
HAL Id: hal-02548545
https://hal.inria.fr/hal-02548545v2

Submitted on 31 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polygonal Building Segmentation by Frame Field
Learning

Nicolas Girard, Dmitriy Smirnov, Justin Solomon, Yuliya Tarabalka

To cite this version:
Nicolas Girard, Dmitriy Smirnov, Justin Solomon, Yuliya Tarabalka. Polygonal Building Segmen-
tation by Frame Field Learning. CVPR 2021 - IEEE Conference on Computer Vision and Pattern
Recognition, Jun 2021, Pittsburg / Virtual, United States. �hal-02548545v2�

https://hal.inria.fr/hal-02548545v2
https://hal.archives-ouvertes.fr

Polygonal Building Extraction by Frame Field Learning

Nicolas Girard1 Dmitriy Smirnov2 Justin Solomon2 Yuliya Tarabalka3
1Université Côte d’Azur, Inria 2Massachusetts Institute of Technology 3LuxCarta Technology

Abstract

While state of the art image segmentation models
typically output segmentations in raster format, appli-
cations in geographic information systems often require
vector polygons. To help bridge the gap between deep
network output and the format used in downstream
tasks, we add a frame field output to a deep segmenta-
tion model for extracting buildings from remote sensing
images. We train a deep neural network that aligns a
predicted frame field to ground truth contours. This
additional objective improves segmentation quality by
leveraging multi-task learning and provides structural
information that later facilitates polygonization; we also
introduce a polygonization algorithm that utilizes the
frame field along with the raster segmentation. Our code
is available at https://github.com/Lydorn/
Polygonization-by-Frame-Field-Learning.

1. Introduction

Figure 1: A frame field
output by our network.

Due to their success in
processing large collections
of noisy images, deep con-
volutional neural networks
(CNNs) have achieved state-
of-the-art in remote sensing
segmentation. Geographic in-
formation systems like Open
Street Map (OSM) [30], how-
ever, require segmentation
data in vector format (e.g., polygons and curves) rather
than raster format, which is generated by segmentation net-
works. Additionally, methods that extract objects from re-
mote sensing images require especially high throughput to
handle the volume of high-resolution aerial images captured
daily over large territories of land. Thus, modifications to
the conventional CNN pipeline are necessary.

Existing work on deep building segmentation gener-
ally falls into one of two general categories. The first
vectorizes the probability map produced by a network

a posteriori, e.g., by using contour detection (march-
ing squares [25]) followed by polygon simplification
(Ramer–Douglas–Peucker [32, 13]). Such approaches suf-
fer when the classification maps contain imperfections such
as smoothed out corners, a common artifact of conven-
tional deep segmentation methods. Moreover, as we show
in Fig. 2, even perfect probability maps are challenging to
polygonize due to shape information being lost from the
discretization of the raster output. To improve the final
polygons, these methods employ expensive and complex
post-processing procedures. ASIP polygonization [20] uses
polygonal partition refinement to approximate shapes from
the output probability map based on a tunable parameter
controlling the trade-off between complexity and fidelity.
In [45], a decoder and a discriminator regularize output
probability maps adversarially. This requires computing
large matrices of pairwise discontinuity costs between pix-
els and involves adversarial training, which is less stable
than conventional supervised learning.

Another category of deep segmentation methods learns
a vector representation directly. For example, Curve-
GCN [23] trains a graph convolutional network (GCN) to
deform polygons iteratively, and PolyMapper [21] uses a
recurrent neural network (RNN) to predict vertices one at
a time. While these approaches directly predict polygon
parameters, GCNs and RNNs suffer from several disad-
vantages. Not only are they more difficult to train than
CNNs, but also their output topology is restricted to simple
polygons without holes—a serious limitation in segment-
ing complex buildings. Additionally, adjoining buildings
with common walls are common, especially in city centers.
Curve-GCN and PolyMapper are unable to reuse the same
polyline in adjoining buildings, yielding overlaps and gaps.

We introduce a building extraction algorithm that avoids
the challenges above by adding a frame field output to a
fully-convolutional network (see Fig. 1). While this has im-
perceptible effect on training or inference time, the frame
field not only increases segmentation performance, e.g.,
yielding sharper corners, but also provides useful informa-
tion for vectorization. Additional losses learn a valid frame
field that is consistent with the segmentation. These losses
regularize the segmentation, similar to [39], which includes

1

https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning
https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning

MRF/CRF regularization terms in the loss function to avoid
extra MRF/CRF inference steps.

The frame field allows us to devise a straightfor-
ward polygonization method extending the Active Contours
Model (ACM, or “snakes”) [19], which we call the Active
Skeleton Model (ASM). Rather than fitting contours to im-
age data, ASM fits a skeleton graph, where each edge con-
nects two junction nodes with a chain of vertices (i.e., a
polyline). This allows us to reuse shared walls between ad-
joining buildings. To our knowledge, no existing method
handles this case ([41] shows results with common walls
but does not provide details). Our method naturally handles
large buildings and buildings with inner holes, unlike end-
to-end learning methods like PolyMapper [21]. Lastly, our
polygon extraction pipeline is highly GPU-parallelizable,
making it faster than more complex methods.

Our main contributions are:
(i) a learned frame field aligned to object tangents, which

improves segmentation via multi-task learning;

(ii) coupling losses between outputs for self-consistency,
further leveraging multi-task learning; and

(iii) a fast polygonization method leveraging the frame
field, allowing complexity tuning of a corner-aware
simplification step and handling non-trivial topology.

2. Related work
ASIP polygonization [20] inputs an RGB image and a

probability map of objects (e.g., buildings) detected in the
image (e.g., by a neural network). Then, starting from a
polygonal partition that oversegments the image into convex
cells, the algorithm refines the partition while labeling its
cells by semantic class. The refinement process is an opti-
mization with terms that balance fidelity to the input against
complexity of the output polygons. The configuration space
is explored by splitting and merging the polygonal cells.
As the fidelity and complexity terms can be balanced with
a coefficient, the fidelity-to-complexity ratio can be tuned.
However, there does not exist a systematic approach for in-
terpreting or determining this coefficient. While ASIP post-
processes the output of a deep learning method, recent ap-
proaches aim for an end-to-end pipeline.

CNNs are successful at converting grid-based input to
grid-based output for tasks where each output pixel depends
on its local neighborhood in the input. In this setting, it
is straightforward and efficient to train a network for su-
pervised prediction of segmentation probability maps. The
paragraphs below, however, detail major challenges when
using such an approach to extract polygonal buildings.

First, the model needs to produce variable-sized outputs
to capture varying numbers of objects, contours, and ver-
tices. This requires complex architectures like recurrent
neural networks (RNNs) [18], which are not as efficiently

trained as CNNs and need multiple iterations at inference
time. Such is the case for PolyMapper [21], Polygon-
RNN [5], and Polygon-RNN++ [1]. Curve-GCN [23] pre-
dicts a fixed number of vertices simultaneously.

A second challenge is that the model must make discrete
decisions of whether to add a contour, whether to add a
hole to an object, and with how many vertices to describe a
contour. Adding a contour is solved by object detection:
a contour is predicted for each detected object. Adding
holes to an object is more challenging, but a few methods
detect holes and predict their contours. One model, BSP-
Net [8], circumvents this issue by combining predicted con-
vex shapes for the final output, producing shapes in a com-
pact format, with potential holes inside. To our knowledge,
the number of vertices is not a variable that current deep
learning models can optimize for; discrete decisions are dif-
ficult to pose differentiably without training techniques such
as the straight-through estimator [3] or reinforcement learn-
ing [37, 28, 27].

A third challenge is that, unlike probability maps, the
output structure of polygonal building extraction is not grid-
like. Within the network, the grid-like structure of the image
input has to be transformed to a more general planar graph
structure representing building outlines. City centers have
the additional problem of adjoining buildings that share a
wall. Ideally, the output geometry for such a case would
be a collection of polygons, one for each individual build-
ing, which share polylines corresponding to common walls.
Currently, no existing deep learning method tackles this
case. Our method solves it but is not end-to-end. PolyMap-
per [21] tackles the individual building and road network
extraction tasks. As road networks are graphs, they pro-
pose a novel sequentialization method to reformulate graph
structures as closed polygons. Their approach might work
in the case of adjoining buildings with common walls. Their
output structure, however, is less adapted to GPU compu-
tation, making it less efficient. RNNs such as PolyMap-
per [21], Polygon-RNN [5], and Polygon-RNN++ [1] per-
form beam search at inference to prune off improbable se-
quences, which requires more vertex predictions than are
used in the final output and is inefficient. The DefGrid [14]
module is a non-RNN approach where the network pro-
cesses polygonal superpixels. It is more complex than our
simple fully-convolutional network and is still subject to the
rounded corner problem.

The challenges above demand a middle ground between
learning a bitmap segmentation followed by a hand-crafted
polygonization method and end-to-end methods, aiming to
be easily-deployable, topologically flexible w.r.t. holes and
common walls, and efficient. A step in this direction is
the machine-learned building polygonization [44] that pre-
dicts building segmentations using a CNN, uses a generative
adversarial network to regularize building boundaries, and

2

learns a building corner probability map, from which ver-
tices are extracted. In contrast, our model predicts a frame
field both as additional geometric information (instead of
a building corner probability map) and as a way to regu-
larize building boundaries (instead of adversarial training).
The addition of this frame field output is similar in spirit to
DiResNet [12], a road extraction neural network that out-
puts road direction in addition to road segmentation, first
introduced in [2]. The orientation is learned for each road
pixel by a cross-entropy classification loss whose labels are
orientation bins. This additional geometric feature learned
by the network improves the overall geometric integrity of
the extracted objects (in their case road connectivity). The
differences to our method include the following: (1) our
frame fields encode two orientations instead of one (needed
for corners), (2) we use a regression loss instead of a clas-
sification loss, and (3) we use coupling losses to promote
coherence between segmentation and frame field.

3. Method
Our key idea is to help the polygonization method solve

ambiguous cases caused by discrete probability maps by
asking the neural network to output missing shape infor-
mation in the form of a frame field (see Fig. 2). This prac-
tically does not increase training and inference time, allows
for simpler and faster polygonization, and regularizes the
segmentation—solving the problem of small misalignments
of the ground truth annotations that yield rounded corners if
no regularization is used.

