃(f+L−1)mod L,bot+

R̃f,top and R̃f,bot. Finally, we perform the following operations to complete

the extraction of all results:

R̃(f+L−2)mod L,bot = E0 − R̃(f+L−1)mod L,top (3.26)

R̃f,top = E1 − R̃(f+L−1)mod L,bot. (3.27)

The remaining output GEMMs can be recovered using the described un-

packing steps, with a pair of packed outputs producing a triplet of matrix

outputs. We have thus shown that the lost R̃f GEMM output, together

with the outputs R̃i (0 ≤ i < L, i ≠ f), have been recovered.

Proposition 3.2. Let the packing of (3.1) and (3.4), and the execution of

the L CONV operations of (3.16) on L independent PUs. The results of

(3.15) can be recovered under the failure of any PU.

Proof. The proof follows the steps of the proof of Proposition 3.1, with

the change of matrices to vectors and is omitted for brevity of descrip-

tion. Once all vectors r̃l,top and r̃l,bot have been recovered (0 ≤ l < L), given
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that the “top” vectors comprise output signal samples with indices within

[0,N + K
2 −2] while the “bot” vectors comprise signals with indices within

[K
2 ,N +K−2], the concatenation operations of (3.17) are required to ob-

tain the final outputs.

From the proofs of Propositions 3.1 and 3.2, it is evident that only two out

of three PUs are required for each set of unpacking. Therefore, up to a

total of ⌊L3 ⌋ PU failures can be mitigated in the entire parallel/distributed

computing system, provided that no more than one failure is encountered

within each triplet.

Furthermore, if (3.2) holds, then the unpacking process guarantees that

the correct value is obtained for each output under the use of a 64-bit

integer representation (assuming 32-bit inputs).

While the proposed approach (approximately) halves the overall multiply-

accumulate (MAC) operations against the conventional approach dur-

ing GEMM, all operations are performed in 64-bit representations (as-

suming 32-bit inputs). Under the assumption that 64-bit arithmetic op-

erations require twice the cycles of 32-bit arithmetic operations, which

(amongst others) holds for AVX2-based realizations, we can quantify the

arithmetic operations (additions and MAC operations) required by the

proposed method in comparison to the conventional and checksum-based

failure mitigation approach. This is quantified in the following propo-

sition. We also focus on the case of up to F = ⌊L3 ⌋ failures as the same

complexity is required for mitigating F = 1 PU failures.

Proposition 3.3. In the absence of failures during L concurrent N×N -by-
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N ×N matrix products, and assuming that a 64-bit operation is equivalent

to two 32-bit operations, the number of arithmetic operations required by

the proposed approach is:

2NF + 5F − 8L − 1

2NL + 2NF − 2F
× 100% (3.28)

less than the conventional checksum-based roll-forward.

Proof. In the proposed approach, the packing of the L input matrices

A0, . . . , AL−1 and the B matrix requires N2

2 (2L + 1) addition operations

[see (2.6) and (3.4) and ignoring all arithmetic shift operations] and the

packed matrix products require L
2 (2N

3 −N2) operations. In terms of re-

covery, it can be shown via the analysis of Section 3.2.3 that 7
2N

2 (L − F )

operations are required to extract all outputs from the L − F matrices.

Given that the proposed method requires double the bitwidth of the con-

ventional failure-intolerant GEMM for its computation, the cycles count

of these computations will also be doubled. Therefore, by doubling the

sum of all arithmetic operations, the arithmetic operations of the pro-

posed approach are:

Cx{proposed} = N2 (2NL + 8L − 7F + 1) . (3.29)

For the mitigation of a single PU failure or a group of F failures using the

unweighted checksum-based method, N2 (L − F ) additions are required

for the checksum generation. Subsequently, L+F GEMMs are computed,

which correspond to (2N 3 −N2) (L + F ) operations. Post-processing is not

required for the checksum-based method when no failures are encoun-
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tered or when the failed PUs are the PUs holding the checksum matri-

ces. In such cases, the arithmetic operations performed by the checksum-

based method are:

Cx{no checksum failures} = N2(2NF − 2F + 2NL) (3.30)

Combining (3.29) and (3.30) to calculate the percentile reduction in the

arithmetic operations stemming from the proposed approach, we reach

(3.28).

For example, for N = 576, L = 6 and F = ⌊L3 ⌋ = 2, Proposition 3.3 shows that

our approach is 24.59% more efficient than the conventional checksum-

based approach.

Proposition 3.4. When F PU failures occur during L concurrent N ×N -

by-N ×N matrix products, the number of arithmetic operations required

by the proposed approach is up to:

2NF + 4F − 7L − 1

2NF + 2NL − 3F +L
× 100% (3.31)

less than the conventional checksum-based roll-forward.

Proof. The proposed approach requires the operations given by (3.29) re-

gardless of whether failures occurred or not. However, under the occur-

rence of a group of F PU failures, the checksum-based method must solve

a system of linear equations to recover the lost data. Assuming the failed

PUs correspond to the PUs computing the actual data outputs and not
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the checksum outputs, it can be shown that N2 (L − F ) operations are

required for data recovery. Therefore, the overall number of arithmetic

operations of the checksum-based roll-forward method when F fail-stop

failures are encountered is:

Cx{F checksum failures} = N2 (2NF − 3F + 2NL +L) (3.32)

Combining (3.29) and (3.32) to calculate the percentile reduction in the

arithmetic operations stemming from the proposed approach, we reach

(3.31).

For example, for N = 576, L = 6 and F = ⌊L3 ⌋ = 2, Proposition 3.4 shows

that numerical packing is 24.62% more efficient than the checksum-based

method. We note, however, that this is the worst case scenario for the

checksum-based method as some of the failed PUs could be PUs comput-

ing a checksum result, thus requiring no recovery.

In terms of resilience to multiple non-consecutive failures, similar to the

checksum approach of Jou and Abraham [102], the proposed approach

would either need additional processing units, i.e., as proposed by Luk,

Rexford, et al. [4, 6], or a generalized version of the proposed packing

mechanism which we present in succeeding chapter.

Table 3.1 presents examples of the arithmetic complexity per output de-

rived from the calculations of Proposition 3.3 when L = 16 cores are avail-

able for data computation. We focus on the fail-free case as a baseline

for comparisons, since, under the occurrence of failures, our approach
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Table 3.1: Giga-operations per output [and percentile overhead in com-
parison to the failure-intolerant (conventional) GEMM computation] for
N × N -by-N × N GEMM products when mitigating F = 4 failures in an
L = 16 core computing platform.

Method
Number of operations per output (×109)

N = 1152 N = 4608 N = 9216

Failure-intol. 3.06 195.67 1565.43

Proposed 3.07 (0.33%) 195.82(0.08%) 1566.05(0.04%)

Checksum 4.06 (32.68%) 260.92 (33.35%) 2087.35 (33.34%)

will outperform the checksum-based method with an even higher mar-

gin. The results of Table 3.1 show that, although the proposed approach

requires a limited number of arithmetic operations for packing and un-

packing, the production of L matrices using L PUs makes its operations’

count comparable to the conventional, failure-intolerant, GEMM. On the

other hand, the checksum-based method produces only L−F matrices via

the L utilized PUs, thereby leading to substantially-increased operations-

per-output in comparison to both the failure-intolerant GEMM and the

proposed approach. On average, Table 3.1 shows that numerical packing

incurs about 0.15% additional computations per output for packing and

unpacking in comparison to the failure-intolerant computation, while the

checksum approach requires 33.12% more computations to produce the

same number of outputs. The practical overhead incurred by the pro-

posed and the checksum-based approach is investigated via the experi-

ments of the following section.
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3.3 Experimental Results on a Shared-memory

18-core AWS EC2 Instance

We benchmark our proposal for core failure mitigation using a compute-

optimized c4.8xlarge instance of AWS EC2 (Intel Xeon E5-2666v3 2.9GHz

cores, on-demand instance type, Windows Server 2012, Intel C++ 15.0

Compiler, Intel MKL for GEMM operations, 36 EC2 virtual cores cor-

responding to 18 physical cores with shared memory). Each individual

throughput or execution-time result in our experiments corresponds to

the average of 1000 runs with randomly selected inputs from the utilized

datasets.

3.3.1 Execution Time Comparison for Failure Mitiga-

tion in Parallel GEMM Computations

Given that the optimal performance of the Intel MKL GEMM library is

obtained when parallel computations are done in physical cores [144,

145], we set the system affinity to 18 physical cores rather than the

36 EC2 virtual cores. This configuration can accommodate a shared-

memory computing cluster comprising four quadcore processors and we

can present results for data recovery when all computations in any of the

quadcore CPUs is lost. All packing, unpacking and checksum generation

make use of the parallel computing capability of the computing environ-

ment via the OpenMP framework, as well as the increased optimization

level offered by AVX2 SIMD instructions.

102



3.3. Experimental Results on a Shared-memory 18-core AWS EC2
Instance

Table 3.2: Average execution time results (in milliseconds) and percentile
overhead in comparison to the failure-intolerant (conventional) GEMM
computation when mitigating F = 4 (one quadcore) failures in L = 16
GEMM computations.

Method N = 1152 N = 4608 N = 9216

Failure-intol. 3.19 164.13 1255.06

Proposed 4.24 (32.92%) 194.98 (18.8%) 1415.66 (12.8%)

Checksum 4.55 (42.63%) 224.27 (36.64%) 1695.44 (35.09%)

Table 3.2 presents the average execution time for all methods when L = 16

for the computation of (0 ≤ l < 16):

Rl = Al,(N×N)BN×N . (3.33)

By comparing Table 3.1 and Table 3.2, it is evident that the performance

ranking of the methods follows the theoretical analysis of Section 3.2.5.

While the proposed approach incurs higher overhead than what is the-

oretically predicted in Table 3.1 (primarily due to variation in execu-

tion time between 64-bit and 32-bit memory and arithmetic operations),

it is still offering substantial execution-time improvement against the

checksum-based failure mitigation approach, particularly as the matrix

product dimension increases.

Fig. 3.2 presents the experimental peak performance6 achieved by each

approach including all pre- and post-processing. We note that the peak

performance achieved by all methods is slightly reduced because of the

6Each of the utilized Intel Xeon E5-2666v3 cores achieves V = 92.8 GFlop/s (operating
at 2.9 GHz with 32 floating-point operations per cycle under AVX2 instructions). The

peak performance achieved by each method is calculated by U(2N3−N2)
tV L

× 100%, where U
is the number of matrices of output results (i.e., U = L for the conventional and proposed
methods and U = L − F for the checksum-based approach) and t is the total execution
time (in seconds) for each case.
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Figure 3.2: Peak performance achieved by each method in the utilized
distributed computing environment for L = 16.

overheads of multicore systems with shared memory, i.e., it is well known

that all practical GEMM realizations will attain less than 90% of peak

performance in such a multicore cluster [35, 144, 145]. Furthermore,

since the proposed approach and the checksum-based method require ad-

ditional operations for failure mitigation, reduced peak performance is

expected in comparison to the failure-intolerant (conventional) approach.

Our results show that the conventional (failure-intolerant) GEMM achieves

64.50% to 85.31% of peak performance, while the proposed method for fail-

ure mitigation achieves 43.25% to 74.47% of peak performance. On the

other hand, checksum-based failure mitigation achieves only 45.27% to

62.18% of peak performance. Overall, our theoretical analysis and exper-

imental results demonstrate that our proposal offers the same reliabil-
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ity to core failures as conventional checksum-based methods, albeit with

peak performance that becomes comparable to the conventional failure-

intolerant approach as the inner sum-of-product dimension grows.

