75 research outputs found

    AxiSEM: broadband 3-D seismic wavefields in axisymmetric media

    Get PDF
    We present a methodology to compute 3-D global seismic wavefields for realistic earthquake sources in visco-elastic anisotropic media, covering applications across the observable seismic frequency band with moderate computational resources. This is accommodated by mandating axisymmetric background models that allow for a multipole expansion such that only a 2-D computational domain is needed, whereas the azimuthal third dimension is computed analytically on the fly. This dimensional collapse opens doors for storing space–time wavefields on disk that can be used to compute Fréchet sensitivity kernels for waveform tomography. We use the corresponding publicly available AxiSEM (<a href="www.axisem.info"target="_blank">www.axisem.info</a>) open-source spectral-element code, demonstrate its excellent scalability on supercomputers, a diverse range of applications ranging from normal modes to small-scale lowermost mantle structures, tomographic models, and comparison with observed data, and discuss further avenues to pursue with this methodology

    High-performance tsunami modelling with modern GPU technology

    Get PDF
    PhD ThesisEarthquake-induced tsunamis commonly propagate in the deep ocean as long waves and develop into sharp-fronted surges moving rapidly coastward, which may be effectively simulated by hydrodynamic models solving the nonlinear shallow water equations (SWEs). Tsunamis can cause substantial economic and human losses, which could be mitigated through early warning systems given efficient and accurate modelling. Most existing tsunami models require long simulation times for real-world applications. This thesis presents a graphics processing unit (GPU) accelerated finite volume hydrodynamic model using the compute unified device architecture (CUDA) for computationally efficient tsunami simulations. Compared with a standard PC, the model is able to reduce run-time by a factor of > 40. The validated model is used to reproduce the 2011 Japan tsunami. Two source models were tested, one based on tsunami waveform inversion and another using deep-ocean tsunameters. Vertical sea surface displacement is computed by the Okada model, assuming instantaneous sea-floor deformation. Both source models can reproduce the wave propagation at offshore and nearshore gauges, but the tsunameter-based model better simulates the first wave amplitude. Effects of grid resolutions between 450-3600 m, slope limiters, and numerical accuracy are also investigated for the simulation of the 2011 Japan tsunami. Grid resolutions of 1-2 km perform well with a proper limiter; the Sweby limiter is optimal for coarser resolutions, recovers wave peaks better than minmod, and is more numerically stable than Superbee. One hour of tsunami propagation can be predicted in 50 times on a regular low-cost PC-hosted GPU, compared to a single CPU. For 450 m resolution on a larger-memory server-hosted GPU, performance increased by ~70 times. Finally, two adaptive mesh refinement (AMR) techniques including simplified dynamic adaptive grids on CPU and a static adaptive grid on GPU are introduced to provide multi-scale simulations. Both can reduce run-time by ~3 times while maintaining acceptable accuracy. The proposed computationally-efficient tsunami model is expected to provide a new practical tool for tsunami modelling for different purposes, including real-time warning, evacuation planning, risk management and city planning

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Probabilistic Imaging and Dynamic Modeling of Earthquake Source Processes

    Get PDF
    Investigation of large, destructive earthquakes is challenged by their infrequent occurrence and the remote nature of geophysical observations. This thesis sheds light on the source processes of large earthquakes from two perspectives: robust and quantitative observational constraints through Bayesian inference for earthquake source models, and physical insights on the interconnections of seismic and aseismic fault behavior from elastodynamic modeling of earthquake ruptures and aseismic processes. To constrain the shallow deformation during megathrust events, we develop semi-analytical and numerical Bayesian approaches to explore the maximum resolution of the tsunami data, with a focus on incorporating the uncertainty in the forward modeling. These methodologies are then applied to invert for the coseismic seafloor displacement field in the 2011 Mw 9.0 Tohoku-Oki earthquake using near-field tsunami waveforms and for the coseismic fault slip models in the 2010 Mw 8.8 Maule earthquake with complementary tsunami and geodetic observations. From posterior estimates of model parameters and their uncertainties, we are able to quantitatively constrain the near-trench profiles of seafloor displacement and fault slip. Similar characteristic patterns emerge during both events, featuring the peak of uplift near the edge of the accretionary wedge with a decay toward the trench axis, with implications for fault failure and tsunamigenic mechanisms of megathrust earthquakes. To understand the behavior of earthquakes at the base of the seismogenic zone on continental strike-slip faults, we simulate the interactions of dynamic earthquake rupture, aseismic slip, and heterogeneity in rate-and-state fault models coupled with shear heating. Our study explains the long-standing enigma of seismic quiescence on major fault segments known to have hosted large earthquakes by deeper penetration of large earthquakes below the seismogenic zone, where mature faults have well-localized creeping extensions. This conclusion is supported by the simulated relationship between seismicity and large earthquakes as well as by observations from recent large events. We also use the modeling to connect the geodetic observables of fault locking with the behavior of seismicity in numerical models, investigating how a combination of interseismic geodetic and seismological estimates could constrain the locked-creeping transition of faults and potentially their co- and post-seismic behavior.</p

    Sdružené inverzní modelování koseismického a postseismického skluzu kalifornského zemětřesení South Napa 2014