(a) Iter. 0 (b) Iter. 50 (c) Iter. 250 (d) Result

Figure 2: Even a perfect classification map can yield incor-
rect polygonization due to a locally ambiguous probability
map, as shown in (a), the output of marching squares. Our
polygonization method iteratively optimizes the contour (b-
d) to align to a frame field, yielding better results as our
frame field (blue) disambiguates between slanted walls and
corners, preventing corners from being cut off.

3.1. Frame fields

We provide the necessary background on frame fields, a
key part of our method. Following [42, 11], a frame field is a
4-PolyVector field, which assigns four vectors to each point
of the plane. In the case of a frame field, however, the first
two vectors are constrained to be opposite to the other two,
i.e., each point is assigned a set of vectors {u,−u, v,−v}.
At each point in the image, we consider the two directions

that define the frame as two complex numbers u, v ∈ C. We
need two directions (rather than only one) because build-
ings, unlike organic shapes, are regular structures with sharp
corners, and capturing directionality at these sharp corners
requires two directions. To encode the directions in a way
that is agnostic to relabeling and sign change, we represent
them as coefficients of the following polynomial:

f(z) = (z2 − u2)(z2 − v2) = z4 + c2z
2 + c0 . (1)

We denote (1) above by f(z; c0, c2). Given a (c0, c2) pair,
we can easily recover one pair of directions defining the
corresponding frame:

{
c0 = u2v2

c2 = −(u2 + v2)
⇐⇒

u2 = − 1

2

(
c2 +

√
c22 − 4c0

)
v2 = − 1

2

(
c2 −

√
c22 − 4c0

)
.

(2)

In our approach, inspired by [4], we learn a smooth
frame field with the property that, along building edges,
at least one field direction is aligned to the polygon tan-
gent direction. At polygon corners, the field aligns to both
tangent directions, motivating our use of PolyVector fields
rather than vector fields. Away from polygon boundaries,
the frame field does not have any alignment constraints but
is encouraged to be smooth and not collapse to a line field.
Like [4], we formulate the field computation variationally,
but, unlike their approach, we use a neural network to learn
the field at each pixel, which is also explored in [38]. To
avoid sign and ordering ambiguity, we learn a (c0, c2) pair
per pixel rather than (u, v).

3.2. Frame field learning

We describe our method, illustrated in Fig. 3. Our net-
work takes a 3×H×W image I as input and outputs a pixel-
wise classification map and a frame field. The classification
map contains two channels, ŷint corresponding to building
interiors and ŷedge to building boundaries. The frame field
contains four channels corresponding to the two complex
coefficients ĉ0, ĉ2 ∈ C, as in §3.1 above.

Segmentation losses. Our method can be used with any
deep segmentation model as a backbone; in our experi-
ments, we use the U-Net [33] and DeepLabV3 [7] archi-
tectures. The backbone outputs an F -dimensional feature
map ŷbackbone ∈ RF×H×W . For the segmentation task, we
append to the backbone a fully-convolutional block (taking
ŷbackbone as input) consisting of a 3×3 convolutional layer,
a batch normalization layer, an ELU nonlinearity, another
3×3 convolution, and a sigmoid nonlinearity. This segmen-
tation head outputs a segmentation map ŷseg ∈ R2×H×W .
The first channel contains the object interior segmentation
map ŷint and the second contains the contour segmentation
map ŷedge. Our training is supervised—each input image

3

Figure 3: Given an overhead image, our model outputs an edge mask, interior mask, and frame field. The loss aligns the
masks and field to ground truth data, enforces smoothness of the frame field, and ensures consistency between the outputs.

is labeled with ground truth yint and yedge, corresponding
to rasterized polygon interiors and edges, respectively. We
then use a linear combination of the cross-entropy loss and
Dice loss [36] for loss Lint applied on the interior output as
well as loss Ledge applied on the contour (edge) output.

Frame field losses. In addition to the segmentation
masks, our network outputs a frame field. We append an-
other head to the backbone via a fully-convolutional block
consisting of a 3×3 convolutional layer, a batch normaliza-
tion layer, an ELU nonlinearity, another 3×3 convolution,
and a tanh nonlinearity. This frame field block inputs the
concatenation of the output features of the backbone and
the segmentation output: [ŷbackbone, ŷseg] ∈ R(F+2)×H×W .
It outputs the frame field with ĉ0, ĉ2 ∈ CH×W . The cor-
responding ground truth label is an angle θτ ∈ [0, π) of
the unsigned tangent vector of the polygon contour. We use
three losses to train the frame field:

Lalign = 1
HW

∑
x∈I

yedge(x)|f(eiθτ ; ĉ0(x), ĉ2(x))|2, (3)

Lalign90 = 1
HW

∑
x∈I

yedge(x)|f(eiθτ⊥ ; ĉ0(x), ĉ2(x))|2, (4)

Lsmooth = 1
HW

∑
x∈I

(
‖∇ĉ0(x)‖2 + ‖∇ĉ2(x)‖2

)
, (5)

where θw is the direction of w (w = ‖w‖2eiθw), and τ⊥ =
τ − π

2 . Each loss measures a different property of the field:
• Lalign enforces alignment of the frame field to the tan-

gent directions. This term is small when the polynomial
f(·; ĉ0, ĉ2) has a root near eiθτ , implicitly implying that
one of the field directions {±u,±v} is aligned with the
tangent direction τ . Since (1) has no odd-degree terms,
this term has no dependence on the sign of τ , as desired.

• Lalign90 prevents the frame field from collapsing to a line
field by encouraging it to also align with τ⊥.

• Lsmooth is a Dirichlet energy measuring the smoothness of
ĉ0(x) and ĉ2(x) as functions of location x in the image.
Smoothly-varying ĉ0 and ĉ2 yield a smooth frame field.

Output coupling losses. We add coupling losses to en-
sure mutual consistency between our network outputs:

Lint align =
1

HW

∑
x∈I

f(∇ŷint(x); ĉ0(x), ĉ2(x))2, (6)

Ledge align =
1

HW

∑
x∈I

f(∇ŷedge(x); ĉ0(x), ĉ2(x))2, (7)

Lint edge =
1

HW

∑
x∈I

max (1− ŷint(x), ‖∇ŷint(x)‖2)

· |‖∇ŷint(x)‖2 − ŷedge(x)| .
(8)

• Lint align aligns the spatial gradient of the predicted interior
map ŷint with the frame field (analogous to (3)).

• Ledge align aligns the spatial gradient of the predicted edge
map ŷedge with the frame field (analogous to (3)).

• Lint edge makes the predicted edge map be equal to the
norm of the spatial gradient of the predicted interior
map. This loss is applied outside of buildings (hence the
1 − ŷint(x) term) and along building contours (hence the
‖∇ŷint(x)‖2 term) and is not applied inside buildings, so
that common walls between adjoining buildings can still
be detected by the edge map.

Final loss. Because the losses (Lint, Ledge, Lalign, Lalign90,
Lsmooth, Lint align, Ledge align, and Lint edge) have distinct units,
we compute a normalization coefficient for each loss by av-
eraging its value over a random subset of the training dataset
using a randomly-initialized network. Losses are then nor-
malized by this coefficient before being linearly combined.
This normalization aims to rescale losses such that they are
easier to balance. More details are in the supplementary
materials.

3.3. Frame field polygonization

The main steps of our polygonization method are shown
in Fig. 4. It is inspired by the Active Contour Model
(ACM) [19]. ACM is initialized with a given contour and

4

Figure 4: Overview of our post-processing polygonization algorithm. Given an interior classification map and frame field
(Fig. 3) as input, we optimize the contour to align to the frame field using an Active Skeleton Model (ASM) and detect
corners using the frame field, simplifying non-corner vertices.

minimizes an energy function E∗contour, which moves the
contour points toward an optimal position. Usually this en-
ergy is composed of a term to fit the contour to the image
and additional terms to limit the amount of stretch and/or
curvature. The optimization is performed by gradient de-
scent. Overall the ACM lends itself perfectly for paral-
lelized execution on the GPU, and the optimization can
be performed using an automatic differentiation module in-
cluded in deep learning frameworks. We adapt ACM so that
the optimization is performed on a skeleton graph instead
of contours, giving us the Active Skeleton Model (ASM).
We call the skeleton graph the graph of connected pixels
of the skeleton image obtained by the thinning method [43]
applied on the building wall probability map yedge. The fol-
lowing energy terms are used:
• Eprobability fits the skeleton paths to the contour of the

building interior probability map yint(v) at a certain prob-
ability threshold ` (set to 0.5 in practice).

• Eframe field align aligns each edge of the skeleton graph to
the frame field.

• Elength ensures that the node distribution along paths re-
mains homogeneous as well as tight.
Details about our data structure (designed for GPU com-

putation), definition and computation of our energy terms,
and explanation of our corner-aware simplification step can
be found in the supplementary materials.

4. Experimental setup

4.1. Datasets

Our method requires ground truth polygonal building
annotations (rather than raster binary masks) so that the
ground truth angle for the frame field can be computed
by rasterizing separately each polygon edge and taking the
edge’s angle. Thus, for each pixel we get a θτ value, which
is used in Lalign.

We perform experiments on these datasets (more details
in the supplementary material):
• CrowdAI Mapping Challenge dataset [34] (CrowdAI

dataset): 341438 aerial images of size 300×300 pixels

with associated ground truth polygonal annotations.
• Inria Aerial Image Labeling dataset [26] (Inria dataset):

360 aerial images of size 5000×5000 pixels. Ten cities
are represented, making it more varied than the Crow-
dAI dataset. However, the ground truth is in the form
of raster binary masks. We thus create the Inria OSM
dataset by taking OSM polygon annotations and correct-
ing their misalignment using [15]. We also create the In-
ria Polygonized dataset by converting the original ground
truth binary masks to polygon annotations with our poly-
gonization method (see supplementary materials).

• Private dataset: 57 satellite images for training with sizes
varying from 2000×2000 pixels to 20000×20000 pixels,
captured over 30 different cities from all continents with
three different types of satellites. This is our most varied
and challenging dataset. However, the building outline
polygons were manually labeled precisely by an expert,
ensuring the best possible ground truth. Results for this
private dataset are in the supplementary material.