3.3.2 Execution Time Comparison for Failure Mitiga-

tion in Parallel Cross-correlation Computations

We now benchmark our approach and the checksum-based approach for

core failure recovery in the multicore execution of the CONV-based music

retrieval algorithm of Ellis et. al. [146]. The algorithm identifies cover

songs within a music database by extracting beat and tempo data from

the query song track and performing cross correlation of the beat and

tempo feature vectors with the beat and tempo vectors of each of the

songs in the database [146] . The dominant computation within this

process comprises two-dimensional cross-correlation between a matrix

of audio beat and tempo data and a database of such matrices. Using

this algorithm, we perform a music retrieval experiment with the music

database comprising beat-tempo data from the Million-song dataset sub-

set available at Columbia University’s LabROSA repository [147] and the

“1517-Artists” dataset of Seyerlehner et. al. [148].

The algorithm tracks beats of each of the input music tracks and gener-

ates a twelve-dimensional “chroma” representation specifying the pitches

of the twelve distinct semitones in the western octave [146]. We used 100

beats to describe every music track. Thus, each music tack is composed

of a 12 × 100 matrix representing its beat-chroma features. We then mod-
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Table 3.3: Execution time (in milliseconds) and percentile difference in
comparison to the conventional failure-intolerant processing for recovery
after a quadcore processor failure in a music retrieval system.

Method Conventional Proposed Checksum

Database size Failure-intolerant Failure-tolerant Failure-tolerant

4992 382.26 530.44 (38.8%) 529.68 (38.6%)

7488 490.85 629.41 (28.2%) 692.30 (41.0%)

9984 579.62 726.19 (25.3%) 812.98 (40.3%)

12480 729.13 829.82 (13.8%) 968.92 (32.9%)

17472 926.58 1046.79 (13.0%) 1308.99 (41.3%)

ified the Matlab code of Ellis et. al. [146] for parallel execution of the

music similarity measurement. Specifically, the Matlab spmd function

was used to set up the parallel computing environment. Given that Mat-

lab uses only the physical cores of the computing unit for parallel pro-

cessing (see feature(’numCores’) command in Matlab), we distribute

the music database amongst 16 cores for the conventional computation

and proposed algorithm, while the checksum-based method uses 12 cores

for data storage and the other 4 cores for checksum data. All prepro-

cessing for beat and feature extraction from the audio clips is performed

offline, i.e., prior to the actual retrieval task, and it is not carried out by

the cloud-computing server of our experiment, which is only used for the

actual retrieval task.

Table 3.3 shows the average execution time (in milliseconds) for the search

and retrieval of a music track within various database sizes. The re-

sults demonstrate that the performance of the proposed algorithm con-

verges to that of the conventional, failure-intolerant, implementation as

the database size increases. On the other hand, the checksum-based

method is found to incur considerable (and largely consistent) execution
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time overhead (33%–41%) across all database sizes.

3.4 Image Retrieval Based on Terminatable

AWS EC2 Spot Instances

To illustrate the efficacy of our proposal in instance failure mitigation

when carrying out integer sum-of-product computations with terminat-

able instances, we performed several medium-scale image retrieval ex-

periments using the state-of-the-art vector of locally aggregated descrip-

tors (VLAD) method of Jegou et. al. [149] deployed on a cluster of AWS

EC2 spot instances.

3.4.1 Application Description

The preprocessing done by the VLAD algorithm produces a compact “sig-

nature” for each database image and query image based on [149] [150]:

(i) the local aggregation of visual features into clusters using K-means

clustering; (ii) compaction of the aggregated feature vectors into a vec-

tor of integers based on normalization, projection and quantization. In

order to perform a retrieval task, we compute the inner product between

the compacted feature vector of a query image and the compacted feature

vector of each of the images in the database. The images corresponding

to the top-T highest inner-product values are subsequently returned as

the T best matches for the given query. Given that multiple query im-

ages (a.k.a. image “bunch”) are matched through the stored database
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at any given moment (e.g., because of many concurrent users, or due to

the use of video that results in multiple feature vectors per query), the

matching operations are carried out via GEMM products between the fea-

ture vectors of query image bunches and the database images. Following

the GEMM, only inner-product values above a predetermined threshold

are retained and a sorting algorithm is used in order to find the top-T

matches [151]. This post-processing stage has negligible computational

cost, thereby leaving the GEMM as the compute-intensive operation be-

ing carried out in the cloud computing cluster (the preprocessing stage

for the VLAD signature extraction is performed offline for the database

and on a local core for the query images). In our experiments, we use the

VLAD descriptors derived from the INRIA Holidays dataset of [9, 149]

comprising 1,491 holiday images, together with subsets selected from an

additional 110,700 so-called “distractor” images from the INRIA website

https://lear.inrialpes.fr/~jegou/data.php . Prior to our test,

each database image was preprocessed to derive the 8,192-length VLAD

signature vector of integers.

3.4.2 System Description: StarCluster Comprising AWS

EC2 Instances

We examine the cost implication of running the VLAD image retrieval

algorithm using a five-instance AWS EC2 cluster based on MIT’s open

source StarCluster toolkit [120] with the MPICH2 plugin. Each instance

is a quadcore m3.xlarge instance type running Ubuntu 12.04.2. In order
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to ensure cluster stability, StarCluster imposes that the master instance

is setup as an on-demand instance type, while slave instances can ei-

ther be spot or on-demand instance types. Unlike the case of the shared-

memory cluster of Section 3.3 where the image database is in commonly-

accessible memory, in this case the image database is equally spread over

the four available slave instances, with the exception of the checksum-

based approach, where the database is equally spread across three slave

instances, with the fourth instance reserved for storing and computing

with checksum data.

Firstly, the slave instances of the failure-intolerant implementation are

set to run on on-demand instance types with the set price of $0.266 per

hour for the m3.xlarge instance type [152], thereby ensuring no service

interruption albeit at a high instance cost. On the other hand, given that

the proposed method and the checksum-based implementation of the im-

age retrieval experiment can tolerate instance failures, they run on AWS

EC2 spot instances with spot bidding price set the same as for the on-

demand instances ($0.266 per hour). We monitor the actual expenditure

for spot instances by monitoring the evolution of the spot price via the

AWS command line interface (CLI). Although AWS EC2 spot instances

are known to be about 60% cheaper than the corresponding on-demand

instances, the spot price occasionally spikes above a user’s spot bidding

price (i.e., above $0.266 in our case), which results in the termination of

the spot instances [153].

Fig. 3.3 shows the spot price history7 corresponding to the week of our ex-

7We pulled the exact spot prices by running the command: aws
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Figure 3.3: AWS EC2 m3.xlarge spot instance type pricing history for
06/Dec/2015–13/Dec/2015 [availability-zone: us-east-1e, product-
description: Linux/UNIX (AWS VPC)].

periment. We superimpose on the figure a predetermined “safety thresh-

old” of $0.100: when spot prices surpass this threshold, a spot price spike

is impending and our system is designed to react (as elaborated in the

next subsection) before the spot price reaches our $0.266 bid. For the

seven-day spot instance history of Fig. 3.3, the minimum, maximum and

average spot prices were found to be $0.034, $0.500 and $0.058 per hour,

respectively.

ec2 describe-spot-price-history --instance-types m3.xlarge
--start-time 2015-12-13T07:08:09 --end-time 2015-12-20T07:08:09
--availability-zone us-east-1e --product-description "Linux/UNIX
(Amazon VPC)" on the AWS CLI [154].

110



3.4. Image Retrieval Based on Terminatable AWS EC2 Spot Instances

3.4.3 Experiment Description and Results

Following this setup and the spot history of Fig. 3.3, every time the spot

price rose to the safety threshold, three slave instances were migrated to

on-demand instances (one at a time8) and the fourth instance was simply

terminated. Thus, we run three slave instances at the on-demand price

for one hour (since billing is carried out in hourly installments). If after

one hour the spot price had dropped below the safety threshold, all four

slave instances were brought back to spot instances and the on-demand

instances were terminated. In this way, within the week reported in Fig.

3.3, there were 236 timestamps when the spot prices exceeded the safety

threshold of $0.100, and they corresponded to 18 hours of on-demand

instance usage (i.e., on average, 2 hours 34 minutes per day). Therefore,

the total cost of running the failure-tolerant algorithms for the seven-day

period (168 hours) is given by:

18 × 3 × $0.266 + (168 − 18) × 4 × $0.052 = $45.564

where $0.052 corresponds to the mean of spot prices below the safety

threshold for the seven-day period.

On the other hand, the failure-intolerant algorithm run at a flat rate of

$0.266-per-instance-per-hour, amounting to 168 × 4 × $0.266 = $178.752 for

the seven-day time period. Table 3.4 shows the cost savings for the VLAD

image retrieval experiment per million images processed, under different

8we only need three slave instances in the proposed approach since the results of
all four can be derived from three instances if we know no failures are bound to occur
(which is the case when switching from spot to on-demand)
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Table 3.4: Cost per million image queries (all in US dollar cents) and
percentile difference in comparison to the conventional failure-intolerant
processing for recovery after a quadcore instance failure in VLAD-based
image retrieval.

Method
Conventional Proposed Checksum

Failure-intolerant Failure-tolerant Failure-tolerant

Database size (×0.01$) (×0.01$) (×0.01$)

4992 0.29 0.09 (-68.88%) 0.11 (-61.25%)
11520 0.30 0.09 (-69.15%) 0.11 (-62.22%)
17472 0.37 0.10 (-71.78%) 0.13 (-64.10%)
82944 0.41 0.11 (-72.57%) 0.14 (-65.95%)

112128 0.59 0.16 (-73.66%) 0.19 (-68.64%)

database sizes.

The results of Table 3.4 show that, as expected, with increased database

size: (i) the cost of all approaches per million image queries is increas-

ing; (ii) the cost reduction percentage of both approaches exhibits is also

increasing. Overall, numerical packing allows for 16%–24% reduction of

cost in comparison to the checksum-based method and offers, on average,

71.21% cost reduction (i.e., almost 3.5 times less cost) in comparison to

the failure-intolerant realization.

3.5 Conclusions

We propose a novel method for fail-stop failure mitigation in sum-of-

product computations performed in multicore cloud computing platforms,

with particular emphasis on integer matrix products and integer convolution/cross-

correlation. Our approach inserts redundancy within the numerical rep-

resentation of the inputs themselves by exploiting the concept of nu-
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merical packing. Therefore, our method does not perform any redun-

dant GEMM/CONV computations (akin to checksums) in order to miti-

gate processing unit failures. We show theoretically and experimentally

that this results in significantly-lower overhead in comparison to the

equivalent checksum-based failure mitigation method. Importantly, our

approach achieves peak performance results that approach the conven-

tional failure-intolerant computation as the matrix or signal dimensions

increase, since the overhead of the required pre- and post-processing di-

minishes to zero. A deployment of the proposed approach over Amazon

Web Services Elastic Compute Cloud (AWS EC2) spot instances that pro-

vide for cost savings (but require the mitigation of instance terminations)

shows that the proposed method incurs nearly 3.5 times less cost than

failure-intolerant processing.
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Chapter 4

Numerical Entanglement for

Multiple Core Failure

Mitigation.

In the previous chapter, we presented numerical packing for the miti-

gation of single processing unit (PU) failure, based on an information

redundancy technique that differs from the established method of check-

sum data generation, storage and processing. As discussed in Section

3.2, the limitation of the proposed method of Chapter 3 is the inability

to recover lost data when multiple PU failures occur within a set of in-

dependent PUs designed for the mitigation of a single fail-stop failure.

This stems from the limited number of data elements that can be packed

within a given number representation, in order to support the dynamic

range requirements of practical applications. Numerical entanglement as

proposed by Anam and Andreopoulos [44], overcomes this packing prob-
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lem by introducing the concept of number overlap (entanglement) within

a packed representation. Numerical entanglement maintains the encod-

ing relationship through linear and sesquilinear (LS) operations while

providing offline data recovery in the event of processing unit (PU) fail-

ures or SDC mitigation in the absence of failures.

