43 research outputs found

    Polygonal Building Segmentation by Frame Field Learning

    Get PDF
    While state of the art image segmentation models typically output segmentations in raster format, applications in geographic information systems often require vector polygons. To help bridge the gap between deep network output and the format used in downstream tasks, we add a frame field output to a deep segmentation model for extracting buildings from remote sensing images. We train a deep neural network that aligns a predicted frame field to ground truth contours. This additional objective improves segmentation quality by leveraging multi-task learning and provides structural information that later facilitates polygonization; we also introduce a polygonization algorithm that utilizes the frame field along with the raster segmentation. Our code is available at https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning.Comment: CVPR 2021 - IEEE Conference on Computer Vision and Pattern Recognition, Jun 2021, Pittsburg / Virtual, United State

    Weakly Supervised Volumetric Image Segmentation with Deformed Templates

    Full text link
    There are many approaches that use weak-supervision to train networks to segment 2D images. By contrast, existing 3D approaches rely on full-supervision of a subset of 2D slices of the 3D image volume. In this paper, we propose an approach that is truly weakly-supervised in the sense that we only need to provide a sparse set of 3D point on the surface of target objects, an easy task that can be quickly done. We use the 3D points to deform a 3D template so that it roughly matches the target object outlines and we introduce an architecture that exploits the supervision provided by coarse template to train a network to find accurate boundaries. We evaluate the performance of our approach on Computed Tomography (CT), Magnetic Resonance Imagery (MRI) and Electron Microscopy (EM) image datasets. We will show that it outperforms a more traditional approach to weak-supervision in 3D at a reduced supervision cost.Comment: 13 Page

    Beyond Fixed Grid: Learning Geometric Image Representation with a Deformable Grid

    Full text link
    In modern computer vision, images are typically represented as a fixed uniform grid with some stride and processed via a deep convolutional neural network. We argue that deforming the grid to better align with the high-frequency image content is a more effective strategy. We introduce \emph{Deformable Grid} DefGrid, a learnable neural network module that predicts location offsets of vertices of a 2-dimensional triangular grid, such that the edges of the deformed grid align with image boundaries. We showcase our DefGrid in a variety of use cases, i.e., by inserting it as a module at various levels of processing. We utilize DefGrid as an end-to-end \emph{learnable geometric downsampling} layer that replaces standard pooling methods for reducing feature resolution when feeding images into a deep CNN. We show significantly improved results at the same grid resolution compared to using CNNs on uniform grids for the task of semantic segmentation. We also utilize DefGrid at the output layers for the task of object mask annotation, and show that reasoning about object boundaries on our predicted polygonal grid leads to more accurate results over existing pixel-wise and curve-based approaches. We finally showcase DefGrid as a standalone module for unsupervised image partitioning, showing superior performance over existing approaches. Project website: http://www.cs.toronto.edu/~jungao/def-gridComment: ECCV 202

    Deformable Kernel Expansion Model for Efficient Arbitrary-shaped Scene Text Detection

    Full text link
    Scene text detection is a challenging computer vision task due to the high variation in text shapes and ratios. In this work, we propose a scene text detector named Deformable Kernel Expansion (DKE), which incorporates the merits of both segmentation and contour-based detectors. DKE employs a segmentation module to segment the shrunken text region as the text kernel, then expands the text kernel contour to obtain text boundary by regressing the vertex-wise offsets. Generating the text kernel by segmentation enables DKE to inherit the arbitrary-shaped text region modeling capability of segmentation-based detectors. Regressing the kernel contour with some sampled vertices enables DKE to avoid the complicated pixel-level post-processing and better learn contour deformation as the contour-based detectors. Moreover, we propose an Optimal Bipartite Graph Matching Loss (OBGML) that measures the matching error between the predicted contour and the ground truth, which efficiently minimizes the global contour matching distance. Extensive experiments on CTW1500, Total-Text, MSRA-TD500, and ICDAR2015 demonstrate that DKE achieves a good tradeoff between accuracy and efficiency in scene text detection
    corecore