4.2. Backbones

The first backbone we use is U-Net16, a small U-Net [33]
with 16 starting hidden features (instead of 64 in the orig-
inal). We also use DeepLab101, a DeepLabV3 [7] model
that utilizes a ResNet-101 [17] encoder. Our best per-
forming model is UResNet101—a U-Net with a ResNet-
101 [17] encoder (pre-trained on ImageNet [10]). We ob-
served that the pre-trained ResNet-101 encoder achieves
better final performance than random initialization. For the
UResNet101, we additionally use distance weighting for the
cross-entropy loss, as done for the original U-Net [33].

4.3. Ablation study and additional experiments

We perform an ablation study to validate various compo-
nents of our method (results in Tables 1, 2, and 4):
• “No field” removes the frame field output for compar-

ison to pure segmentation. Only interior segmentation
Lint, edge segmentation Ledge and interior/edge coupling
Lint edge losses remain.

• “Simple poly.” uses a baseline polygonization algo-

5

rithm (marching-squares contour detection followed by
the Ramer–Douglas–Peucker simplification) on the inte-
rior classification map learned by our full method. This
allows us to study the improvement of our polygonization
method from leveraging the frame field.

Additional experiments in the supplementary material in-
clude: “no coupling losses” removes all coupling losses
(Lint align, Ledge align, Lint edge) to determine whether en-
forcing consistency between outputs has an impact; “no
Lalign90,” “no Lint edge,” “no Lint align and Ledge align,” and “no
Lsmooth” all remove the specified losses; “complexity vs.
fidelity” varies the simplification tolerance parameter ε to
demonstrate the trade-off between complexity and fidelity
of our corner-aware simplification procedure.

4.4. Metrics

The standard metric for image segmentation is Intersec-
tion over Union (IoU), which is then used to compute other
metrics such as MS COCO [22], Average Precision (AP),
and Average Recall (AR)—along with variants AP50, AP75,
AR50, AR75. Since we aim to produce clean geometry, it is
important to measure contour regularity, not captured by the
area-based metrics IoU, AP, and AR. Moreover, as annota-
tions are bound to have some alignment noise, only opti-
mizing IoU will favor blurry segmentations with rounded
corners over sharp segmentations, as the blurry ones corre-
spond to the shape expectation of the noisy ground truth an-
notation; segmentation results with sharp corners may even
yield a lower IoU than segmentations with rounded cor-
ners. We thus introduce the max tangent angle error metric
that compares the tangent angles between predicted poly-
gons and ground truth annotations, penalizing contours not
aligned with the ground truth. It is computed by uniformly
sampling points along a predicted contour, computing the
angle of the tangent for each point, and comparing it to the
tangent angle of the closest point on the ground truth con-
tour. The max tangent angle error is the maximum tangent
angle error over all sampled points. More details about the
computation of these metrics can be found in the supple-
mentary material.

5. Results and discussion
5.1. CrowdAI dataset

We visualize our polygon extraction results for the Crow-
dAI dataset and compare them to other methods in Fig. 5.
The ASIP polygonization method [20] inputs the proba-
bility maps of a U-Net variant [9] that won the CrowdAI
challenge. All methods perform well on common building
types, e.g., houses and residential buildings, but we can see
that results of ASIP are less regular than PolyMapper and
ours. For more complex building shapes (e.g., not rectan-
gular or with a hole inside), ASIP outputs reasonable re-

Method Mean max tangent angle errors ↓
UResNet101 (no field), simple poly. 51.9°
UResNet101 (with field), simple poly. 45.1°
U-Net variant [9], ASIP poly. [20] 44.0°
UResNet101 (with field), ASIP poly. [20] 38.3°
U-Net variant [9], UResNet101 our poly. 36.6°
PolyMapper [21] 33.1°
UResNet101 (with field), our poly. 31.9°

Table 1: Mean max tangent angle errors over all the original
validation polygons of the CrowdAI dataset [34].

sults, albeit still not very regular. However, the PolyMap-
per approach of object detection followed by polygonal out-
line regression does not work in the most difficult cases. It
does not support nontrivial topology by construction, but
also, it struggles with large complex buildings. We hypoth-
esize that PolyMapper suffers from the fact that there are not
many complex buildings and does not generalize as well as
fully-convolutional networks.

We report results on the original validation set of the
CrowdAI dataset for the max tangent angle error in Ta-
ble 1 and MS COCO metrics in Table 2. “(with field)”
refers to models trained with our full frame field learn-
ing method, “(no field)” refers to models trained without
any frame field output, “mask” refers to the output raster
segmentation mask of the network, “our poly.” refers to
our frame field polygonization method, and “simple poly.”
refers to the baseline polygonization of marching squares
followed by Ramer-Douglas-Peucker simplification. We
also applied our polygonization method to the same prob-
ability maps used by the ASIP polygonization method (U-
Net variant [9]) for fair comparison of polygonization meth-
ods.

In Table 1, “simple poly.” performs better using “(with
field)” segmentation compared to “(no field)” because of a
regularization effect from frame field learning. PolyMap-
per performs significantly better than “simple poly.” even
though it is not explicitly regularized. Our frame field learn-
ing and polygonization method is necessary to decrease the
error further and compare favorably to PolyMapper.

In Table 2, our UResNet101 (with field) outperforms
most previous works, except “U-Net variant [9], ASIP
poly. [20]” due to the U-Net variant being the winning en-
try to the challenge. However our polygonization applied
after that same U-Net variant achieves better max tangent
angle error and AP than ASIP but worse AR. The same is
true when applying ASIP to our UResNet101 (with field):
it has slightly worse AP, AR, and max tangent angle error.
However, the ASIP method also results in better max tan-
gent angle error when using our UResNet101 (with field)
compared to using the U-Net variant.

Runtimes. We compare runtimes in Table S4. ASIP does
not have a GPU implementation. In their paper they give

6

U
-N

et
va

ri
an

t+
A

SI
P

p
Po

ly
M

ap
pe

r
O

ur
sp

Figure 5: Example building extraction results on CrowdAI test images. Buildings become more complex from left to right.
(top) U-Net variant [9] + ASIP [20], (middle) PolyMapper [21], and (bottom) ours: UResNet101 (full), frame field polygo-
nization.

Method AP ↑ AP50 ↑ AP75 ↑ AR ↑ AR50 ↑ AR75 ↑
UResNet101 (no field), mask 62.4 86.7 72.7 67.5 90.5 77.4
UResNet101 (no field), simple poly. 61.1 87.4 71.2 64.7 89.4 74.1
UResNet101 (with field), mask 64.5 89.3 74.6 68.1 91.0 77.7
UResNet101 (with field), simple poly. 61.7 87.7 71.5 65.4 89.9 74.6
UResNet101 (with field), our poly. 61.3 87.5 70.6 65.0 89.4 73.9
UResNet101 (with field), ASIP poly. [20] 60.0 86.3 69.9 64.0 88.8 73.4
U-Net variant [9], UResNet101 our poly. 67.0 92.1 75.6 73.2 93.5 81.1
Mask R-CNN [16] [35] 41.9 67.5 48.8 47.6 70.8 55.5
PANet [24] 50.7 73.9 62.6 54.4 74.5 65.2
PolyMapper [21] 55.7 86.0 65.1 62.1 88.6 71.4
U-Net variant [9], ASIP poly. [20] 65.8 87.6 73.4 78.7 94.3 86.1

Table 2: AP and AR results on the CrowdAI dataset [34] for
all polygonization experiments.

Method Time (sec) ↓ Hardware
PolyMapper [21] 0.38 GTX 1080Ti

ASIP [20] 0.15 Laptop CPU
Ours 0.04 GTX 1080Ti

Table 3: Average times to extract buildings from a 300×300
pixel patch. Ours refers to UResNet101 (with field), our
poly. ASIP’s time does not include model inference.

an average runtime of 1-3s on CPU with ~10% CPU uti-
lization. Assuming perfect parallelization, they estimate
their average runtime to be 0.15s with 100% CPU utiliza-

tion. Their method uses a priority queue for optimizing the
polygonal partitioning with various geometric operators and
is harder to implement on GPU. Our efficient data structure
makes our building extraction competitive with prior work.

5.2. Inria OSM dataset

U-Net16 (no field), simple poly. U-Net16 (with field), our poly.

Figure 6: Small crop of Inria dataset results.

7

Method mIoU ↑ Mean max tangent angle errors ↓
Eugene Khvedchenya2, simple poly. 80.7% 52.2 °
ICTNet [6], simple poly. 80.1% 52.1°
UResNet101 (no field), simple poly. 73.2% 52.0°
Zorzi et al. [44] poly. 74.4% 34.5°
UResNet101 (with field), our poly. 74.8% 28.1°

Table 4: IoU and mean max tangent angle errors for poly-
gon extraction methods on the Inria polygonized dataset.

The Inria OSM dataset is more challenging than the
CrowdAI dataset because it contains more varied areas (e.g.,
countryside, city center, residential, and commercial) with
different building types. It also contains adjacent buildings
with common walls, which our edge segmentation output
can detect. The mean IoU on test images of the output
classification maps is 78.0% for the U-Net16 trained with
a frame field compared to 76.9% for the U-Net16 with no
frame field. The IoU does not significantly penalize irreg-
ular contours, but, by visually inspecting segmentation out-
puts as in Fig. 6, we can see the effect of the regularization.
Our method successfully handles complex building shapes
which can be very large, with blocks of buildings featuring
common walls and holes. See the supplementary materials
for more results.

5.3. Inria polygonized dataset

Eugene Khvedchenya2, simple poly. UResNet101 (with field), our poly.

Figure 7: Crop of an Inria polygonized dataset test image.