Numerical entanglement for the mitigation of fail-stop failures and/or

SDCs within LS operations on L integer data streams (L ≥ 3) linearly

superimposes the input streams to form L numerically entangled integer

data streams. These entangled streams are then stored in-place of the

original inputs such that an arbitrary number of LS operations can be

performed using these entangled data streams. The output results can

be extracted from any (L − F ) entangled output streams by additions and

arithmetic shifts, thereby mitigating F fail-stop failures (F ≤ ⌊L−12
⌋), or de-

tecting up to F SDCs per L-tuple of outputs at corresponding in-stream

locations. Therefore, unlike other methods, the number of operations re-

quired for the entanglement, extraction and recovery of the results is

linearly related to the number of the inputs and does not depend on the

complexity of the performed LS operations.

In the following section, we present an overview of numerical entangle-

ment for single fail-stop failure mitigation as proposed in [44] as well

as highlighting its similarities and differences to numerical packing. We

then continue in subsequent sections to propose enhancements to the tra-

ditional numerical entanglement algorithm for multiple failure mitiga-

tion and for SDC detection/correction. Our proposal is validated within

an on-demand Amazon EC2 instance (Haswell architecture with AVX2
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support) via integer matrix product operations. Our analysis and ex-

periments for fail-stop failure mitigation and SDC detection reveal that

the proposed approach incurs 0.65% to 37.23% reduction in processing

throughput in comparison to the equivalent error-intolerant processing.

This overhead is found to be up to two orders of magnitude smaller than

that of the equivalent checksum-based method, with increased gains of-

fered as the complexity of the performed LS operations is increasing.

Therefore, our proposal can be used in distributed systems, unreliable

multicore clusters and safety-critical applications, where robustness against

failures and SDCs is a necessity.

4.1 Overview of Numerical Entanglement

Given L integer inputs Al, (L ≥ 3; Al ∈ RM×N ; ∀l ∶ 0 ≤ l < L), our aim is to

independently perform any linear or sesquilinear (LS) operation1 on all L

inputs using an N ×K integer processing kernel B, with only (L − 1) data

groups sufficient for producing all L outputs, Rl. For example, consider

a 1 ×N -by-N ×N vector-matrix-multiplication (VMM) that must be per-

formed on L input data streams, al (0 ≤ l < L) using a kernel matrix B to

yield:

rl = al ⋅B (4.1)

with each computation performed on a different PU in an L− PU comput-

ing cluster. We describe below the traditional numerical entanglement

1Example of such LS operations include element-by-element addition/subtraction/-
multiplication, inner/outer product and circular convolution or cross-correlation.
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construct for recovering all data outputs when a single PU (F = 1) fail to

return results after a deadline or in the event of a failure. To achieve

this, input data streams al are pre-processed/encoded to form a set of en-

tangled data streams, âl, which are stored in place of the plain inputs.

The concurrent VMM of (4.1) is subsequently performed using the entan-

gled inputs and the plain kernel matrix B, to produce a set of entangled

outputs, r̂l. We describe in the subsections that follow, the encoding (i.e.

entanglement) algorithm that allows for the requirement of only L − 1 of

the entangled data outputs for decoding all L outputs, r̃l.

4.1.1 Input Data Entanglement for linear processing

The entangled input data streams â0, . . . , âL−1 are generated by packing

pairs from the L input streams while allowing for stream overlap via

arithmetic shift and addition operations by (0 ≤ l < L):

âl = Sk {al} + al mod L (4.2)

where k is an object within an entanglement parameter pair, {k, s} and

Sk {al} is the element-wise left bit shift operator defined in the notational

conventions table of pg. xix. The entanglement parameter pair, {k, s}

controls the output dynamic range of output data while preventing in-

teger overflow. Importantly, numerical entanglement guarantees correct

output data recovery provided that:

• maximum bit representation of data outputs does not exceed
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(L − 2)k + s bits and,

• the entanglement parameters {k, s} are bounded by:

(L − 1) ⋅ k + s ≤ w (4.3)

with w the bit-width of the utilized integer representation.

The entanglement parameters {k, s} are chosen in such a way that (4.3)

is maximized with s ≤ k. Thus for 32−bit integer representation with

w = 32 and for a parallel VMM computation with L = 3 and L = 30, the

optimal entanglement parameters are {k, s} = {11, 10} and {1, 1} respec-

tively. Specifically, setting {k, s} = {11, 10} for L = 3 allows for up to 21-bits

of output dynamic range for data outputs. However, a maximum of 17-

bits can only be supported if the entanglement parameters were set to

{k, s} = {15, 2}.

Following the entanglement of (4.2), the VMM computation of (4.1) can

be performed by (0 ≤ l < L):

r̂l = âl ⋅B (4.4)

A pictorial illustration of (4.4) is presented in Figure 4.1.

Conversely, the equivalent construct for failure mitigation using the sym-

metric numerical packing of Section 3.2 is illustrated in Figure 4.2. The

major difference between the two algorithms is that, while the latter spec-

ifies a constant output dynamic range for all sets of {L,F}, the former

provides a systematic method of increasing the output dynamic range of

data elements as L increases for a given value of F . On the other hand,
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4.1. Overview of Numerical Entanglement

Figure 4.1: Illustration of L numerically entangled outputs after inte-
ger LS processing for the mitigation of F = 1 failures. The solid arrows
indicate maximum bit-width for each output rl,[n] 0 ≤ l < L, 0 ≤ n < N .

because the encoding of numerical packing requires the production of a

kernel matrix (or vector) that is half the size of the plain kernel, sub-

stantial execution time reduction can be achieved especially for compute-

intensive algorithms. The major differences between numerical packing,

numerical entanglement and other algorithm-based forward error recov-

ery methods are summarized in Table 4.1.
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4.1. Overview of Numerical Entanglement

Figure 4.2: Illustration of L numerically packed outputs after integer LS
processing for the mitigation of F = 1 failures. The solid arrows indicate
the maximum attainable dynamic range of each output rl [n] 0 ≤ l < L.

4.1.2 Disentanglement/Failure Recovery

Following the computation of (4.1), let us assume that all but one com-

puting PU return their processed outputs after a pre-established compu-

tation deadline. For such a case, we describe the recovery steps for all

L processed data outputs, r̃l 0 ≤ l < L for the VMM computation of (4.1).

The following steps can be verified pictorially by Fig. 4.1.

Given the index of the PU with missing outputs, x, the first step of disen-

tanglement requires the generation of a temporary vector, r̂temp, compris-

ing the scaled sum of the available data streams such that:

r̂temp =
(L−2)

∑
i=0
(−1)i ⋅ Si⋅k {r̂(x+L−1−i)modL} (4.5)
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4.1. Overview of Numerical Entanglement

A useful characteristic of the vector of temporary data elements of (4.5)

is the disentanglement of the outputs such that each representation holds

two distinguishable values in “packed” form i.e., without overlap as shown

in Figs. 4.4(b) and 4.5(b). Therefore, after the computation of (4.5), r̂temp

is composed of rx and r(x+1)modL in the lower and upper bit regions respec-

tively. We can then recover r̃x and r̃(x+1)modL located at the (L − 1)k least

significant and (L − 2)k + s most significant bits of (4.5) respectively by:

r̃x = S−(2w−(L−1)⋅k) {S(2w−(L−1)⋅k) {r̂temp}} (4.6)

r̃(x+1)modL = S−((L−1)⋅k) {(−1)
L ⋅ (r̂temp − r̃x)} (4.7)

The remaining L−2 outputs can subsequently be recovered by (1 ≤ i < L − 1):

r̃(x+(i+1))modL = r̂(x+i)modL − Sk {r̃(x+i)modL} (4.8)

Indeed the recovery of (4.5)–(4.8) shows that the output vector, r̂x was not

required to derive the entire set of L output vectors, r̃l.

Note that to ensure accurate recovery of outputs using the disentangle-

ment steps described in this section, (4.5) would require a double bit-

width representation for its computation. However, the use of w-bits is

also possible with slight modifications to the disentanglement steps.

We show in Listing 4.1 a sample C++ implementation (optimized using

Intel’s SSE intrinsic) for recovering all L data streams when no results

are returned from the last computing core. Further optimization can be
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achieved by employing parallel programming algorithms for both the pre-

and post processing stages of numerical entanglement.

In the sections that follow, we now focus on the description of the proposed

multi-stage/multi-tier entanglement design for the mitigation of multiple

fail-stop failures. We also show that the proposed algorithm is capable of

detecting and correcting SDCs without data re-computation.

4.2 Generalized Numerical Entanglement for

Multiple Failure Recovery.

As described in Section 4.1, the single-tier numerical entanglement of

Figure 4.1 can only mitigate a single fail-stop failure. Therefore, a sys-

tematic design of an F−tier numerical entanglement algorithm is neces-

sary for the recovery of output data when F out of L parallel processing

units fail to return processed outputs. In addition, we show that, beyond

the recovery of F fail-stop failures, the proposed F -tier entanglement al-

gorithm is capable of detecting F SDCs or detecting and correcting F − 1

SDCs in output data elements when no failures occur. We begin by de-

scribing the simplest multi-tier algorithm for {L,F} = {5, 2}, i.e. the case

of two fail stop failures. As before, one-dimensional data inputs are used

for all derivations in this section for brevity of exposition as it is straight-

forward to generalize the proposal for LS matrix computations.
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int k , s , num_shifts ,w;

for ( int n=0;n<N; n+=8)

{

__m256i d_temp64_low= _mm256_setzero_si256 ( ) ;

__m256i d_temp64_high= _mm256_setzero_si256 ( ) ;

__m256i r_ti lde64_low , r_ti lde64_high ;

__m256i r_hat64_low , r_hat64_high , temp_r_tilde ;

__m128i temp_r_tilde32_high , temp_r_tilde32_low ;

__m128i temp_r_hat64_low , temp_r_hat64_high ;

num_shifts =1;

for ( int i =L−2; i >=0; i −=2)

{

/*load eight 32−b i t s outputs o f core ( i ) and s p l i t

into high and low parts in order to u t i l i z e 64−b i t

in teger AVX i n t r i n s i s c s */

temp_r_hat64_low=_mm256_extracti128_si256 ( r_hat32 [ i ] [ n ] , 0 ) ;

temp_r_hat64_high=_mm256_extracti128_si256 ( r_hat32 [ i ] [ n+4] ,1) ;

r_hat64_low =_mm256_cvtepi32_epi64 ( temp_r_hat64_low ) ;

r_hat64_low=_mm256_slli_epi64 ( r_hat64_low , num_shifts *k ) ;

//add to d_temp

d_temp_low = _mm256_add_epi64 ( d_temp_low , r_hat64_low ) ;

r_hat64_high= _mm256_cvtepi32_epi64 ( temp_r_hat64_high ) ;

r_hat64_high=_mm256_slli_epi64 ( r_hat64_high , num_shifts *k ) ;

d_temp_high = _mm256_add_epi64 ( d_temp_high , r_hat64_high ) ;

/*load eight 32−b i t s outputs o f core ( i −1) and s p l i t

into high and low parts in order to u t i l i z e 64−b i t

in teger AVX i n t r i n s i s c s */

temp_r_hat64_low=_mm256_extracti128_si256 ( r_hat32 [ i −1][n ] , 0 ) ;

temp_r_hat64_high=_mm256_extracti128_si256 ( r_hat32 [ i −1][n+4] ,1) ;

r_hat64_low =_mm256_cvtepi32_epi64 ( temp_r_hat64_low ) ;

r_hat64_low=_mm256_slli_epi64 ( r_hat64_low , num_shifts *k ) ;

//subtract from d_temp

d_temp_low = _mm256_sub_epi64 ( d_temp_low , r_hat64_low ) ;

r_hat64_high= _mm256_cvtepi32_epi64 ( temp_r_hat64_high ) ;
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r_hat64_high=_mm256_slli_epi64 ( r_hat64_high , num_shifts *k ) ;

d_temp_high = _mm256_sub_epi64 ( d_temp_high , r_hat64_high ) ;

num_shifts +=2;

}

d_temp_low = _mm256_slli_epi64 ( d_temp_low , 2 *(w−k) ) ;

r_t i lde64_low= _mm256_srai_epi64 ( d_temp_low , 2 * (w−k) ) ;

d_temp_high = _mm256_slli_epi64 ( d_temp_high , 2 *(w−k) ) ;

r_t i lde64_high= _mm256_srai_epi64 ( d_temp_high , 2 * (w−k) ) ;

