10 research outputs found

    Design and perceptual validation of performance measures for salient object segmentation

    Full text link
    Empirical evaluation of salient object segmentation methods requires i) a dataset of ground truth object segmen-tations and ii) a performance measure to compare the out-put of the algorithm with the ground truth. In this paper, we provide such a dataset, and evaluate 5 distinct performance measures that have been used in the literature practically and psychophysically. Our results suggest that a measure based upon minimal contour mappings is most sensitive to shape irregularities and most consistent with human judge-ments. In fact, the contour mapping measure is as predic-tive of human judgements as human subjects are of each other. Region-based methods, and contour methods such as Hausdorff distances that do not respect the ordering of points on shape boundaries are significantly less consistent with human judgements. We also show that minimal contour mappings can be used as the correspondence paradigm for Precision-Recall analysis. Our findings can provide guid-ance in evaluating the results of segmentation algorithms in the future. 1

    Efficient Methods for Continuous and Discrete Shape Analysis

    Get PDF
    When interpreting an image of a given object, humans are able to abstract from the presented color information in order to really see the presented object. This abstraction is also known as shape. The concept of shape is not defined exactly in Computer Vision and in this work, we use three different forms of these definitions in order to acquire and analyze shapes. This work is devoted to improve the efficiency of methods that solve important applications of shape analysis. The most important problem in order to analyze shapes is the problem of shape acquisition. To simplify this very challenging problem, numerous researchers have incorporated prior knowledge into the acquisition of shapes. We will present the first approach to acquire shapes given a certain shape knowledge that computes always the global minimum of the involved functional which incorporates a Mumford-Shah like functional with a certain class of shape priors including statistic shape prior and dynamical shape prior. In order to analyze shapes, it is not only important to acquire shapes, but also to classify shapes. In this work, we follow the concept of defining a distance function that measures the dissimilarity of two given shapes. There are two different ways of obtaining such a distance function that we address in this work. Firstly, we model the set of all shapes as a metric space induced by the shortest path on an orbifold. The shortest path will provide us with a shape morphing, i.e., a continuous transformation from one shape into another. Secondly, we address the problem of shape matching that finds corresponding points on two shapes with respect to a preselected feature. Our main contribution for the problem of shape morphing lies in the immense acceleration of the morphing computation. Instead of solving partial resp. ordinary differential equations, we are able to solve this problem via a gradient descent approach that subsequently shortens the length of a path on the given manifold. During our runtime test, we observed a run-time acceleration of up to a factor of 1000. Shape matching is a classical discrete problem. If each shape is discretized by N shape points, most Computer Vision methods needed a cubic run-time. We will provide two approaches how to reduce this worst-case complexity to O(N2 log(N)). One approach exploits the planarity of the involved graph in order to efficiently compute N shortest path in a graph of O(N2) vertices. The other approach computes a minimal cut in a planar graph in O(N log(N)). In order to make this approach applicable to shape matching, we improved the run-time of a recently developed graph cut approach by an empirical factor of 2–4

    Fast Matching of Planar Shapes in Sub-cubic Runtime

    No full text
    The matching of planar shapes can be cast as a problem of finding the shortest path through a graph spanned by the two shapes, where the nodes of the graph encode the local similarity of respective points on each contour. While this problem can be solved using Dynamic Time Warping, the complete search over the initial correspondence leads to cubic runtime in the number of sample points. In this paper, we cast the shape matching problem as one of finding the shortest circular path on a torus. We propose an algorithm to determine this shortest cycle which has provably sub-cubic runtime. Numerical experiments demonstrate that the proposed algorithm provides faster shape matching than previous methods. As an application, we show that it allows to efficiently compute a clustering of a shape data base. 1

    Courbure discrète : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor

    Adaptive Methods for Robust Document Image Understanding

    Get PDF
    A vast amount of digital document material is continuously being produced as part of major digitization efforts around the world. In this context, generic and efficient automatic solutions for document image understanding represent a stringent necessity. We propose a generic framework for document image understanding systems, usable for practically any document types available in digital form. Following the introduced workflow, we shift our attention to each of the following processing stages in turn: quality assurance, image enhancement, color reduction and binarization, skew and orientation detection, page segmentation and logical layout analysis. We review the state of the art in each area, identify current defficiencies, point out promising directions and give specific guidelines for future investigation. We address some of the identified issues by means of novel algorithmic solutions putting special focus on generality, computational efficiency and the exploitation of all available sources of information. More specifically, we introduce the following original methods: a fully automatic detection of color reference targets in digitized material, accurate foreground extraction from color historical documents, font enhancement for hot metal typesetted prints, a theoretically optimal solution for the document binarization problem from both computational complexity- and threshold selection point of view, a layout-independent skew and orientation detection, a robust and versatile page segmentation method, a semi-automatic front page detection algorithm and a complete framework for article segmentation in periodical publications. The proposed methods are experimentally evaluated on large datasets consisting of real-life heterogeneous document scans. The obtained results show that a document understanding system combining these modules is able to robustly process a wide variety of documents with good overall accuracy
    corecore