The Inria polygonized dataset with its associated chal-
lenge1 allows us to directly compare to other methods
trained on the same ground truth, even though it does not
consider learning of separate buildings. In Table 4, our

1https://project.inria.fr/aerialimagelabeling/
leaderboard/

method matches [44] in terms of mIoU, with lower max
tangent angle error. The two top methods on the leader-
board (ICTNet [6] and “Eugene Khvedchenya”) achieve a
mIoU over 80%, but they lack contour regularity with high
max tangent angle error; they also only output segmenta-
tion masks, needing a posteriori polygonization to extract
polygonal buildings. Fig. 7 shows the cleaner geometry
of our method. The ground truth of the Inria polygonized
dataset has misalignment noise, yielding imprecise corners
that produce rounded corners in the prediction if no regu-
larization is applied. See the supplementary materials for
more results.

6. Conclusion

We improve on the task of building extraction by learn-
ing an additional output to a standard segmentation model:
a frame field. This motivates the use of a regularization loss,
leading to more regular contours, e.g., with sharp corners.
Our approach is efficient since the model is a single fully-
convolutional network. The training is straightforward, un-
like adversarial training, direct shape regression, and recur-
rent networks, which require significant tuning and more
computational power. The frame field adds virtually no
cost to inference time, and it disambiguates tough poly-
gonization cases, making our polygonization method less
complex. Our data structure for the polygonization makes
it parallelizable on the GPU. We handle the case of holes
in buildings as well as common walls between adjoining
buildings. Because of the skeleton graph structure, com-
mon wall polylines are naturally guaranteed to be shared by
the buildings on either side. As future work, we could apply
our method to any image segmentation network, including
multi-class segmentation, where the frame field could be
shared between all classes.

7. Acknowledgements

Thanks to ANR for funding the project EPITOME ANR-
17-CE23-0009 and to Inria Sophia Antipolis - Méditerranée
“Nef” computation cluster for providing resources and sup-
port. The MIT Geometric Data Processing group acknowl-
edges the generous support of Army Research Office grant
W911NF2010168, of Air Force Office of Scientific Re-
search award FA9550-19-1-031, of National Science Foun-
dation grant IIS-1838071, from the CSAIL Systems that
Learn program, from the MIT–IBM Watson AI Labora-
tory, from the Toyota–CSAIL Joint Research Center, from
a gift from Adobe Systems, from an MIT.nano Immersion
Lab/NCSOFT Gaming Program seed grant, and from the
Skoltech–MIT Next Generation Program. This work was
also supported by the National Science Foundation Gradu-
ate Research Fellowship under Grant No. 1122374.

8

https://project.inria.fr/aerialimagelabeling/leaderboard/
https://project.inria.fr/aerialimagelabeling/leaderboard/

References
[1] David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Ef-

ficient interactive annotation of segmentation datasets with
polygon-rnn++. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2018. 2

[2] Anil Batra, Suriya Singh, Guan Pang, Saikat Basu, C.V.
Jawahar, and Manohar Paluri. Improved road connectivity
by joint learning of orientation and segmentation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019. 3

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-
timating or propagating gradients through stochastic neurons
for conditional computation. 2013. arXiv:1308.3432. 2

[4] Mikhail Bessmeltsev and Justin Solomon. Vectorization of
line drawings via polyvector fields. ACM Trans. Graph.,
2019. 3

[5] Lluıs Castrejón, Kaustav Kundu, Raquel Urtasun, and Sanja
Fidler. Annotating object instances with a polygon-rnn.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 2

[6] Bodhiswatta Chatterjee and Charalambos Poullis. On build-
ing classification from remote sensor imagery using deep
neural networks and the relation between classification and
reconstruction accuracy using border localization as proxy.
In 2019 16th Conference on Computer and Robot Vision
(CRV), pages 41–48, 2019. 8, 26

[7] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. 2017. arXiv:1706.05587. 3, 5

[8] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-
net: Generating compact meshes via binary space partition-
ing. Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 2

[9] Jakub Czakon, Kamil A. Kaczmarek, Andrzej Pyskir, and
Piotr Tarasiewicz. Best practices for elegant experimentation
in data science projects. EuroPython, 2018. 6, 7, 18, 20

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009. 5

[11] Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga
Sorkine-Hornung. Designing N -polyvector fields with com-
plex polynomials. Eurographics SGP, 2014. 3

[12] Lei Ding and Lorenzo Bruzzone. Diresnet: Direction-aware
residual network for road extraction in vhr remote sensing
images. 2020. arXiv:2005.07232. 3

[13] David H. Douglas and Thomas K. Peucker. Algorithms for
the reduction of the number of points required to represent a
digitized line or its caricature. The Canadian Cartographer,
10(2):112–122, 1973. 1, 16

[14] Jun Gao, Zian Wang, Jinchen Xuan, and Sanja Fidler. Be-
yond fixed grid: Learning geometric image representation
with a deformable grid. In ECCV, 2020. 2

[15] Nicolas Girard, Guillaume Charpiat, and Yuliya Tarabalka.
Noisy Supervision for Correcting Misaligned Cadaster Maps
Without Perfect Ground Truth Data. In IEEE International

Geoscience and Remote Sensing Symposium (IGARSS),
2019. 5, 17

[16] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In The IEEE International Conference
on Computer Vision (ICCV), Oct 2017. 7, 20

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. 2015.
arXiv:1512.03385. 5

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9:1735–80, 12 1997. 2

[19] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.
Snakes: Active contour models. International Journal of
Computer Vision (IJCV), 1(4):321–331, 1988. 2, 4

[20] Muxingzi Li, Florent Lafarge, and Renaud Marlet. Approx-
imating shapes in images with low-complexity polygons.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 1, 2, 6, 7, 17, 18, 20

[21] Zuoyue Li, Jan Dirk Wegner, and Aurélien Lucchi. Topo-
logical map extraction from overhead images. In The IEEE
International Conference on Computer Vision (ICCV), 2019.
1, 2, 6, 7, 17, 18, 20

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, The European Conference on Computer Vision
(ECCV), pages 740–755, Cham, 2014. Springer International
Publishing. 6, 17

[23] Huan Ling, Jun Gao, Amlan Kar, Wenzheng Chen, and Sanja
Fidler. Fast interactive object annotation with curve-gcn.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 1, 2

[24] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 7, 20

[25] William Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. 1987. 1,
12

[26] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat,
and Pierre Alliez. Can semantic labeling methods generalize
to any city? the inria aerial image labeling benchmark. In
IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS), 2017. 5, 17

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin A.
Riedmiller. Playing atari with deep reinforcement learning.
2013. arXiv:1312.5602. 2

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin Riedmiller, Andreas K. Fidjeland, Georg Ostro-
vski, Stig Petersen, Charles Beattie, Amir Sadik, Ioan-
nis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature,
518(7540):529–533, Feb. 2015. 2

[29] Juan Nunez-Iglesias. skan: skeleton analysis in python.
https://github.com/jni/skan, 2017. 13

9

https://github.com/jni/skan

[30] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org , 2017. 1, 17

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 12

[32] Urs Ramer. An iterative procedure for the polygonal approx-
imation of plane curves. Computer graphics and image pro-
cessing, 1(3):244–256, 1972. 1, 16

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
2015. arXiv:1505.04597. 3, 5

[34] Sharada Prasanna Mohanty. Crowdai dataset.
https://www.crowdai.org/challenges/
mapping-challenge/dataset_files, 2018.
5, 6, 7, 16, 18, 20

[35] Sharada Prasanna Mohanty. Crowdai map-
ping challenge 2018: Baseline with mask rcnn.
https://github.com/crowdai/crowdai-mapping-challenge-
mask-rcnn, 2018. 7, 20

[36] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien
Ourselin, and M Jorge Cardoso. Generalised dice overlap as
a deep learning loss function for highly unbalanced segmen-
tations. In Deep learning in medical image analysis and mul-
timodal learning for clinical decision support, pages 240–
248. Springer, 2017. 4

[37] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction, 2020. 2

[38] Maria Taktasheva, Albert Matveev, Alexey Artemov, and
Evgeny Burnaev. Learning to approximate directional fields
defined over 2d planes. In Wil M. P. van der Aalst, Vladimir
Batagelj, Dmitry I. Ignatov, Michael Khachay, Valentina
Kuskova, Andrey Kutuzov, Sergei O. Kuznetsov, Irina A. Lo-
mazova, Natalia Loukachevitch, Amedeo Napoli, Panos M.
Pardalos, Marcello Pelillo, Andrey V. Savchenko, and Elena
Tutubalina, editors, Analysis of Images, Social Networks and
Texts, pages 367–374, Cham, 2019. Springer International
Publishing. 3

[39] Meng Tang, Federico Perazzi, Abdelaziz Djelouah, Is-
mail Ben Ayed, Christopher Schroers, and Yuri Boykov. On
regularized losses for weakly-supervised cnn segmentation.
In The European Conference on Computer Vision (ECCV),
2018. 1

[40] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Di-
vide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning,
2012. 15

[41] S. Tripodi, L. Duan, F. Trastour, V. Poujad, Lionel Laurore,
and Yuliya Tarabalka. Automated chain for large-scale 3d re-
construction of urban scenes from satellite images. ISPRS -
International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, XLII-2/W16:243–250,
09 2019. 2

[42] Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele
Panozzo, David Bommes, Klaus Hildebrandt, and Mirela
Ben-Chen. Directional field synthesis, design and process-
ing. Computer Graphics Forum, 35:545–572, 05 2016. 3

[43] T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for
thinning digital patterns. Commun. ACM, 27(3):236–239,
Mar. 1984. 5, 13

[44] Stefano Zorzi, Ksenia Bittner, and Friedrich Fraundorfer.
Machine-learned regularization and polygonization of build-
ing segmentation masks, 2020. arXiv:2007.12587. 2, 8, 18,
20, 26

[45] Stefano Zorzi and Friedrich Fraundorfer. Regularization of
building boundaries in satellite images using adversarial and
regularized losses. In IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), 2019. 1

10

https://www.crowdai.org/challenges/mapping-challenge/dataset_files
https://www.crowdai.org/challenges/mapping-challenge/dataset_files

Supplementary Materials

Contents

1. Frame field learning details 11
1.1. Model architecture 11
1.2. Losses . 11
1.3. Handling numerous heterogeneous losses . . 11
1.4. Training details 11

2. Frame field polygonization details 12
2.1. Data structure 12
2.2. Active Skeleton Model 14
2.3. Corner-aware polygon simplification 16
2.4. Detecting building polygons in planar graph . 16

3. Experimental setup details 16
3.1. Datasets . 16
3.2. Metrics . 17

4. Additional results 18
4.1. CrowdAI dataset 18
4.2. Inria OSM dataset 20
4.3. Inria polygonized dataset 20
4.4. Private dataset 21

1. Frame field learning details

1.1. Model architecture

We show in Fig. S1 how we add a frame field output
to an image segmentation backbone. The backbone can be
any (possibly pretrained) network as long as it outputs an
F -dimensional feature map ŷbackbone ∈ RF×H×W .