//Convert 64−b i t recovered outputs , r _ t i l d e to 32−b i t outputs

temp_r_tilde32_low= _mm256_cvtepi64_epi32 ( r_ti lde64_low ) ;

temp_r_tilde32_high= _mm256_cvtepi64_epi32 ( r_ti lde64_high ) ;

//actual output for core (L−2)

r_t i lde32 [L−2][n ] = _mm256_set_m128i ( temp_r_tilde32_high , temp_r_tilde32_lo w

) ;

//compute output for core (L−1) using r_ t i lde32 of core (L−2)

r_ti lde64_low=_mm256_sub_epi64 ( r_ti lde64_low , d_temp ) ;

r_t i lde64_low= _mm256_srai_epi64 ( r_ti lde64_low ,2 *k ) ;

r_t i lde64_high=_mm256_sub_epi64 ( r_ti lde64_high , d_temp2 ) ;

r_t i lde64_high= _mm256_srai_epi64 ( r_ti lde64_high ,2 *k ) ;

//Convert 64−b i t recovered outputs , r _ t i l d e to 32−b i t outputs

temp_r_tilde32_low= _mm256_cvtepi64_epi32 ( r_ti lde64_low ) ;

temp_r_tilde32_high= _mm256_cvtepi64_epi32 ( r_ti lde64_high ) ;

//actual output for core (L−1)

r_t i lde32 [L−1][n ] = _mm256_set_m128i ( temp_r_tilde32_high , temp_r_tilde32_lo w

) ;

//compute output for remaining L−2 cores

for ( int j =0; j <L−2; j ++)

{

temp_r_tilde = _mm256_slli_epi32 ( r_t i lde32 [ ( j +L−1)%L ] [ n ] , k ) ;

r_t i lde32 [ j ] [ n ] = _mm256_sub_epi32 ( r_hat32 [ j ] [ n ] , temp_r_tilde ) ;

}

}

Listing 4.1: Recovery of L data streams using L − 1 entangled streams
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Table 4.1: Summary of features of different methods for K-failure miti-
gation within L streams under a w-bit representation.

Method
Checksum-based Dual Modular Numerical Numerical

FER [96,97] Redundancy Packing Entanglement

Feature [101,113,155] [95] [156] [44,157]

In-place storage No No Yes Yes

% of redundant
F
L
× 100% 100% 0% 0%

LS computations

Reduction of F = 1: ⌈log2 L⌉
0 bits

F = 1 ∶ 12-bits F = 1: ⌈w
L
⌉

output bitwidth F > 1: see Table 4.2 F > 1 ∶ NA F > 1: see Table 4.2

supported

Failure F ≤ ⌊L−1
2
⌋ failures F = 1 failure in F = 1 failure in F ≤ ⌊L−1

2
⌋ failures

Mitigation in L + F streams, L ≥ 3 L = 2 streams L ≥ 3 streams in L streams, L ≥ 3

Practical ≈ ( 7
2N−1 ) × 100% 0.03% to 37.23%

execution More than More than for GEMM. (decreases for GEMM.

overhead F
L
× 100% 100% with increased (decreases with

operand length) increased operand

length.)

4.2.1 Generalized Numerical Entanglement in Groups

of Five Inputs (L = 5, F = 2)

In this subsection, we illustrate the basic case of mitigation of two fail-

stop failures in five input streams, detection of two SDCs, or the detection

and correction of one SDC within the quintuple of outputs at any position

n (0 ≤ n < N), with N the length of the output vectors.

Entanglement

In the two-tier entanglement with L = 5, the entangled data elements

derived from the plain inputs, a0, . . . , a4, is given by (∀l ∶ 0 ≤ l < 5):

â(1)l = Sk1 {al} + al mod L (4.9)
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and

â(2)l = Sk2 {â
(1)
l } + â(1)l mod L (4.10)

with

3k1 + s1 ≤ k2 + s2 (4.11)

2k2 + s2 ≤ w. (4.12)

The maximum bit-width supported for each output element is upper bounded

by 2k1 + s1 bits.

The values for k2 and s2 are chosen such that 2k2 + s2 is maximum within

the constraint of (4.12) and s2 ≤ k2. Similarly, the values for k1 and s1 are

chosen such that 3k1 + s1 is maximum within the constraint of (4.11) and

s1 ≤ k1. Via the application of LS operations on the entangled input data

streams, â(2)l using a kernel vector b, we obtain the entangled outputs

r̂(2)l with each output stream comprising of Nout data elements. A concep-

tual illustration of the entangled outputs after an LS operation is given

in Fig. 4.3. From the illustration presented, it is straight forward to ob-

serve that the proposed two-tier entanglement algorithm achieves fault

tolerance by sacrificing (k1 + k2)-bits out of the available w-bits utilized

for conventional computation. As a practical instantiation of (4.11) and

(4.12), for w = 32, the optimal entanglement parameters for processing

signed integer data is given by: k1 = 6, k2 = 11, s1 = 3 and s2 = 10 .

We now describe the disentanglement and recovery process in case of any

two failures. The reader can also consult Fig. 4.3 in order to verify the

results of all the presented steps.
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(a)

(b)

Figure 4.3: Illustration of entanglement of five outputs after integer lin-
ear processing: (a) second tier of superimposed outputs; (b) first tier of su-
perimposed outputs, showing the original output values r0 [n] , . . . , r4 [n]
that are entangled within, 0 ≤ n < Nout.
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Disentanglement

The proposed method mitigates F ∈ {1, 2} failures. Equivalently, if all

L entangled output streams are obtained, it can detect up to two SDCs

and can also detect and correct any single SDC within any quintuple of

outputs [r̃(2)0 [n] . . . r̃
(2)
4 [n]]

T

.

For the case of loss of a single stream r̂(2)x , 0 ≤ x < L, due to a single

fail-stop failure, we recover the outputs of the first tier by:

r̂(1)temp = r̂(2)(x+2)mod5
− Sk2 {r̂

(2)
(x+1)mod5

}

r̂(1)(x+3)mod5
= S−2(w−k2) {S2(w−k2) {r̂

(1)
temp}}

r̂(1)(x+1)mod5
= S−2k2 {−(r̂

(1)
temp − r̂(1)(x+3)mod5

)} (4.13)

r̂(1)(x+2)mod5
= r̂(2)(x+1)mod5

− Sk2 {r̂
(1)
(x+1)mod5

}

r̂(1)(x+4)mod5
= r̂(2)(x+3)mod5

− Sk2 {r̂
(1)
(x+3)mod5

}

r̂(1)x = r̂(2)(x+4)mod5
− Sk2 {r̂

(1)
(x+4)mod5

}

On the next stage, we recover the final outputs by:

r̂temp = r̂(1)4 − Sk1 {r̂
(1)
3 } + S2k1 {r̂

(1)
2 }

r̃0 = S−(2w−3k1) {S(2w−3k1) {r̂temp}}

r̃1 = r̂(1)0 − Sk1 {r̃0} (4.14)

r̃2 = r̂(1)1 − Sk1 {r̃1}

r̃3 = r̂(1)2 − Sk1 {r̃2}

r̃4 = r̂(1)3 − Sk1 {r̃3}
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Explanation of (4.13) and (4.14)—see also Fig. 4.3: The first part of

(4.13) creates a composite number comprising r̂(1)(x+3)mod5
in the l2+k2 most-

significant bits and r̂(1)(x+1)mod5
in the 2l2 least-significant bits (therefore,

r̂(1)temp requires 3l2 + k2 bits). In the second part, r̂(1)(x+3)mod5
is extracted by:

(i) discarding the (2w − 2l2) most-significant bits; (ii) arithmetically shift-

ing the output down to the correct range. The third part of (4.13) uses

r̂(1)(x+3)mod5
to recover r̂(1)(x+1)mod5

and the last three parts of (4.13) use: (i)

r̂(1)(x+1)mod5
to recover r̂(1)(x+2)mod5

, (ii) r̂(1)(x+3)mod5
to recover r̂(1)(x+4)mod5

and, finally,

(iii) r̂(1)(x+4)mod5
to recover r̂(1)x . Finally, having recovered all r̂(1)0 , . . . , r̂(1)4 , via

(4.14), we recover the final outputs r̃0, . . . , r̃4.

For the case of two fail-stop failures, r̂(2)x1
and r̂(2)x2

with 0 ≤ x1, x2 < L and

x2 > x1, we first define the stream index x based on the distance xdiff =

x2 − x1 between the two streams. Specifically, we set:

x ≡

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x2, if xdiff < 3

x1, if xdiff ≥ 3
(4.15)

If xdiff = 1, we can disentangle the tier-one outputs by:

r̂(1)temp = r̂(2)(x+2)mod5
− Sk2 {r̂

(2)
(x+1)mod5

}

r̂(1)(x+3)mod5
= S−2(w−k2) {S2(w−k2) {r̂

(1)
temp}}

r̂(1)(x+1)mod5
= S−2k2 {−(r̂

(1)
temp − r̂(1)(x+3)mod5

)} (4.16)

r̂(1)(x+2)mod5
= r̂(2)(x+1)mod5

− Sk2 {r̂
(1)
(x+1)mod5

}

r̂(1)(x+4)mod5
= r̂(2)(x+3)mod5

− Sk2 {r̂
(1)
(x+3)mod5

}
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and, on the next stage,

r̂temp = r̂(1)(x+3)mod5
− Sk1 {r̂

(1)
(x+2)mod5

}

+ S2k1 {r̂
(1)
(x+1)mod5

}

r̃(x+4)mod5 = S−(2w−3k1) {S(2w−3k1) {r̂temp}}

r̃(x+1)mod5 = S−3k1
{r̂temp − r̃(x+4)mod5}

r̃x = r̂(1)(x+4)mod5
− Sk1

{r̃(x+4)mod5}

r̃(x+2)mod5 = r̂(1)(x+1)mod5
− Sk1

{r̃(x+1)mod5}

r̃(x+3)mod5 = r̂(1)(x+2)mod5
− Sk1

{r̃(x+2)mod5}

(4.17)

If xdiff = 2, we can disentangle the outputs by:

r̂(1)temp = r̂(2)(x+2)mod5
− Sk2 {r̂

(2)
(x+1)mod5

}

r̂(1)(x+3)mod5
= S−2(w−k2) {S2(w−k2) {r̂

(1)
temp}}

r̂(1)(x+1)mod5
= S−2k2 {−(r̂

(1)
temp − r̂(1)(x+3)mod5

)} (4.18)

r̂(1)(x+2)mod5
= r̂(2)(x+1)mod5

− Sk2 {r̂
(1)
(x+1)mod5

}

and on the next stage
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r̂temp = r̂(1)(x+3)mod5
− Sk1 {r̂

(1)
(x+2)mod5

}

+ S2k1 {r̂
(1)
(x+1)mod5

}

r̃(x+4)mod5 = S−(2w−3k1) {S(2w−3k1) {r̂temp}}

r̃(x+1)mod5 = S−3k1
{r̂temp − r̃(x+4)mod5}

r̃(x+2)mod5 = r̂(1)(x+1)mod5
− Sk1

{r̃(x+1)mod5} (4.19)

r̃(x+3)mod5 = r̂(1)(x+2)mod5
− Sk1

{r̃(x+2)mod5}

r̃x = (r̂
(2)
(x+4)mod5

− S(k1+k2){r̃(x+4)mod5}

− r̃(x+1)mod5) × (2k1 + 2k2)
−1

The last part of (4.19) can be implemented without element-wise multi-

plication with the inverse factor of (2k1 + 2k2) if one additional temporary

variable, one addition and two arithmetic shifts are used.

Finally, if xdiff ∈ {3, 4}, disentanglement and recovery of all outputs r̃0, . . . , r̃4

follows the steps for xdiff ∈ {2, 1} respectively , albeit with x ≡ x1 as per

(4.15). We conclude the presentation for the case of (L,F ) = (5, 2) with

some remarks relating to various implementation aspects of our approach.