1.2. Losses

We define image segmentation loss functions below:

LBCE(y, ŷ) =
1

HW

∑
x∈I

y(x) · log(ŷ(x))

+ (1− y(x)) · log(1− ŷ(x)), (9)

LDice(y, ŷ) = 1− 2 · |y · y|+ 1

|y + y|+ 1
, (10)

Lint = α · LBCE(yint, ŷint) + (1− α) · LDice(yint, ŷint), (11)

Ledge = α ·LBCE(yedge, ŷedge)+ (1−α) ·LDice(yedge, ŷedge), (12)

where 0 < α < 1 is a hyperparameter. In practice, α =
0.25 gives good results.

For the frame field, we show a visualization of the Lalign

loss in Fig. S2.

1.3. Handling numerous heterogeneous losses

We linearly combine our eight losses using eight co-
efficients, which can be challenging to balance. Because
the losses have different units, we first compute a normal-
ization coefficient N〈loss name〉 by computing the average of
each loss on a random subset of the training dataset using
a randomly-initialized network. Then each loss can be nor-
malized by this coefficient. The total loss is a linear combi-
nation of all normalized losses:

λint
Lint

Nint
+ λedge

Ledge

Nedge
+ λalign

Lalign

Nalign
+ λalign90

Lalign90

Nalign90

+ λsmooth
Lsmooth

Nsmooth
+ λint align

Lint align

Nint align

+ λedge align
Ledge align

Nedge align
+ λint edge

Lint edge

Nint edge
, (13)

where the λ〈loss name〉 coefficients are to be tuned. It is also
possible to separately group the main losses and the regu-
larization losses and have a single λ coefficient balancing
the two loss groups:

λLmain + (1− λ)Lregularization, (14)

with
Lmain =

Lint

Nint
+
Ledge

Nedge
+
Lalign

Nalign
, (15)

Lregularization =
Lalign90

Nalign90
+
Lsmooth

Nsmooth

+
Lint align

Nint align
+
Ledge align

Nedge align
+
Lint edge

Nint edge
. (16)

In practice we started experiments with the single-
coefficient version with λ = 0.75 and then used the multi-
coefficient version to have more control by setting λint =
λedge = 10, λalign = 1, λalign90 = 0.2, λsmooth = 0.005,
λint align = λedge edge = λint edge = 0.2.

1.4. Training details

We do not heavily tune our hyperparameters: once we
find a value that works based on validation performance
we keep it across ablation experiments. We employ early
stopping for the U-Net16 and DeepLabV3 models (25 and
15 epochs, respectively) chosen by first training the full
method on the training set of the CrowdAI dataset, choosing
the epoch number of the lowest validation loss, and finally
re-training the model on the train and validation sets for that
number of total epochs.

Segmentation losses Lint and Ledge are both a combina-
tion of 25% cross-entropy loss and 75% Dice loss. To bal-
ance the losses in ablation experiments, we used the single-
coefficient version with λ = 0.75. For our best perform-
ing model UResNet101 we used the multi-coefficients ver-
sion to have more control by setting λint = λedge = 10,

11

Figure S1: Details of our network’s architecture with the addition of the frame field output.

0°

45°

90°

135°

180°

225°

270°

315°

u

v

-u

-v

f(z)

|f(z)| for all angles of z

Figure S2: Visualization of the frame field align loss Lalign

(in blue) for a certain configuration of {−u, u,−v, v} and
all possible ground truth z = eiθτ directions.

λalign = 1, λalign90 = 0.2, λsmooth = 0.005, λint align =
λedge edge = λint edge = 0.2. The U-Net16 was trained on
4 GTX 1080Ti GPUs in parallel on 512×512 patches and a
batch size of 16 per GPU (effective batch size 64). For all
training runs, we compute for each loss its normalization
coefficient N〈loss name〉 on 1000 batches before optimizing
the network.

Our method is implemented in PyTorch [31]. On the
CrowdAI dataset, training takes 2 hours per epoch on 4
1080Ti GPUs for the U-Net16 model and 3.5 hours per
epoch for the DeepLabV3 backbone on 4 2080Ti GPUs.

Inference with the U-Net16 on a 5000× 5000 image (re-
quires splitting into 1024×1024 patches) takes 7 seconds
on a Quadro M2200 (laptop GPU).

2. Frame field polygonization details
We expand here on the algorithm and implementation

details of our frame field polygonization method.

2.1. Data structure

Our polygonization method needs to be initialized with
geometry, which is then optimized to align to the frame field
(among other objectives we will present later).

In the case of extracting individual buildings, we use the
marching squares [25] contour finding algorithm on the pre-
dicted interior probability map yint with an isovalue ` (set to
0.5 in practice). The result is a collection of contours {Ci}
where each contour is a sequence of 2D points:

Ci =
(
(r0, c0), (r1, c1), ..., (rni−1, cni−1)

)
.

where ri, ci ∈ R correspond to vertex i’s position along
the row axis and the column axis respectively (they are not
restricted to being integers). A contour is generally closed
with (r0, c0) = (rni−1, cni−1), but it can be open if the cor-
responding object touches the border of the image (there-
fore start and end vertices are not the same).

In the case of extracting buildings with potential ad-
joining buildings sharing a common wall, we extract the
skeleton graph of the predicted edge probability map yedge.
This skeleton graph is a hyper-graph made of nodes con-
nected together by chains of vertices (i.e., polylines) called
paths (see Fig. S4 for examples). To obtain this skeleton

12

Figure S3: Our data structure of an example skeleton graph. It represents two buildings with a shared wall, necessitating 3
polyline paths. Here nodes 0 and 4 are shared among paths and are thus repeated in path index. We can see path index
is a concatenation of the node indices in pos of the paths. Finally, path delim is used to store the separation indices in
path index of those concatenated paths. Indices of arrays are in gray.

graph, we first compute the skeleton image using the thin-
ning method [43] on the binary edge mask (computed by
thresholding yedge with ` = 0.5). It reduces binary ob-
jects to a one-pixel-wide representation. We then use the
Skan [29] Python library to convert this representation to a
graph representation connecting those pixels. The resulting
graph is a collection of paths that are polylines connecting
junction nodes together. We use an appropriate data struc-
ture only involving arrays (named tensors in deep learning
frameworks) so that it can be manipulated by the GPU. We
show in Fig. S3 an infographic of the data structure. A se-
quence of node coordinates “pos” holds the location of all
nodes i ∈ [0 . . n− 1] belonging to the skeleton:

pos =
(
(r0, c0), (r1, c1), ..., (rn−1, cn−1)

)
where n is the total number of skeleton pixels and (ri, ci) ∈
[0 . .H − 1] × [0 . .W − 1] correspond to the row num-
ber and column number, respectively (of skeleton pixel i).
The skeleton graph connects junction nodes through paths,
which are polylines made up of connected vertices. These
paths are represented by the “paths” binary matrix Pp,n
where element (i, j) is one if node j is in path i. This
Pp,n is sparse, and, thus, it is more efficient to use the CSR

(compressed sparse row) format, which represents a matrix
by three (one-dimensional) arrays respectively containing
nonzero values, the column indices and the extents of rows.
As Pp,n is binary we do not need the array containing non-
zeros values. The column indices array, which we name
“path index” holds the column indices of all “on” elements:

path index = (j0, j1, ..., jn−njunctions+ndegrees sum−1),

where njunctions is the total number of junction nodes,
ndegrees sum is the sum of the degrees of all junction nodes and
∀k ∈ [0 . . n− njunctions + ndegrees sum − 1], jk ∈ [0 . . n− 1].
The extents of rows array which we name “path delim”
holds the starting index of each row (it also contains an ex-
tra end element which is the number of non-zeros elements
n for easier computation):

path delim = (s0, s1, ..., sp) .

Thus, in order to get row i of Pp,n we need to look up
the slice (si, si+1) of path index. In the skeleton graph
case, this representation is also easily interpretable. In-
dices of path nodes are all concatenated in path index and
path delim is used to separate those concatenated paths.

13

And finally a sequence of integers “degrees” stores for each
node the number of nodes connected to it:

degrees = (d0, d1, ..., dn−1) .

As a collection of contours is a type of graph, in order
to use a common data structure in our algorithm, we also
use the skeleton graph representation for the contours {Ci}
given by the marching squares algorithm (note we could use
other contour detection algorithms for initialization). Each
contour is thus an isolated path in the skeleton graph.

In order to fully leverage the parallelization capabilities
of GPUs, the largest amount of data should be processed
concurrently to increase throughput, i.e., we should aim
to use the GPU memory at its maximum capacity. When
processing a small image (such as 300 × 300 pixels from
the CrowdAI dataset), only a small fraction of memory
is used. We thus build a batch of such small images to
process them at the same time. As an example, on a GTX
1080Ti, we use a polygonization batch size B = 1024
for processing the CrowdAI dataset, which induces a
significant speedup. Building a batch of images is very
simple: they can be concatenated together along an ad-
ditional batch dimensions, i.e., B images Ii ∈ R3×H×W

are grouped in a tensor I ∈ RB×3×H×W . This is the
case for the output segmentation probability maps as
well as the frame field. However, it is slightly more
complex to build a batch of skeleton graphs because of
their varying sizes. Given a collection of skeleton graphs
{(posi, degreesi, path indexi, path delimi)}i∈[..B−1], all
posi and degreesi are concatenated in their first dimension
to give batch arrays:

posbatch = [pos0, pos1, . . . , posB−1] ,

and:

degreesbatch = [degrees0, degrees1, . . . , degreesB−1].

All path indexi need their indices to be shifted by a certain
offset:

offseti =

i−1∑
k=0

|posk|,

with |posk| the number of points in posk, so that they
point to the new locations in posbatch and degreebatch.
They are then concatenated in their first dimension:
path indexbatch = [path index0 + offset0, . . . , path indexB−1 + offsetB−1].

In a similar manner, we concatenate all path delimi into
path delimbatch while taking care of adding the appropriate
offset. We then obtain a big batch skeleton graph which
is represented in the same way as a single skeleton graph.
In order to later recover individual skeleton graphs in the
batch, similar to path delim, we need a batch delim array
that stores the starting index of each individual skeleton

graph in the path delim array (it also contains an extra end
element which is the total number of paths in the batch
for easier computation). While we apply the optimization
on the batched arrays posbatch, path indexbatch, and
so on, for readability we will now refer to them as pos,
path index and so on. Note that in the case of big images
(such as 5000 × 5000 pixels from the Inria dataset), we
set the batch size to 1, as the probability maps, the frame
field, and the skeleton graph data structure fills the GPU’s
memory well.

At this point the data structure is fixed, i.e., it will not
change during optimization. Only the values in pos will
be modified. This data structure is efficiently manipulated
in parallel on the GPU. All the operations needed for the
various computations performed in the next sections are run
in parallel on the GPU.

We compute other tensors from this minimal data struc-
ture which will be useful for computations:
• path pos = pos[path index] which expands the posi-

tions tensor for each path (junction nodes are thus re-
peated in path pos).

• A batch tensor which for each node in pos batch stores
the index i ∈ [0 . . B − 1] of the individual skeleton this
node belongs to. This is used to easily sample the batched
segmentation maps and the batched frame fields at the po-
sition of a node.

2.2. Active Skeleton Model

We adapt the formulation of the Active Contours Model
(ACM) to an Active Skeleton Model (ASM) in order to opti-
mize our batch skeleton graph. The advantage of using the
energy minimization formulation of ACM is to be able to
add extra terms if needed (we can imagine adding regular-
ization terms to, e.g., reward 90°corners, uniform curvature,
and straight walls).

Energy terms will be parameterized by the node posi-
tions p ∈ pos, which are the variables being optimized. The
first important energy term isEprobability which aims to fit the
skeleton paths to the contour of the building interior proba-
bility map yint(v) at a certain probability level ` (which we
set to 0.5 in practice, just like the isovalue used to initialize
the contours by marching squares):

Eprobability =
∑

p∈pos
(yint(p)− l)2 .

The value yint(p) is computed by bilinear interpolation so
that gradients can be back-propagated to p. Additionally,
yint(p) implicitly entails using the batch array to know
which slice in the batch dimension of yint ∈ RB×1×H×W
to sample p from. This will be the case anytime batched
image-like tensors are sampled at a point p. In the case of
the marching squares initialization, this Eprobability energy is

14

(a) Step 0 (b) Step 2 (c) Step 5

(d) Step 10 (e) Step 25 (f) Step 100

Figure S4: ASM optimization steps (zoomed example). Frame field in blue crosses.

actually zero at the start of optimization, since the initial-
ized contour already is at isovalue `. For the skeleton graph
initialization, paths that trace inner walls between adjoining
buildings will not be affected since the gradient is zero in a
neighborhood of homogeneous values (i.e., yint = 1 inside
buildings).

The second important energy term is Eframe field align

which aligns each edge of the skeleton paths to the frame
field. Edge vectors are computed in parallel as:

e = path pos [1:] − path pos[:−1] ,

while taking care of removing from the energy computation
“hallucinated” edges between paths (using the path delim
array). For readability we call E the set of valid edge vec-
tors. For each edge vector e ∈ E, we refer to its direc-
tion as edir = e

‖e‖ . We also refer to its center point as
ecenter = 1

2 (path pos [1:] + path pos [:−1]). The frame

field align term is defined as:

Eframe field align =
∑
e∈E
|f(edir; c0(ecenter), c2(ecenter))|2 .

This is the term that disambiguates between slanted walls
and corners and results in regular-looking contours.

The last important term is the internal energy termElength

which ensures node distribution along paths remains homo-
geneous as well as tight:

Elength =
∑
e∈E
|e|2 .

All energy terms are then linearly combined:
Etotal = λprobabilityEprobability + λframe field alignEframe field align + λlengthElength .

In practice, the final result is robust to different values of
coefficients for each of these three energy terms, and we
determine them using a small cross-validation set. The
total energy is minimized with the RMSprop [40] gradient
descent method with a smoothing constant γ = 0.9 with an

15

initial learning rate of η = 0.1 which is exponentially de-
cayed. The optimization is run for 300 iterations to ensure
convergence. Indeed since the geometry is initialized to lie
on building boundaries, it is not expected to move more
than a few pixels and the optimization converges quickly.
See Fig. S4 for a zoomed example of different stages of the
ASM optimization.

2.3. Corner-aware polygon simplification

Figure S5: Corner detection using the frame field. For each
vertex, the frame field is sampled at that location (with near-
est neighbor) and represented by the {±u,±v} vectors.

We now have a collection of connected polylines that
forms a planar skeleton graph. As building corners should
not be removed during simplification, only polylines be-
tween corners are simplified. For the moment our data
structure encodes a collection of polyline paths connecting
junction nodes in the skeleton graph. However, a single path
can represent multiple walls. It is the case for example of
an individual rectangular building: one path describes its
contour while it has 4 walls. In order to split paths into
sub-paths each representing a single wall we need to detect
building corners along a path and add this information to
our data structure. This is another reason to use a frame
field input, as it implicitly models corners: at a given build-
ing corner, there are two tangents of the contour. The frame
field learned to align one of u or −u to the first tangent
and one of v or −v to the other tangent. Thus when walk-
ing along a contour path if the local direction of walking
switches from ±u to ±u or vice versa, it means we have
come across a corner, see Fig. S5 for an infographic for cor-
ner detection. Specifically for each node i with position
p = path pos [i] its preceding and following edge vectors
are computed as: eprev = path pos [i] − path pos[i−1]
and enext = path pos [i+1] − path pos[i]. As the frame
field is represented by the coefficients {c0, c2} at each pixel,
we first need to convert it to its {u, v} representation with
the simple formulas of eq. 17.

{
c0 = u2v2

c2 = −(u2 + v2)
⇐⇒

u2 = − 1

2

(
c2 +

√
c22 − 4c0

)
v2 = − 1

2

(
c2 −

√
c22 − 4c0

)
.

(17)

|〈eprev, up〉| < |〈eprev, vp〉| |〈eprev, vp〉| < |〈eprev, up〉|
|〈enext, up〉| < |〈enext, vp〉| False True
|〈enext, vp〉| < |〈enext, up〉| True False

Table S1: Summary table for deciding if node i with posi-
tion p = path pos [i] is a corner (True) or not (False).

The frame field is sampled at that position p: up =
u(p) and vp = v(p). Alignment between eprev, enext and
±up,±vp is measured with the absolute scalar product so
that it is agnostic to the sign of u and v. For example align-
ment between eprev and ±up is measured by |〈eprev, up〉|
and if |〈eprev, up〉| < |〈eprev, vp〉| then eprev is aligned to±v
and not ±u. The same is done for enext. Finally if eprev

and eprev do not align to the same frame field direction, then
node i is a corner. As a summary for corner cases we refer
to Table. S1.

Because the path positions are concatenated together in
the path pos tensor, some care must be taken for nodes at
the extremities of paths (i.e., junction nodes) as they do not
have both preceding and following edges. The path delim
tensor is used to mark those nodes as not corners. Once
corners are detected we obtain a tensor is corner index =
{i | node i is a corner} which can be used to separate paths
into sub-paths each representing a single wall by merging
is corner index with the path delim tensor through con-
catenation and sorting.

Now that each sub-path polyline represents a single
wall between two corners, we apply the Ramer-Douglas-
Peucker [32, 13] simplification algorithm separately on all
sub-path polylines. As explained in the related works, the
simplification tolerance ε represents the maximum Haus-
dorff distance between the original polyline and the simpli-
fied one.

2.4. Detecting building polygons in planar graph

To obtain our final output of building polygons, the col-
lection of polylines is polygonized by detecting connecting
regions separated by the polylines. A list of polygonal cells
that partition the entire image is thus obtained. The last step
computes a building probability value for each polygon us-
ing the predicted interior probability map and removes low-
probability polygons (in practice those that have an average
probability less than 50%).

3. Experimental setup details

3.1. Datasets

CrowdAI dataset. The CrowdAI dataset [34] originally
has 280741 training images, 60317 validation images, and
60697 test images. All images are 300×300 pixels with un-
known ground sampling distance, although they are aerial
images. As the ground truth annotations of the test set are

16

unreleased because of the challenge, we use the original val-
idation set as our test set and discard the original test images
as is commonly done by other methods comparing them-
selves with that dataset [21, 20]. We then use 75% of the
original training images as our initial training set and 25%
for validation. Out final models are then trained on the en-
tire original training set with hyperparameters selected us-
ing our validation test.

Inria dataset. The Inria dataset [26] has 360 aerial im-
ages of 5000 × 5000 pixels each with a Ground Sampling
Distance of 30 cm. In total, 10 cities from Europe and the
USA are represented, each city having 36 images. Each im-
age is accompanied by its building ground truth mask with
an average of a few thousand buildings per image. This
dataset provides building ground truth in the form of bi-
nary mask images for each image. However, our method
requires the ground truth annotations to be in vector format
(polygons) so that the ground truth for the frame field can
be computed: the tangent angle θτ used in Lalign. We thus
build two dataset variants with vector annotations.

The first variant is the Inria OSM dataset for which
we discard completely the original ground truth masks
and instead download annotations from Open Street Map
(OSM) [30]. Because the OSM annotations are not always
aligned, we align them using [15]. We randomly split the
images into train (50%), validation (25%), and test (25%)
sets. Because the OSM annotations have a lot of missing
buildings in certain images, our test results on this dataset
are somewhat skewed. Thus, for the test images, we man-
ually select those with few missing buildings in the annota-
tions, giving us 54 test images in total.