Remark 1 (operations within w bits): To facilitate our exposition, the first

three parts of (4.13), the first two parts of (4.14), and the first three parts

of (4.16)–(4.19) are presented under the assumption of a 2w-bit integer

representation since r̂(1)temp and r̂temp require 2w bits.

Remark 2 (recovery without the use of F ∈ {1, 2} streams): Notice that,

for the case of a single fail-stop failure, (4.13) does not use stream(s) r̂(2)x .

131



4.2. Generalized Numerical Entanglement for Multiple Failure
Recovery.

This is a crucial element of our approach: since streams r̃0, . . . , r̃4 were

derived without using r̂(2)x , full recovery of all outputs takes place even

with the loss of one entangled stream. Similarly, for the case of two fail-

ures, (4.16) and (4.18) do not use streams r̂(2)x1
and r̂(2)x2

for the recovery of

r̃0, . . . , r̃4.

Remark 3 (detection of two SDCs and correction of any single SDC within

[r̂(2)0 [n] . . . r̂
(2)
4 [n]]

T

): Given that we can recover all outputs from three

entangled streams, to detect and correct any single SDC within any quin-

tuple [r̂(2)0 [n] . . . r̂
(2)
4 [n]]

T

(∀n ∶ 0 ≤ n < Nout), we can recover five versions

of all outputs [r̃0[n] . . . r̃4[n]]
T

using (∀x ∈ [0, 4]):

{r̃0[n], . . . , r̃4[n]}
(x) disentangle
←ÐÐÐÐÐÐÐÐÐ
via ((4.16))-((4.19))

{r̂(2)x [n], r̂
(2)
(x+1)mod5

[n], r̂(2)(x+2)mod5
[n]} .

(4.20)

The pattern between the agreed results will show the stream number

where the SDC occurred, and the recovery can retain the results that do

not stem from that stream. For example, if r̂
(2)
0 [n] is erroneous due to

an SDC, then the disentanglements of (4.20) corresponding to x ∈ {0, 3, 4}

will not agree with the ones of x ∈ {1, 2}, which demonstrates than an

SDC occurred in r̂
(2)
0 [n] (similar for the other cases)—therefore, to miti-

gate the SDC occurrence, the results of the x ∈ {1, 2} disentanglements

of (4.20) should be used. On the other hand, the occurrence of two SDCs

within any quintuple [r̂(2)0 [n] . . . r̂
(2)
4 [n]]

T

will result in recovery of out-

puts that do not agree with each other for all x values after the disentan-

glements of (4.20). Therefore, when (4.20) returns nonidentical results

for all values of x at index n, more than one SDC has occurred for the
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index n, and correction can only be achieved by re-computation of all five

outputs.

Remark 4 (dynamic range): Bit 2k1 + s1 within each recovered output

r̃0[n], . . . , r̃4[n] represents its sign bit. Given that: (i) each entangled out-

put comprises the addition of two outputs (with one of them left-shifted

by k1 bits); (ii) the entangled outputs must not exceed 3k1 + s1 bits, we

conclude that the outputs of the linear operations must not exceed the

range:

∀n ∶ r0[n], . . . , r4[n] ∈ {−(22k1+s1−1 − 22k1) , 22k1+s1−1 − 22k1} . (4.21)

with k1 and s1 defined within the constraints of (4.11) and (4.12).

4.2.2 Generalized Numerical Entanglement for Two

Fail-Stop Failure Mitigating (L≥5, F = 2)

We now focus on generalizing numerical entanglement for mitigation F

fail-stop failures with the condition that F ≤ ⌊L−12
⌋. As a first step, we

draw up a generalization for the case of L ≥ 5, F = 2 in the following sets

of equations and the description that follow.

The entanglement parameters, {k1, s1, k2, s2} that control the dynamic

range of data outputs are given by:

Pk1 + s1 ≤ (P − 2)k2 + s2

(P − 1)k2 + s2 ≤ w (4.22)

133



4.2. Generalized Numerical Entanglement for Multiple Failure
Recovery.

where P = ⌈L2 ⌉. From the expression of (4.22), we can deduce the num-

ber of “zones” (cf Fig. 4.3) required for constructing the tier-1 and tier-2

entanglements of the input data streams. For example, for L = {11, 12},

the first part of (4.22) indicates that there exists P = 6 zones of k1-bits

and one zone of s1-bits for the tier-1 entanglement, while the second part

of the equation shows that the tier-2 entanglement is constructed using

P − 1 = 5 zones of k2-bits and one zone of s2-bits. Using the zones repre-

sentation, it is also easy to deduce that the maximum bit-width that can

be supported for all data elements within the performed LS operation is

(P − 1) ⋅ k1 + s1 bits. In addition, following the constraints of (4.22), the

optimal entanglement parameters that will maximize the available bit-

width can be derived. Therefore, for the example of L = {11, 12} and for

w = 32, the optimal parameters are given by: {k1, s2, k2, s2}={4, 2, 6, 2}.

Entanglement follows the same pattern as (4.9) and (4.10) and LS oper-

ations can be performed on the entangled inputs with no additional/re-

dundant resources for improved reliability.

We present a generalized algorithm for disentanglement for the two fail-

ure cases in this class, i.e., F = {1, 2}.

For the case of loss of a single stream r̂(2)x , 0 ≤ x < L, due to a single
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fail-stop failure, we recover the outputs of the first tier by (P = ⌈L2 ⌉) :

r̂(1)temp =
(P−2)

∑
i=0
(−1)i ⋅ (Si⋅k2 {r̂

(2)
(x+P−1−i)modL

})

r̂(1)(x+P )modL
= S−(2w−(P−1)k2) {S2w−(P−1)k2

{r̂(1)temp}}

r̂(1)(x+1)modL
= S−(P−1)k2

{(−1)P ⋅ (r̂(1)temp − r̂(1)(x+P )modL
)} (4.23)

r̂(1)(x+i+1)modL
= r̂(2)(x+i)modL

− Sk2 {r̂
(1)
(x+i)modL

} ∀i ∶ 1 ≤ i < L, i ≠ P − 1

On the next stage, we recover the final outputs by:

r̂temp =
(P−1)

∑
i=0
(−1)i ⋅ (Si⋅k1 {r̂

(1)
(L−i−1)})

r̃0 = S−(2w−Pk1) {S(2w−Pk1) {r̂temp}} (4.24)

r̃i = r̂(1)(i−1) − Sk1 {r̃i−1} ; ∀i ∶ 1 ≤ i < L

For the case of two fail-stop failures, r̂(2)x1
and r̂(2)x2

with 0 ≤ x1, x2 < L,

x2 > x1, xdiff = x2 − x1 and

x ≡

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x2, if xdiff < P

x1, if xdiff ≥ P
(4.25)

We present the recovery steps for three classes of failure locations based

on the calculated difference xdiff.

• if xdiff ∈ {1, L − 1}, the corresponding value for x is selected given the

constraint of (4.25).

Tier-one output disentanglement can be achieved by:
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r̂(1)temp =
(P−2)

∑
i=0
(−1)i ⋅ (Si⋅k2 {r̂

(2)
(x+P−1−i)modL

})

r̂(1)(x+P )modL
= S−(2w−(P−1)k2) {S2w−(P−1)k2

{r̂(1)temp}} (4.26)

r̂(1)(x+1)modL
= S−(P−1)k2

{(−1)P ⋅ (r̂(1)temp − r̂(1)(x+P )modL
)}

r̂(1)(x+i+1)modL
= r̂(2)(x+i)modL

− Sk2 {r̂
(1)
(x+i)modL

} ; ∀i ∶ 1 ≤ i < L − 1, i ≠ P − 1

and, on the next stage,

r̂temp =
(P−1)

∑
i=0
(−1)i ⋅ (Si⋅k1 {r̂

(1)
(x+P−i)modL

})

r̃(x+P+1)modL = S−(2w−Pk1) {S(2w−Pk1) {r̂temp}}

r̃(x+1)modL = S−(P−1)k1
{(−1)P−1 ⋅ (r̂temp − r̃(x+P+1)modL)} (4.27)

r̃(x+i+1)modL = r̂(1)(x+i)modL
− Sk1

{r̃(x+i)modL} ; ∀i ∶ 1 ≤ i < L, i ≠ P

• If 1 < xdiff < P or P < xdiff < L − 1 or (xdiff = P and (LmodP ) ≠ 0), the

disentanglement algorithm is designed such that the derivation of

xdiff < P is equivalent to that of L−xdiff with the corresponding value

of x chosen with respect to the constraint of (4.25). The first stage

of disentanglement can be computed by:
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r̂(1)temp =
(P−2)

∑
i=0
(−1)i ⋅ (Si⋅k2 {r̂

(2)
(x+P−1−i)modL

})

r̂(1)(x+P )modL
= S−(2w−(P−1)k2) {S(2w−(P−1)k2) {r̂

(1)
temp}}

r̂(1)(x+1)modL
= S−(P−1)k2

{(−1)P ⋅ (r̂(1)temp − r̂(1)(x+P )modL
)} (4.28)

r̂(1)(x+i+1)modL
= r̂(2)(x+i)modL

− Sk2 {r̂
(1)
(x+i)modL

} ; ∀i ∶ 1 ≤ i < xd1, i ≠ P − 1

with xd1 ≡

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

L − xdiff, if xdiff < P

xdiff, if xdiff ≥ P

and on the next stage

r̂temp =
(P−1)

∑
i=0
(−1)i ⋅ (Si⋅k1 {r̂

(1)
(x+P−i)modL

})

r̃(x+P+1)modL = S−(2w−Pk1) {S(2w−Pk1) {r̂temp}}

r̃(x+1)modL = S−(P−1)k1
{(−1)P−1 ⋅ (r̂temp − r̃(x+P+1)modL)} (4.29)

r̃(x+i+1)modL = r̂(1)(x+i)modL
− Sk1

{r̃(x+i)modL} ; ∀i ∶ 1 ≤ i ≤ xd1, i ≠ P

0 = r̂(2)(x+L−i)modL
−S(k1+k2) {r̃(x+L−i)modL}

−Sk1
{r̃(x+L−i+1)modL}−Sk2

{r̃(x+L−i+1)modL}

−r̃(x+L−i+2)modL; ∀i ∶ 1 ≤ i < L − xd1

The last part of (4.29) requires that a linear system with (L − xd1 − 1)

unknowns must be solved in order to completely recover all output

data streams. For F = 2 fail-stop failures, a linear system compris-

ing one or two unknowns will be solved to be able to efficiently re-

cover the processed data belonging to all computing nodes. There-
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fore, by inspecting the last part of (4.29), a linear system of equa-

tions with two unknowns is obtained, and can be solved using any

well known method.

• Finally, If xdiff = P and (LmodP ) = 0, the first stage of disentangle-

ment can be achieved by:

r̂(1)temp1 =
(P−2)

∑
i=0
(−1)i ⋅(Si⋅k2 {r̂

(2)
(x2−1−i)

})

r̂(1)x2
= S−(2w−(P−1)k2) {S2w−(P−1)k2

{r̂(1)temp}}

r̂(1)(x2−P+1)
= S−(P−1)k2

{(−1)P ⋅ (r̂(1)temp − r̂(1)x2
)} (4.30)

r̂(1)(i+1) = r̂(2)i − Sk2 {r̂
(1)
i } ; ∀i ∶ (x2 − P + 1) ≤ i < (x2 − 1)

r̂(1)temp2 =
(P−2)

∑
i=0
(−1)i ⋅ (Si⋅k2 {r̂

(2)
(x1+L−1−i)mod L

})

r̂(1)x1
= S−(2w−(P−1)k2) {S2w−(P−1)k2

{r̂temp2}} (4.31)

r̂(1)(x1+P+1)mod L
= S−(P−1)k2

{(−1)P ⋅ (r̂(1)temp2 − r̂(1)x1
)}

r̂(1)(i+1)mod L
= r̂(2)i − Sk2 {r̂

(1)
i } ; ∀i ∶ (x1 + P + 1) modL ≤ i < (x1 − 1)

It is evident that the first stage disentanglement of (4.30) and (4.31)

produces all tier-1 entangled streams required for the second stage

of disentanglement such that (4.24) can be employed for the second

stage of disentanglement.

We have therefore shown in the set of equations above that any single or

double fail-stop failures can indeed be mitigated for all L ≥ 5.

More explicitly, the derivation of (4.22) is based on the knowledge that

for any value of L and for F = 2, there exists a minimum number of PUs
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with consecutive indices available for the disentanglement process, irre-

spective of the failure indices, {x1, x2}. These consecutive PUs are used

for the computation of the set of r̂(1)temp values of (4.4), (4.28) or (4.31). For

example, for L = 7 and {x1, x2}={3, 4}, five PUs with indices {5, 6, 0, 1, 2}

will always be available for the computation of set of r̂(1)temp values. How-

ever, for {x1, x2}={3, 5} and {x1, x2}={3, 6}, up to four and three PUs with

consecutive indices exist after failure respectively. Therefore, for all com-

binations of {x1, x2} for {L,F} = {7, 2}, at least three PUs with consecutive

indices will always be available for data recovery. Generalizing this for

all values of L and for F = 2, we found the minimum number of PUs with

consecutive indices to be equal to (P − 1). Hence, an optimally designed

numerical entanglement algorithm with at most P − 1 consecutive nodes,

would have (P − 2)-zones of overlap and only P − 2 arithmetic shift oper-

ations, in order to obtain the set of r̂(1)temp values, such that each r̂
(1)
temp[n]

holds two integer values in a separable “packed” format as described in

Section 4.1.2 and as illustrated in Fig. 4.4(b) and Fig. 4.5(b). These two

“packed” values can subsequently be extracted using the second and third

parts of (4.4), (4.28) or (4.31).

Furthermore, it can be observed from Fig. 4.1 and Fig. 4.3, that an N -

zones overlap in the numerical entanglement construct, implies that each

individual value held within an entangled representation can occupy a

maximum of (N ⋅ ki + si)-bits, while the entire entangled value must be

held within ((N + 1) ⋅ ki + si)-bits , with i ∈ [1, F ].

Putting these two points together, the second part of (4.22) ensures that

each entangled value at tier-2 of numerical entanglement with P − 2
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(a)

(b)

Figure 4.4: Illustration of entanglement of seven outputs with two fail-
ures after integer linear processing: (a) second tier of superimposed out-
puts showing the worst case failure locations; (b) derivation of the first
set of temporary variables, r̂

(1)
temp[n], using the consecutive from (a) to ob-

tain two physically separable integer values, 0 ≤ n < Nout. The maxi-
mum bit-width requirement for this tier of numerical entanglement is
also highlighted.
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(a)

(b)

Figure 4.5: Illustration of first tier of numerical entanglement of seven
outputs after integer linear processing: (a) outputs derived using the
three consecutive nodes from the first stage of disentanglement; (b)
derivation of the second set of r̂temp[n] values using the consecutive from
(a) to obtain two physically separable integer values, 0 ≤ n < Nout. The
maximum bit-width requirement for this tier of numerical entanglement
is also highlighted.
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“zones” of overlap and occupying a total of ((P − 1) ⋅ k2 + s2)-bits, must not

exceed the total available bit-width of integer representation, w. Also,

after the first stage of disentanglement using P − 1 consecutive nodes, we

are guaranteed to have a minimum of P consecutive nodes available at

the tier-1 of numerical entanglement as illustrated in Fig. 4.5(a). Follow-

ing the same principle as above, and keeping in mind that each entangled

value in tier-1 is held within an individual value that make up an entan-

glement for tier-2, it is straightforward to derive the constraint of the first

part of (4.22). This description is used to derive the entanglement param-

eters for the generalization of numerical entanglement for any L,F value

in subsequent sections. We illustrate in Figs (4.4) and (4.5), the worst

case failure location for {L,F} = {7, 2}, the derivation of the separable

“packed” values held within r̂(1)temp using P −1 = ⌈L2 ⌉−1 = 3 consecutive nodes

and (P − 2) = 2 arithmetic shift operations, as well as the constraints on

the supported bit-width at the two tiers of entanglement.

Finally, from the data layout of Fig. (4.5), and given the two addition

operations required at the two tiers of numerical entanglement for the

mitigation of fail-stop failures, the maximum dynamic range of data out-

puts is bounded by:

∀n ∶ r0[n], . . . , rL−1[n] ∈ [− (2(P−1)k1+s1−1 − 2(P−1)k1) , (2(P−1)k1+s1−1 − 2(P−1)k1)] .

(4.32)

Therefore, (4.32) comprises the range permissible for the computed LS

operations with the generalized entangled representation derived from

(4.9) and (4.10). Thus, we conclude that, for integer outputs with range
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bounded by (4.32), the extraction mechanism of (4.23)–(4.31) is necessary

and sufficient for the recovery of any two stream losses from r̂(2)0 , . . . , r̂(2)(L−1).

4.2.3 Generalized Entanglement in Groups of L In-

puts (L ≥ 3, F ≤ ⌊L−12
⌋)

We now examine the general case of (L,F ) numerical entanglement, which

uses F levels of linear superpositions of pairs of inputs to mitigate F fail-

stop failures or detect F SDCs in each L-tuple of outputs, with L ≥ 2F + 1.

First, for F levels of linear superpositions of pairs of inputs, similar de-

scription presented in Section 4.2.2 that considers the minimum number

of consecutive PU indices required for the first stage of disentanglement

for any {L,F} and for P = ⌈LF ⌉, leads to the derivation of the entanglement

parameters given by:

(P + F − 2)k1 + s1 ≤ (P + F − 4)k2 + s2

(P + F − 3)k2 + s2 ≤ (P + F − 5)k3 + s3

⋮ (4.33)

(P + 1)kF−2 + sF−2 ≤ (P − 1)kF−1 + sF−1

PkF−1 + sF−1 ≤ (P − 2)kF + sF

(P − 1)kF + sF ≤ w

where kx and sx (∀x ∶ 1 ≤ x ≤ F ) are selected to maximize the constraint

of (4.33) and sx ≤ kx. As before, the maximum bit-width available for rep-

resenting each output is dependent on the pair {k1, s1} and is given by
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(P + F − 3)k1 +s1. However, in order to avoid integer overflow considering

the addition operations required for entanglement at the F superposition

stages, the maximum dynamic range supported by numerical entangle-

ment for mitigating F fail-stop failures within a cluster of L processing

nodes is given by:

∀n ∶ r0[n],⋯, rL−1[n] ∈ [−(2
(P+F−3)k1+s1−1 − 2(P+F−3)k1) , (2(P+F−3)k1+s1−1 − 2(P+F−3)k1)] .

(4.34)

Examples of the tier-1 entanglement parameters together with the max-

imum bitwidth available for data outputs for different cases of L and F

are given in Table 4.2 assuming a 32-bit representation. We also present

the bitwidth permitted by the equivalent checksum method of Section

2.3.1 in order to ensure that its checksum streams do not overflow un-

der a 32-bit representation and using linear checksum weights [5] [4],

w1 = [1, 1,⋯, 1]T, w2 = [1, 2,⋯, L]T and w3 = [20, 21,⋯, 2L−1]T. More elabo-

rately, we show in Fig. 4.6 the relationship between L, F and the maxi-

mum allowable bitwidth of data outputs when checksum-based and nu-

merical entanglement-based failure mitigation methods are employed.

The results show that numerical entanglement approaches the optimal

bitwidth of the failure-intolerant processing as L increases for a fixed

value of F . However, because of the non linear relationship between

L and the maximum achievable bitwidth via numerical entanglement

based on the allowable values of kf and sf of (4.33), certain combinations

of L and F are sub-optimal as shown in the plot of Fig. 4.6. For exam-

ple, for {L,F} = {18, 1}, (4.33) shows that k1 and s1 can only take values

of unity, leaving up to 14-bits unused within the 32-bit integer represen-
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Table 4.2: Examples of bitwidth supported for the output data under
w = 32 bit integer representation and: (i) the proposed approach; (ii)
checksum-based failure mitigation. Any F failures in L streams (or F
SDCs in each L-tuple {r0, . . . , rL−1}) can be mitigated (or detected) un-
der both frameworks, with the checksum-based method requiring F ad-
ditional streams.

L F k1 s1

Maximum bitwidth supported by

Proposed Checksum-based

3 1 11 10 21 30

5 1 7 4 25 29
5 2 5 5 15 28

7 1 5 2 27 29
7 2 5 4 19 27
7 3 3 3 12 25

8 1 4 4 28 29
8 2 5 4 19 26
8 3 3 3 12 24

11 1 3 2 29 28
11 2 4 2 22 25
11 3 3 3 15 21

tation. Comparatively, for {L,F} = {17, 1}, k1 = 2, s1 = 0 maximizes the

available data bitwidth. Therefore, the results of Fig. 4.6 provide the op-

timal values of {L,F}, that maximize the dynamic range of data outputs.

On the other hand, the use of checksum data for reliability improvement

achieves close to optimal bitwidth requirements for smaller values of L,

while they become almost impractical when exponential weight vectors

(e.g. w3 = [20, 21,⋯, 2L−1]T) are used within larger values of L.

For the pre-processing of data inputs for failure mitigation, two inputs

are entangled together (with one of the two shifted by k bits) to create

each entangled input stream of data of each F stage of entanglement.

Any LS operation is then performed directly on these input streams and
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up to F fail-stop failures can be mitigated within each group of L outputs.

The generalized entanglement vectors for 0 ≤ l < L are obtained by:

â(1)l = Sk1 {al} + al mod L

â(2)l = Sk2 {â
(1)
l } + â(1)l mod L

⋮

â(F )l = SkF
{â(F−1)l } + â(F−1)l mod L

(4.35)

After the application of the linear operation on {â(F )0 , â(F )1 ,⋯, â(F )(L−1)} to ob-

tain the entangled outputs {r̂(F )0 , r̂(F )1 ,⋯, r̂(F )(L−1)}, disentanglement ensues

in order to obtain the desired output data streams, {r̃(F )0 , r̃(F )1 ,⋯, r̃(F )(L−1)}.

The remainder of this section is dedicated to proving that recovery from

F fail-stop failures is possible.

The proof is constructed by induction. Initially, it is noted that the cases

(L,F ) ∈ {(L, 1) , (L, 2)} hold, since they have been demonstrated in Sec-

tions 4.1 and 4.2.1.

Let us now assume that this holds for F entanglement levels derived via

(4.35) with L ≥ 2F + 1 and kx and sx (1 ≤ x ≤ F ) selected such that the

conditions of (4.33) hold and ∀x ∶ sx ≤ kx. We shall show that, under this

assumption, this also holds for F+ ≡ F + 1 entanglement levels and F+

failures in L+ ≥ 2F + 3 streams, with F+ constraints given by (4.33) under

the replacement of F by F+.

We first note that it suffices to prove this result for the equality case, i.e.,

L+ = 2F +3, as having more than 2F +3 streams will not influence the clas-

sification of failure patterns and recovery steps discussed in the following
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Figure 4.6: Maximum bitwidth supported for data outputs undergoing
LS operation using 32-bit integer representation and mitigating up to F
fail-stop failures for L data streams (or processing nodes). The checksum
implementation uses checksum weights as proposed in [5] [4], i.e., w1 =
[1, 1,⋯, 1]T, w2 = [1, 2,⋯, L]T and w3 = [20, 21,⋯, 2L−1]T
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parts of the proof (it simply provides more alternatives for recovery). Af-

ter F + 1 failures in 2F + 3 streams, we shall have F + 2 available streams.