The second variant is the Inria Polygonized dataset for
which we take the original ground truth masks and convert
them to polygon format with our polygonization method. In
this setting, the input to our network (we used the small U-
Net16) is just the binary mask and the output a frame field.
In order to train this model, we need a dataset of (binary
masks, θτ) pairs. We used the OSM annotations of the Inria
OSM dataset, which we rasterized to obtain the input binary
masks and which we used to compute θτ . After our model
finished training, we applied our frame field polygonization
method on the original binary masks of the Inria dataset
and their predicted frame fields. The new Inria polygonized
dataset is thus made of (RGB image, polygonized annota-
tions) pairs. We thus obtain the same ground truth as the
original dataset but in vector format. This allows us to only
use the same ground truth data as the other competitors of
the Inria Aerial Image Labeling challenge and thus we can
directly compare our method to them. Thus we keep the
original train and test splits which do not have any cities
overlap and tests cross-city generalization (the principal aim
of the associated challenge). We then split the original train

split into our train (75%) and validation (25%) splits.

Private dataset. The private dataset is a large-scale
dataset of satellite images built by a company we collab-
orate with. The images in this dataset were acquired us-
ing three types of satellites (Pleiades, WorldView, and Geo-
Eye) over different types of cities (dense, industrial, resi-
dential areas, and city centers). We uniformized the im-
age sampling at 50 cm/pixel spatial resolution, with 3-band
RGB images. 57 images of 30 cities across 5 continents are
present in the training dataset. The size of images varies
from around 2000×2000 pixels to 20000×20000 pixels.
The total dataset covers an area spanning around 700 km2.
The building outline polygons were manually labeled pre-
cisely by an expert. Satellite images are more challenging
than aerial images (such as the CrowdAI and Inria images)
because they are less clear due to atmospheric effects. This
dataset also contains much more varied images compared to
CrowdAI and Inria, making up for its smaller size. We pre-
process the training images by splitting them into smaller
512×512 pixel patches. We then keep 90% of patches for
training and 10% for validation.

3.2. Metrics

IoU, AP and AR. The usual metric for the image seg-
mentation task is Intersection over Union (IoU) which com-
putes the overlap between a predicted segmentation and the
ground truth annotation. The IoU is then used to compute
other metrics such as the MS COCO [22] Average Precision
(AP and its variants AP50, AP75, APS , APM , APL) and Av-
erage Recall (AR and its variants AR50, AR75, ARS , ARM ,
ARL) evaluation metrics. Precision and recall are computed
for a certain IoU threshold: detections with an IoU above
the threshold are counted as true positives whiles others are
false positives and ground truth annotations with an IoU be-
low the threshold are false negatives. Each object is also
given a score value representing the model’s confidence in
the detection. In our case, it is the mean value of the in-
terior probability map inside the detection. The Precision-
Recall curve can be obtained by varying the score threshold
that determines what is counted as a model-predicted posi-
tive detection. Average Precision (AP) is the average value
of the precision across all recall values and Average Recall
(AR) is the maximum recall given a fixed number of detec-
tions per image (100 in our case). Finally, the mean Aver-
age Precision (mAP) is calculated by taking the mean AP
over multiple IoU thresholds (from 0.50 to 0.95 with a step
of 0.05). Likewise for the mean Average Recall (mAR).
Following MS COCO’s convention, we make no distinction
between AP and mAP (and likewise AR and mAR) and as-
sume the difference is clear from context. The AP50 variant
is AP computed with a single IoU threshold of 50% (simi-
larly for AP75, AR50, and AR75). The APS , APM and APL

17

variants are AP computed for small (area < 322), medium
(322 < area < 962) and large (area > 962) objects respec-
tively (like-wise for the AR equivalents).

Max tangent angle error. We introduce a max tangent
angle error metric between predicted polygons and the
ground truth to capture the regularity of the predicted con-
tours. A max tangent angle scalar error is computed for each
predicted contour. Only predicted contours with at least
50% overlap with the ground truth are selected, so that their
measure makes sense. Each predicted contour is first sam-
pled homogeneously with points {Pi}i∈[1..n] (specifically a
point is sampled every 0.1 pixel). Then the Pi points are
projected to the ground truth, meaning for each Pi we find
the closest point Qi belonging to the ground truth annota-
tion. For both sequences of points Pi andQi, corresponding
normed tangent directions are computed as:

T (Pi) =
Pi+1 − Pi
‖Pi+1 − Pi‖

and T (Qi) =
Qi+1 −Qi
‖Qi+1 −Qi‖

.

The angle differences between the two are computed from
the scalar product:

∆θi = cos−1(〈T (Pi), T (Qi)〉) .

Before computing the maximum angle error maxi ∆θi
along the whole contour, some angle errors ∆θi need to
be filtered out as they are invalid. Angle error invalidity
is due to the projection step. Indeed around ground truth
corners, part of the predicted contour will we be squashed
to be zero-length for example. Another issue is when Pi
and Pi+1 are projected to two different ground truth poly-
gon sides: the projected edge Pi+1 − Pi does not represent
a ground truth tangent anymore. We thus filter out tangents
whose projection is stretched more than a factor of 2, i.e.,
we keep all ∆θj ,∀j ∈ V where V = {j | j ∈ [1 . . n], 12 <
‖Qi+1−Qi‖
‖Pi+1−Pi‖ < 2}. The final max tangent angle error for that
contour is then:

Emax tangent angle = max
j∈V

∆θj .

As each contour gives a scalar error, we aggregate all the
errors for a certain dataset by averaging this max tangent
angle error metric.

4. Additional results
4.1. CrowdAI dataset

4.1.1 Complexity vs. fidelity

For the polygon complexity/fidelity trade-off ablation study
we plot the AP and AR scores for difference simplification
tolerance values ε on the CrowdAI dataset.

Method Mean max angle error ↓
UResNet101 (no field), simple poly. 51.9°
UResNet101 (with field), simple poly. 45.1°
U-Net variant [9], ASIP poly. [20] 44.0°
U-Net variant [9], UResNet101 our poly. 36.6°
Zorzi et al. [44] poly. 36.8°
UResNet101 (no Lsmooth), our poly. 33.6°
UResNet101 (no Lint align and Ledge align), our poly. 33.5°
UResNet101 (no Lint edge), our poly. 33.4°
UResNet101 (no Lalign90), our poly. 33.2°
PolyMapper [21] 33.1°
UResNet101 (with field), our poly. 31.9°

Table S2: Mean max tangent angle errors over all the orig-
inal validation polygons of the CrowdAI dataset [34].

We perform an analysis of the polygonization complex-
ity/fidelity trade-off by changing the tolerance value ε of
the baseline simplification method and our corner-aware
method. Fig. S6a shows that preventing the removal of
building corners ensures key points of the contours and the
global shape of the building remain intact even with extreme
simplification tolerance values. We also plot the AP and AR
values of both methods while increasing the tolerance value
ε in Fig. S6. As expected the score of our method does not
drop, unlike the simple polygonization method.

Our polygonization method allows the complexity-to-
fidelity ratio to be tuned with the easy-to-interpret toler-
ance value ε of the Ramer-Douglas-Peucker algorithm, un-
like ASIP [20], which uses a non-intuitive parameter λ to
balance complexity and fidelity energies during polygonal
partition optimization. Finally, PolyMapper [21] does not
have the ability to tune the complexity-to-fidelity ratio.

4.1.2 Ablation study

We visualize the predicted classification maps from each ab-
lation study for an example test sample in Fig. S7. Both for
the U-Net16 and DeepLab101 backbones, the (full) method
yields more regular classification maps with sharper cor-
ners compared to (no field). Additionally, only learning the
frame field with (no coupling losses) is insufficient, as can
be seen in Fig. S7d.

We observe the effect of only optimizing for IoU when
removing coupling losses: we see that it does not impact AP
and AR metrics in Table S3, while in Fig. S7 the (full) seg-
mentations are clearly sharper compared to the (no coupling
losses) ones.

In terms of AP and AR metrics, adding a frame field im-
proves the final score (full) compared to (no field) for all
backbones: U-Net16, DeepLab101 and UResNet101 (see
Table S3).

We also visually compare our frame field polygonization
method with the simple baseline polygonization algorithm
(both when the frame field is computed and when it is not)
in Fig. S8. The UResNet101 without frame field learning

18

Si
m

pl
e

po
ly

.
O

ur
sp

(a) Effect of increasing the simplification tolerance value ε from 0.5 px (left), then 2 px, then 8 px and 16 px (right).

0 2 4 6 8 10 12 14 16
Tolerance

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

AP

U-Net16 full method: AP vs tolerance

Baseline polygonization
Our polygonization

(b) AP for both our corner-aware method and the simple poly-
gonization for various tolerance value ε.

0 2 4 6 8 10 12 14 16
Tolerance

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

AR
U-Net16 full method: AR vs tolerance

Baseline polygonization
Our polygonization

(c) AR for both our corner-aware method and the simple poly-
gonization for various tolerance value ε.

Figure S6: Comparison between the baseline simplification algorithm with our corner-aware one. Both take the same classifi-
cation map as input, but the baseline does not use the frame field. The corner-aware simplification guarantees that no corners
will be simplified, regardless of the tolerance value ε.

and whose results are polygonized with the simple method
performs the worst (see Fig. S8c), with the UResNet101
with frame field learning and whose results are polygonized
with the simple method performs already much better (see
Fig. S8b). Our UResNet101 with frame field learning and
whose results are polygonized with our frame field poly-
gonization method performs the best, with better corners
using fewer vertices (see Fig. S8a). We can see our method
provides the missing information needed to resolve ambigu-
ous cases for polygonization and outputs more regular poly-
gons.

Finally Table S2 and S3 also hold results for additional
experiments of the ablation study which each remove a loss
during training. We observe that removing one of those
losses does not impact the AP or AR result of the final poly-
gonization. However, if one of those loss is removed we
observe a performance drop in terms of max tangent angle
errors, with result polygons for all such experiments hav-
ing a mean error slightly higher than PolyMapper (at 33.1°)
while our full method achieves a mean error of 31.6°.