Out of the (2F+3
F+2 ) possible patterns, it is straightforward to show that any

failure pattern that allows the availability of ⌊F+22 ⌋ pairs of consecutively-

numbered streams with at least one failure between any of the available

pairs, will lead to the recovery of (at least) F+3 streams at level F , thereby

having only (up to) F missing streams at level F , i.e., guaranteed recov-

ery by the inductive assumption. However, in order to complete the proof,

we also have to consider the worst case amongst all possible failure pat-

terns, i.e., the failure pattern where only a single pair of consecutively-

numbered streams is available. That is, ∃x ∈ {0, . . . , L+ − 1} such that all

of the following conditions hold:

• streams r̂(F+1)x and r̂(F+1)(x+1)modL+
are available;

• stream r̂(F+1)(x−1)modL+
and r̂(F+1)(x+2)modL+

is not available and

• all other available streams are preceded and succeeded by a failed

stream; therefore, they cannot be used for the direct extraction of

any stream of level F .

The above condition is equivalent to the availability of P − 1 PUs with

consecutive nodes described in Section 4.2.2. From the pair of available

streams of level F + 1, we can extract the following three streams of en-

tanglement level F : {r̂(F )(x−1)modL+
, r̂(F )x , r̂(F )(x+1)modL+

}, via:
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r̂(F )temp = r̂(F+1)(x+1)modL+
− SkF+1 {r̂

(F+1)
x }

r̂(F )(x+2)modL+
= S−2(w−kF+1) {S2(w−kF+1) {r̂

(F )
temp}} (4.36)

r̂(F )x = S−2kF+1 {−(r̂
(F )
temp − r̂(F )(x+2)modL+

)}

r̂(F )(x+1)modL+
= r̂(F+1)x − Sk(F+1) {r̂

(F )
x } .

The last set of equations guarantees recovery because: (i) the last condi-

tion of (4.33) ensures that both r̂(F )(x+2)modL+
and r̂(F )x can be extracted from

r̂(F )temp and no overflow occurs; (ii) the penultimate condition of (4.33) en-

sures that the dynamic range at entanglement level F does not exceed

the bitwidth available within the (F + 1)-level inputs.

Given the availability of three consecutive streams at level F : r̂(F )x ,r̂(F )(x+1)modL+

and r̂
(F )
(x+2)modL+

, we can recover four consecutive streams at level F −1 and,

by carrying the recovery process across all F + 1 entanglement levels, we

can recover F + 3 consecutively-numbered output streams:

{r̃x, . . . , r̃(x+F+2)modL+}. Therefore, F output streams will be unavailable

after this recovery process. However, these are guaranteed to be recov-

erable from the F available and unused streams of level F + 1, since we

have F linear equations and F unknowns in the system of 2F + 3 streams

of level F + 1. Therefore, we can mitigate F + 1 failures in L+ ≥ 2F + 3

streams. This means we can mitigate any F ′ > F failures if F ′ entangle-

ment levels are carried out and L′ ≥ 2F ′ + 1 and the conditions of (4.33)

hold with the replacement of F by F ′.

Remark 5 (detection and correction capabilities): Given that we can re-
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cover all outputs from L − F entangled streams, to detect F SDCs and to

detect and correct up to (F − 1) SDCs within any L-tuple

[r̂(F )0 [n] . . . r̂
(F )
L−1[n]]

T

, for all output locations, 0 ≤ n < Nout, we recover L

versions of all outputs [r̃0[n] . . . r̃L−1[n]]
T

using (∀x ∈ {0, 1,⋯, L − 1}):

{r̃0[n], . . . , r̃L−1[n]}
(x) disentangle
←ÐÐÐÐÐÐ {r̂(F )x [n], . . . , r̂

(F )
(x+L−F−1)modL

[n]} (4.37)

and detect any errors in the xth recovery attempt by cross-comparing the

results with their remaining recovered versions, since, at least two ver-

sions of {r̃0[n], . . . , r̃L−1[n]}
(x) of (4.37) will be identical. If the xth recovery

attempt is deemed to be erroneous, the correct recovery from the remain-

ing L − F streams is used instead. However, the occurrence of at least

F SDCs will lead to nonidentical outputs for all recovery attempts and

recomputation of all L data elements corresponding to the index n will be

required.

Finally, the results of Table 4.2 and the derivation of (4.32) show that

increased fault tolerance via numerical entanglement is achieved by sac-

rificing the dynamic range of data outputs for the performed LS com-

putation. Specifically, it can be seen that 2 ∼ 10 bits of 32-bit integer

representation is sacrificed for the mitigation of a single fail-stop failure.

The equivalent checksum-based failure mitigation is achieved at a loss

of 1 ∼ 3 bits for the L values presented in Table 4.2. However, numerical

entanglement obtains comparable or wider bitwidth in comparison to the

checksum-based approach for L ≥ 7 and F = 1 or L ≥ 11 and F ∈ {1, 2}.

At the same time, our proposal does not require the overhead of applying
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the LS operations to any additional data, as it “overlays” the information

of each input onto another input via the numerical entanglement of pairs

of inputs.

4.3 Complexity in LS Operations with Nu-

merical Entanglements

We now turn our attention to the cost of performing numerical entangle-

ment, result extraction and error checking/ failure recovery versus the

cost of the LS operation itself.

Consider L input integer data streams, each comprising several samples

and consider that an LS operation ⊠ with kernel b is performed in each

stream. This is the case, for example, under inner-products performed for

GEMM or convolution/cross-correlation between multiple input streams

for similarity detection or filtering applications or matrix-vector products

in Lanczos iterations and iterative methods [34]. If the kernel b has sub-

stantially smaller length than the length of each input stream, the effec-

tive input stream size can be adjusted to the kernel length under overlap-

save or overlap-add operation in convolution and cross-correlation [128]

and several (smaller) overlapping input blocks can be processed indepen-

dently. Similarly, block-major reordering is used in matrix products and

transform decompositions for increased memory efficiency [35, 36, 129].

Thus, in the remainder of this section we assume that N expresses both

the input data stream and kernel dimension.
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The operations count (additions/multiplications) for stream-by-stream sum-

of-products between a matrix comprising L subblocks of N ×N integers

and a matrix kernel comprising N×N integers (see [36,97,129,155] for ex-

ample instantiations within high-performance computing environments)

is: CGEMM = L (2N3 −N2). For sesquilinear operations like convolution

and cross-correlation of L input integer data streams (each comprising N

samples) with kernel b, depending on the utilized realization, the num-

ber of operations can range from O (N2) for direct algorithms (e.g., time-

domain convolution) to O (N log2 N) for fast algorithms (e.g., FFT-based

convolution) [128]. For example, for convolution or cross-correlation un-

der these settings and an overlap-save realization for consecutive block

processing, the number of operations (additions/multiplications) is [128]:

Cconv,time = 4LN 2 for time domain processing and

Cconv,freq = L [(45N + 15) log2 (3N + 1) + 3N + 1] for frequency-domain pro-

cessing.

As described in Section 4.2.3, numerical entanglement of L input integer

data streams (of N samples each) requires an O (N) number of operations

for the entanglement, extraction and SDC mitigation or failure recovery

[including the L-fold recovery and error check of (4.37) of Remark 5]. For

example, ignoring all arithmetic-shifting operations (which take a negli-

gible amount of time [143]), based on the description of Section 4.2.3, the

approximate number of operations for numerical entanglement, extrac-

tion and data recovery is: Cne,conv = (2L + P − 2)FN .

Similarly as before, for the special case of the GEMM operation using

L subblocks of N × N integers, the approximate overhead of numerical
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entanglement of all inputs is: Cne,GEMM = (2L + P − 2)FN 2. We present

the percentile values obtained for Cne,GEMM

CGEMM
× 100% in Fig. 4.7 for typical

values of (L,F ) and N = {500, 2000}, which represents a typical subblock

size in high-performance GEMM. In addition, the values of Cne,conv

Cconv,time
× 100%

and Cne,conv

Cconv,freq
× 100% are shown in Fig. 4.8 for convolution/ cross-correlation

operations for kernel length, N = 500. For sesquilinear operations like

matrix products the overhead of numerical entanglement, extraction and

recovery in terms of arithmetic operations is below 3.5%. For convolu-

tion and cross-correlation this overhead varies from between 1.6% to 7%

depending on the implementation as shown in Fig. 4.8. Moreover,

lim
N→∞

Cne,GEMM

CGEMM
= lim

N→∞

Cne,conv

Cconv,time
= lim

N→∞

Cne,conv

Cconv,freq
= 0, (4.38)

i.e., the overhead of the proposed approach approaches 0% as the dimen-

sion of the LS processing increases as illustrated for the case of GEMM

in Fig. 4.7.

For comparison purposes, Fig. 4.9 shows the percentile overhead of GEMM

computation using the checksum methods of [96, 97, 155] and under the

same range of values for (L,F ) and N = 500, i.e., for the same fail-stop

failure or SDC mitigation capability2.

Specifically, we examine the ratios: Cchecksum,GEMM

CGEMM
× 100%, Cchecksum,conv,time

Cconv,time
× 100%

and
Cchecksum,conv,freq

Cconv,freq
×100%, where Cchecksum,GEMM = (2LF − F −L)⋅N2+ F

LCGEMM,

Cchecksum,conv,time = (2LF − F −L) ⋅N + F
LCconv,time and

2Unlike the row-column algorithm-based fault-tolerance method of Huang and Abra-
ham [101], the checksum method for fail-stop failure mitigation in GEMM generates an
additional (i.e., checksum) subblock, since the former cannot mitigate fail-stop failures.
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Figure 4.7: Ratios of arithmetic operations for numerical entanglement,
extraction and failure recovery versus the arithmetic operations of L con-
current N × N -by- N × N GEMM computations for: (a) N = 500; and (b)
N = 2000. L is the number of processing nodes and F the number of fail-
stop failures that can be mitigated.
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Figure 4.8: Ratios of arithmetic operations for numerical entanglement,
extraction and failure recovery versus the arithmetic operations of L con-
current convolution computations with kernel length, N = 500 for: (a)
time-domain convolution; and (b) frequency-domain convolution. L is the
number of processing nodes and F the number of fail-stop failures that
can be mitigated.
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Cchecksum,conv,freq = (2LF − F −L) ⋅ N + F
LCconv,freq represent the overhead in

terms of operations count (additions/multiplications) for each case as-

suming the failures occurred within the checksum. Therefore, the pre-

sented complexity of the checksum-based approach is the lower bound

on the number of operations required to mitigate fail-stop failures. Given

that the checksum method for GEMM exhibits similar or better percentile

overhead in comparison to the equivalent time-domain/frequency-domain

convolution computation, Fig. 4.9 illustrates only the former. As ex-

pected, the overhead of checksum methods converge to F
L × 100% as the

dimension of the LS processing operations increases, i.e.,

lim
N→∞

Cchecksum,GEMM

CGEMM
= lim

N→∞

Cchecksum,conv,time

Cconv,time
(4.39)

= lim
N→∞

Cchecksum,conv,freq

Cconv,freq

=
F

L
.

Therefore, checksum methods lead to substantial overhead (which can

surpass 45%) when high reliability is pursued, i.e., when L ≤ 8 and F > 1.

Even for the low reliability regime (i.e., when L > 8 and F = 1), Fig. 4.9

shows that checksum methods can incur more than 4% overhead in terms

of arithmetic operations. On the other hand, the proposed method al-

ways incurs less than 8% overhead for all presented sesquilinear opera-

tions. This overhead reduces even further with increasing values for N

as shown for the case of GEMM in Fig. 4.7(b). Overall, the comparison

between Fig. 4.7 and Fig. 4.9 demonstrates that the complexity overhead

of the proposed approach is expected to be one to two orders of magnitude
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Figure 4.9: Ratio of arithmetic operations for checksum generation and
recovery versus the arithmetic operations of generic matrix multiplica-
tion, with L the number of computing nodes and F the number of fail-stop
failures that can be mitigated.

smaller than that of checksum methods.

4.4 Experimental Validation

We present results using an Intel Xeon E5-2666v3 2.9GHz instance of

Amazon EC2 (compute-optimized c4.8xlarge , reserved instance type,

Windows Server 2012, Intel C++ 15.0 Compiler). All experiments were

performed using the physical cores of the computing platform by setting

the command prompt system affinity appropriately to ensure parallel ex-

ecution of the Intel MKL GEMM routine. In Fig. 4.10 and Fig. 4.11, we

present throughput results for the mitigation of up to F = 3 core failures
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when running on L = 7 and L = 11 cores of the computing platform for the

parallel N × N by N × N GEMM computation, with N ∈ [400, 8000]. All

entanglement, disentanglement and checksum generation make use of

the OpenMP framework, as well as the increased optimization offered by

AVX2 SIMD instructions. In addition, all pre and post processing steps

of all presented algorithms are performed using 32-bit integers, while

inputs and outputs of the dGEMMroutine undergo the appropriate cast-

ing/rounding from integer to floating point number representation and

vice versa3. Importantly, the failure intolerant computation, together

with the proposed algorithm utilize all L cores for data computation. On

the other hand, the checksum method can only use Ldata = L − F cores

for actual input data processing, while reserving F cores for checksum

data computation. In our experiments, to create the redundant matrices

required for fault tolerance, we utilized the weighted checksum-based pa-

rameters of Luk et. al. [5] [4] for F = 3 fail-stop failures with checksum

weights given by the 1×Ldata vectors: w1 = [1, 1,⋯, 1]T, w2 = [1, 2,⋯, Ldata]
T

and w3 = [20, 21,⋯, 2Ldata−1]T.

The results of Fig. 4.10 and Fig. 4.11 show the decrease in throughput (in

Mega samples per second) against the failure intolerant parallel GEMM

kernel realization based on the Intel MKL GEMM subroutine [35] for L =

{7, 11} and F ∈ [1, 3]. Specifically, the proposed algorithm incurs 1.72% ∼

37.23% decrease in computational throughput for the mitigation of (up

to) 3 core failures during GEMM for the presented {L,N} values. On

3Like all high-performance MKLs for general-purpose processors, Intel MKL only
supports single and double-precision floating point; we opt for the latter to avoid ap-
proximations incurred from the loss of dynamic range in floating-point representations.
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Figure 4.10: Throughput results for the N × N -by-N × N GEMM com-
putation for mitigating F = {1, 2, 3} PU failures in L = 7 PUs. Failure-
intolerant computation using Intel MKL 11.0 is used as a benchmark.
Throughput axis is shown on a logarithmic scale.
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Figure 4.11: Throughput results for the N × N -by-N × N GEMM com-
putation for mitigating F = {1, 2, 3} PU failures in L = 11 PUs. Failure-
intolerant computation using Intel MKL 11.0 is used as a benchmark.
Throughput axis is shown on a logarithmic scale.
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the other hand, the throughput achieved by the checksum-based [5] [4]

failure mitigation method is 11.88%–51.87% lower than that of the failure-

intolerant computation. Overall, generalized numerical entanglement is

shown to incur 40% to 95% lower overhead than checksum methods while

providing same or better level of recoverability.

4.5 Numerical Entanglement for SDC Detec-

tion

Beyond the mitigation of fail-stop failures in distributed computing plat-

forms, generalized numerical entanglement can be used for the detec-

tion of fail-continue failures (i.e., silent data corruptions) in data com-

putations. In this section we demonstrate this for the example cases of

(L,F ) = {(3, 1) , (5, 1) , (7, 1)}, i.e., detection of one SDC within each triple,

quintuple or septuple of outputs. In order to achieve the same level of

detectability, the checksum approach produces a single checksum data

stream (per case), which must be processed with the input kernel.

All experiments were performed on an Intel Xeon CPU E5-2670 v2 2.50GHz

running Linux Ubuntu and using the clang3.2 compiler. Results are pre-

sented for a set of L vector-matrix multiplications of dimensions 1 × 2000-

by-2000 × 2000. Artificial fault injection is performed during the above

multiplication via KULFI [3], an open source LLVM-based [132] fault

injection tool. Transient faults are injected during one of the L multipli-

cations, with all L streams (L+1 streams for the checksum method) being

161



4.5. Numerical Entanglement for SDC Detection

equiprobable.

To determine the number of injected SDCs for each fault injection exper-

iment, KULFI performs two executions of the binary file: one error free

and the other susceptible to SDCs. The outputs of the executions are

compared in order to categorize the effect of the injected errors on output

data with a typical error summary output presented as:

Segmentation Faults: 8, Benign Faults: 33, Out of

Bounds: 2, SDC: 41

Table 4.3 shows the average execution time out of 200 single fault injec-

tion experiments using randomly generated inputs for the detection and

correction of a single error within the M output data streams. Execution

time for GEMM is measured during the error-free execution of KULFI,

while the pre/post-processing execution time (including error correction

by recomputation of the erroneous results) is measured for the error-

prone execution of the same KULFI experiment. The results demonstrate

that the overhead incurred by the proposed approach for SDC detection

is negligible (less than 0.75%), and remains 2 orders of magnitude lower

than that of the equivalent checksum-based method [4] [5]. In all cases,

all faults were detected correctly by both the proposed and the checksum-

based method.
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Table 4.3: Average execution (in microseconds) and percentile compar-
isons against the fault-intolerant (conventional) Intel MKL sGEMMfor
a single error detection within L multiplications of size 1 × 2000-by-
2000 × 2000.

Preprocessing Postprocessing GEMM % increase

L = 3
Conventional - - - - - - 12322.40 - - -

Proposed 16.46 71.59 12322.40 0.71
Checksum 20.87 51.36 16420.73 33.26

L = 5
Conventional - - - - - - 20554.80 - - -

Proposed 29.93 104.22 20554.80 0.65
Checksum 30.09 59.01 24669.09 20.02

L = 7
Conventional - - - - - - 28899.00 - - -

Proposed 42.68 144.09 28899.00 0.65
Checksum 41.95 80.06 32772.71 13.40

4.6 Conclusions

We propose a new approach for LS processing of integer data streams

that is based on the novel concept of numerical entanglement. Under L

input streams (L ≥ 3), the proposed approach provides for: (i) guaranteed

mitigation of multiple (up to F = ⌊L−12
⌋) fail-stop failures or SDCs; (ii) com-

plexity overhead that depends only on (L,F ) and not on the complexity

of the performed LS operations, thus, quickly becoming negligible as the

complexity of the LS operations increases. These two features demon-

strate that the proposed solution forms a third family of roll-forward fail-

stop failure (or SDC) mitigation techniques (i.e., beyond the well-known

and widely-used checksum-based methods and modular redundancy) and

offers unique advantages, summarized in Table 4.1. As such, it is envis-

aged that it will find usage in a multitude of systems that require en-
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hanced reliability against fail-stop failures in hardware with very low

implementation overhead.
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Chapter 5

Conclusions and Future Work

We have presented in this thesis a new class of methods for highly-reliable

integer linear and sesquilinear computations. In Chapter 1, we reviewed

the problem of transient faults and their proliferation as SDCs, the re-

quirement for power-aware fault tolerance algorithms especially for the

case of fail-stop failures and existing works on algorithmic-level SDC/fail-

stop failure mitigation. We introduced numerical packing for SDC detec-

tion for matrix products in Chapter 2, while analyzing its complexity and

reliability. All analysis carried out in Chapter 2 and subsequent chapters

in this thesis were done in comparison to conventional fault-intolerant

processing, the well-established method of checksum processing and the

generalized method of hardware/computation replication. Our analysis

shows that the proposed approach incurs less than 1% additional over-

head in comparison to the traditional ABFT approach when no SDCs are

detected within output GEMM products and becomes over 30% more ef-

ficient than ABFT when multiple errors exist. Practical fault injection
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using the tool, KULFI, provided the basis for further analysis of the exe-

cution time and energy consumption overhead of numerical packing and

other existing SDC mitigation methods, thus verifying our theoretical

propositions.

The concept of numerical packing is further re-designed for single core/pro-

cessor failure mitigation within a cluster of shared/distributed memory

computers in Chapter 3. While numerical packing eliminates the use

of checksum data elements by sacrificing 37.5% of maximum output dy-

namic range of data outputs, we show experimentally that no perfor-

mance degradation is exhibited when running medium-scale multimedia

retrieval computations. On the contrary, the need for high throughput

within such algorithms that are often real time based implies that the

reservation of a fraction of the computing resources for checksum data

processing incurs a substantial degradation in processing throughput.

For a multimedia retrieval task deployed within a cluster of AWS EC2

spot (i.e., low-cost albeit terminable) instances, our proposal leads to: (i)

16%–23% cost reduction against the equivalent checksum-based method

and (ii) more than 70% cost reduction against conventional failure intol-

erant processing based on AWS EC2 on-demand (i.e., higher cost albeit

guaranteed) instances.

Finally, we generalize our numerical representation-based redundancy

technique by proposing a multiple failure mitigation technique: numer-

ical entanglement. Multi-tier numerical entanglement as proposed in

this thesis builds on the earlier proposed method of single-tier entan-

glement such that increased reliability is achieved by sacrificing the dy-
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namic range of data outputs. We derive expressions for failure recovery

assuming the failed node indexes are known and prove that numerical

entanglement can indeed mitigate up to F failures within a cluster size

of L ≥ 2F + 1.

Our proposals form a new class of algorithm level fault tolerance meth-

ods different from the well established methods of hardware duplica-

tion/replication and checksum generation, storage and processing. While

the application of the numerical packing proposal of Chapter 2 is limited

to SDC detection in GEMM, the property of error location confinement

to a quadruple of GEMM outputs, ensures minimal execution time over-

head for error correction especially in multiple error cases. On the other

hand, the numerical packing construct of Chapter 3 tolerates both single

fail-stop and fail-continue failures for all classes of sum-of-product com-

putations. However, more computation is required for SDC correction as

the error locality extends to a sextuple of data outputs. Finally, the multi-

tier numerical entanglement construct proposed in Chapter 4 allows for

the mitigation of multiple fail-stop and fail-continue failures within all

classes of linear and sesquilinear operations. As opposed to the simpler

construction of numerical packing, numerical entanglement requires a

careful derivation of the entanglement parameters, in order to support

the dynamic range requirements of practical applications, while avoiding

integer data overflow. In summary, all proposed algorithms offer compa-

rable or better execution time overhead in comparison to the equivalent

checksum-based fault tolerance methods for data computations.

167



Further investigation is required towards generalizing the proposed

numerical-representation-based redundancy technique to non-linear in-

teger processing algorithms including sorting, sum of squares and sum of

absolute difference computations. This would facilitate the development

of a software suite for reliable multimedia processing, as such non-linear

computations are ubiquitous.

In addition, the derivation of a checksum-less failure mitigation algo-

rithm for real number data computations is of great interest especially

for low to medium-scale real-time data processing applications. Although

the proposals of this thesis do not apply to floating-point operations (due

to their non-linear nature), it is possible that reduced precision reliable

processing using fixed point and logarithmic number systems may be

achievable and could be investigated as future work.

Furthermore, a hardware implementation of the numerical packing/en-

tanglement algorithm for SDC mitigation is necessary for validating the

theoretical complexity derivations of this work. This can be achieved

by enabling reliable computation within application-specific devices, as

these devices (some of which are operated in sub-normal conditions, e.g.

voltage scaled) have become widespread. Specifically, by targeting

GEMM/CONV-dominated algorithms running on application-specific de-

vices, the performance and energy consumption requirements of the pro-

posals of this thesis can be investigated. Holistic reliability can also be

achieved by duplicating non-linear computations that cannot be protected

via numerical packing/entanglement.

Finally, because the design of our numerical representation based redun-
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dancy scheme belongs to the class of non-systematic codes, the need for

data transfer for post-processing in both cases of error and error free situ-

ations can be undesirable for some applications. Therefore, the investiga-

tion of local entanglement groups, similar to the locally repairable codes

of [158] is suggested as a future research work. The results of Fig. 4.6

provides information on optimal group sizes for different L and F sizes

that maximize the dynamic range of data outputs.
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