19

Method AP ↑ AP50 ↑ AP75 ↑ APS ↑ APM ↑ APL ↑ AR ↑ AR50 ↑ AR75 ↑ ARS ↑ ARM ↑ ARL ↑
U-Net16 (no field), mask 50.9 74.3 59.5 24.5 65.6 66.3 55.9 77.9 64.7 29.8 71.2 74.6
U-Net16 (no field), simple poly. 50.5 76.6 59.1 22.6 66.2 69.3 54.8 78.5 63.5 26.8 71.2 75.2
U-Net16 (no coupling losses), mask 53.7 77.7 62.8 25.7 69.0 68.9 57.7 79.2 66.4 31.0 73.4 74.4
U-Net16 (with field), mask 53.6 77.8 62.8 25.1 69.4 69.5 57.6 79.0 66.4 29.7 74.1 75.2
U-Net16 (with field), simple poly. 49.6 73.8 58.1 21.2 65.5 67.0 53.8 75.6 62.2 25.5 70.5 72.5
U-Net16 (with field), our poly. 50.5 76.6 59.3 20.4 67.4 69.0 55.3 78.1 64.0 25.7 72.8 75.0
DeepLab101 (with field) 54.9 78.1 64.9 25.6 71.2 76.8 58.7 79.8 68.1 29.5 75.8 81.6
DeepLab101 (no field) 52.8 75.2 61.8 26.1 67.7 75.0 57.8 78.4 66.7 30.3 73.7 81.8
UResNet101 (no field), mask 62.4 86.7 72.7 36.2 76.3 81.1 67.5 90.5 77.4 46.8 79.5 86.5
UResNet101 (no field), simple poly. 61.1 87.4 71.2 35.1 74.5 82.3 64.7 89.4 74.1 41.7 77.9 85.7
UResNet101 (with field), mask 64.5 89.3 74.6 40.3 76.6 84.0 68.1 91.0 77.7 47.5 80.0 86.7
UResNet101 (with field), simple poly. 61.7 87.7 71.5 35.8 74.9 83.0 65.4 89.9 74.6 42.6 78.6 85.9
UResNet101 (with field), our poly. 61.3 87.5 70.6 34.0 75.1 83.1 65.0 89.4 73.9 41.2 78.7 86.0
UResNet101 (no Lalign90), mask 64.2 88.6 74.6 40.0 76.4 83.7 67.8 90.9 77.5 47.1 79.7 86.4
UResNet101 (no Lalign90), simple poly. 61.4 87.7 71.4 35.4 74.5 82.7 65.0 89.7 74.4 42.1 78.2 85.6
UResNet101 (no Lalign90), our poly. 61.1 87.5 70.6 34.1 74.9 82.8 64.7 89.3 73.8 41.2 78.4 85.6
UResNet101 (no Lint edge), mask 63.8 88.5 74.4 39.6 75.9 83.3 67.3 90.7 77.0 46.6 79.3 86.2
UResNet101 (no Lint edge), simple poly. 61.0 87.6 70.6 35.2 74.1 82.4 64.6 89.5 74.0 41.7 77.8 85.3
UResNet101 (no Lint edge), our poly. 60.9 87.4 70.5 33.7 74.4 82.5 64.4 89.1 73.4 40.7 78.1 85.4
UResNet101 (no Lint align and Ledge align), mask 64.7 89.3 74.7 40.5 76.7 84.2 68.2 91.0 77.9 47.6 80.1 86.8
UResNet101 (no Lint align and Ledge align), simple poly. 61.8 87.7 71.5 35.8 74.9 83.3 65.4 89.9 74.7 42.5 78.6 86.0
UResNet101 (no Lint align and Ledge align), our poly. 61.5 87.5 71.3 34.2 75.2 83.4 65.0 89.5 74.0 41.3 78.8 86.1
UResNet101 (no Lsmooth), mask 64.2 88.6 74.6 40.1 76.5 83.5 67.8 90.8 77.5 47.2 79.8 86.1
UResNet101 (no Lsmooth), simple poly. 61.6 87.7 71.5 35.7 74.8 82.6 65.2 89.7 74.5 42.3 78.4 85.4
UResNet101 (no Lsmooth), our poly. 61.3 87.5 70.7 34.1 75.0 82.7 64.8 89.3 73.9 41.1 78.6 85.5
U-Net variant [9], UResNet101 our poly. 67.0 92.1 75.6 42.1 84.2 92.7 73.2 93.5 81.1 48.8 87.3 95.4
Mask R-CNN [16] [35] 41.9 67.5 48.8 12.4 58.1 51.9 47.6 70.8 55.5 18.1 65.2 63.3
PANet [24] 50.7 73.9 62.6 19.8 68.5 65.8 54.4 74.5 65.2 21.8 73.5 75.0
PolyMapper [21] 55.7 86.0 65.1 30.7 68.5 58.4 62.1 88.6 71.4 39.4 75.6 75.4
U-Net variant [9], ASIP poly. [20] 65.8 87.6 73.4 39.3 87.0 91.9 78.7 94.3 86.1 57.2 91.2 97.6

Table S3: AP and AR results on the CrowdAI dataset [34] for all polygonization experiments. (with field) refers to models
trained with our full frame field learning method. (no field) refers to models trained without any frame field output. “mask”
refers to the output raster segmentation mask of the network, “our poly.” refers to our frame field polygonization method, and
“simple poly.” refers to the baseline polygonization of marching squares followed by Ramer-Douglas-Peucker simplification.

Method Time (sec) ↓ Hardware
PolyMapper [21] 0.38 GTX 1080Ti

ASIP [20] 0.15 Laptop CPU
Zorzi et al. [44] 0.11 GTX 1080Ti

Ours 0.04 GTX 1080Ti

Table S4: Average time to extract buildings from a 300×300
pixel patch. Ours refers to UResNet101 (with field), our
poly. ASIP’s time does not include model inference.

4.1.3 Additional runtimes

We report here the average runtimes for a 300×300 pixel
patch of the different steps of the building polygonization
pipeline of Zorzi et al. [44] along with corresponding GPU
memory allocation (GTX 1080Ti):

1. segmentation: 0.152s with 20% GPU memory,

2. regularization: 0.269s with 12% GPU memory,

3. mask2poly: 0.257s with 19% GPU memory.

As we optimized our own method for maximum throughput,
we want to compare to previous methods assuming perfect
parallelization (as is done for the ASIP method in the main
paper). Zorzi et al. would then get these runtimes:

1. segmentation: 0.0304s,

2. regularization: 0.03228s,

3. mask2poly: 0,04883s,

for a total of 0,11151s. For comparison we include the run-
times of all methods in Table S4, where we observe our
method being competitive compared to previous works.

4.2. Inria OSM dataset

We show bigger crops of the result of our frame field
polygonization in Fig. S9, S10, and S11. We observe the
ability of our method to separate adjoining buildings, handle
complex shapes with big buildings having non-rectangular
shapes and possibly holes.

4.3. Inria polygonized dataset

We show a larger result comparison to other methods on
the Inria Polygonized dataset in Fig S12, including the two
best methods on the public leaderboard2. While the result
from “Eugene Khvedchenya” and ICTNet acheive an mIoU
over 80%, they detect buildings with segmentation masks

2https://project.inria.fr/aerialimagelabeling/leaderboard/

20

(a) Input (b) U-Net16 (full): trained with frame field (c) U-Net16 (no field): trained without
frame field

(d) U-Net16 (no coupling losses): trained
with frame field but without coupling losses

(e) DeepLab101 (full): trained with frame
field

(f) DeepLab101 (no field): trained without
frame field

Figure S7: Classification predictions on a test sample for all training ablation studies.

that need polygonization. We thus used the simple polygo-
nization method which follows the boundaries in the seg-
mentation raster image. Their results have blob-like fea-
tures, with rounded corners and non-regular contours.

In order to compare to the ASIP polygonization method,
we started to run the ASIP algorithm on the 180 output
probability maps of our network, corresponding to the 180
test images. However the ASIP method is not well-suited
for such big images (5000×5000 pixels) with thousands of
buildings, requiring a very high number of iterations (that
we set to 10000). The runtime of ASIP varies greatly de-
pending on the building density of images. For the most
dense ones, it did not finish within a day of computation,
making it impractical to run on the whole test dataset. As
such we compare to the ASIP method only on the CrowdAI
dataset.

4.4. Private dataset

Because training on the private dataset must be done on
a restricted computer with limited access, we only train two
models: U-Net16 (full) and U-Net16 (no field) until vali-
dation loss converges (around 1500 epochs). First we dis-
play segmentation raster outputs in Fig S13, S14 and S15
and final polygonal buildings in Fig S16, S17 and S18.
Satellite images being more challenging than aerial images,
non-regularized segmentations (no field) appear even more
rounded than usual. However, our frame field learning and
polygonization (with field) still outputs clean, regular ge-
ometry, and separates adjoining buildings.

21

(a) Ours: UResNet101 with frame field learning (full) and frame field polygonization

(b) UResNet101 with frame field learning and simple polygoniza-
tion

(c) UResNet101 (no field) learning and simple polygonization

Figure S8: Extracted polygons with: our (full) frame field learning and polygonization method; our frame field learning and
simple polygonization method; the (no field) learning and simple polygonization baseline. A low tolerance of ε = 0.125 pixel
was chosen to compare precise contours.

22

U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure S9: Crop of results on the “sfo19” image from the Inria OSM dataset.

23

U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure S10: Crop of results on the “innsbruck19” image from the Inria OSM dataset.

24

U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure S11: Crop of results on the “vienna36” image from the Inria OSM dataset.

25

Eugene Khvedchenya2, simple poly. ICTNet [6], simple poly.

Zorzi et al. [44] poly. Ours: UResNet101 (with field), our poly.

Figure S12: Crop of results on an Inria Polygonized dataset test image.

26

U-Net16 (no field) Ours: U-Net16 (with field)

Figure S13: Crop results on the “Egypt” test image of the private dataset.

27

U-Net16 (no field) Ours: U-Net16 (with field)

Figure S14: Crop results on the “Bangkok” test image of the private dataset.

28

U-Net16 (no field) Ours: U-Net16 (with field)

Figure S15: Crop results on the “Chile” test image of the private dataset.

29

U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure S16: Crop results on the “Egypt” test image of the private dataset.

30

U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure S17: Crop results on the “Bangkok” test image of the private dataset.

31

U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure S18: Crop results on the “Chile” test image of the private dataset.

32