    Get PDF
    Název: Sdružené inverzní modelování koseismického a postseismického skluzu kalifornského zemětřesení South Napa 2014 Autor: Jan Premus Katedra: Katedra geofyziky Vedoucí dizertační práce: prof. František Gallovič, Katedra geofyziky Abstrakt: Skluz na tektonických zlomech probíhá nejen krátkodobě v průběhu zemětřesení (tzv. koseismicky), ale i v dlouhodobějším měřítku ve formě postseis- mického dokluzu, jak dokumentují měření pomocí seismogramů a geodetických metod. Oba typy skluzu byly dosud modelovány většinou odděleně a navíc převážně kinematicky. Zde představujeme Bayesovskou metodu pro inverzní fyzikální modelování koseismického a postseismického skluzu, která využívá sjed- nocující zákon tření typu "rate-and-state". Vyvinuli jsme efektivní otevřený kód FD3D TSN pro simulaci šíření zemětřesné trhliny metodou konečných difer- encí. Využití GPU vede k až desetinásobnému zrychlení kódu oproti CPU, což umožňuje provést stovky tisíc simulací zemětřesení v rozumném čase. Im- plementovali jsme také kvazidynamickou simulaci dokluzu metodou hraničních prvků. Bayesovskou dynamickou inverzi jsme aplikovali na zemětřesení v kali- fornské Napě z roku 2014 (Mw 6,0). Získaný sdružený model vysvětluje dy-...Title: Joint inverse modeling of coseismic and postseismic slip of the 2014 South Napa, California, earthquake Author: Jan Premus Department: Department of Geophysics Supervisor: prof. František Gallovič, Department of Geophysics Abstract: Slip at tectonic faults spans a wide range of time scales, from tens of seconds of earthquake coseismic rupture to months of aseismic afterslip, recorded in seismograms and geodetic data. The two slip phenomena are often studied separately, focusing on kinematic aspects. We introduce a Bayesian method for physics-based joint inverse modeling of an earthquake slip and afterslip, employ- ing a unifying rate-and-state friction law. To simulate the rupture propagation, we develop an efficient finite-difference open-source code FD3D TSN. GPU ac- celeration of the code yields speed-up by a factor of 10 with respect to a CPU, enabling hundreds of thousands of earthquake simulations in a reasonable time. We also implement a quasi-dynamic afterslip simulation using a boundary inte- gral element method. We apply the Bayesian dynamic inversion to the 2014 Mw 6.0 Napa earthquake. We reveal the dynamics of coseismic and postseismic slip in terms of stress and friction in a unified model, reconciling previous disjunctive analyses of the event. We show that the two types of slip are mostly...Katedra geofyzikyDepartment of GeophysicsMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Research and Education in Computational Science and Engineering

    Get PDF
    This report presents challenges, opportunities, and directions for computational science and engineering (CSE) research and education for the next decade. Over the past two decades the field of CSE has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers with algorithmic inventions and software systems that transcend disciplines and scales. CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society, and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution and increased attention to data-driven discovery, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. With these many current and expanding opportunities for the CSE field, there is a growing demand for CSE graduates and a need to expand CSE educational offerings. This need includes CSE programs at both the undergraduate and graduate levels, as well as continuing education and professional development programs, exploiting the synergy between computational science and data science. Yet, as institutions consider new and evolving educational programs, it is essential to consider the broader research challenges and opportunities that provide the context for CSE education and workforce development

    Seismic Waves

    Get PDF
    The importance of seismic wave research lies not only in our ability to understand and predict earthquakes and tsunamis, it also reveals information on the Earth's composition and features in much the same way as it led to the discovery of Mohorovicic's discontinuity. As our theoretical understanding of the physics behind seismic waves has grown, physical and numerical modeling have greatly advanced and now augment applied seismology for better prediction and engineering practices. This has led to some novel applications such as using artificially-induced shocks for exploration of the Earth's subsurface and seismic stimulation for increasing the productivity of oil wells. This book demonstrates the latest techniques and advances in seismic wave analysis from theoretical approach, data acquisition and interpretation, to analyses and numerical simulations, as well as research applications. A review process was conducted in cooperation with sincere support by Drs. Hiroshi Takenaka, Yoshio Murai, Jun Matsushima, and Genti Toyokuni

    101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth

    Get PDF
    Geodynamic modelling provides a powerful tool to investigate processes in the Earth's crust, mantle, and core that are not directly observable. However, numerical models are inherently subject to the assumptions and simplifications on which they are based. In order to use and review numerical modelling studies appropriately, one needs to be aware of the limitations of geodynamic modelling as well as its advantages. Here, we present a comprehensive yet concise overview of the geodynamic modelling process applied to the solid Earth from the choice of governing equations to numerical methods, model setup, model interpretation, and the eventual communication of the model results. We highlight best practices and discuss their implementations including code verification, model validation, internal consistency checks, and software and data management. Thus, with this perspective, we encourage high-quality modelling studies, fair external interpretation, and sensible use of published work. We provide ample examples, from lithosphere and mantle dynamics specifically, and point out synergies with related fields such as seismology, tectonophysics, geology, mineral physics, planetary science, and geodesy. We clarify and consolidate terminology across geodynamics and numerical modelling to set a standard for clear communication of modelling studies. All in all, this paper presents the basics of geodynamic modelling for first-time and experienced modellers, collaborators, and reviewers from diverse backgrounds to (re)gain a solid understanding of geodynamic modelling as a whole

    Dynamic Earthquake Source Modeling and the Study of Slab Effects

    Get PDF
    In this Thesis, I report my Ph.D. research on two major issues that are devoted towards constructing more realistic earthquake source model using computational tools: (1) constructing physically consistent dynamic rupture models that include complexities in fault geometry as well as heterogeneous stress and frictional properties inferred from observations; (2) study the effect of subducting slab structure on earthquakes that occur inside it with a special focus on the teleseismic waveforms. Fault step over is one of the most important geometric complexities that control the propagation and arrest of earthquake ruptures. In Chapter 2, we study the role of seismogenic depth and background stress on physical limits of earthquake rupture across fault step overs. We conclude that the maximum step over distance that a rupture can jump is approximately proportional to seismogenic depth. We also conclude that the pre-stress conditions have a fundamental effect on step over jump distance while the critical nucleation size has a secondary effect. Seismic wave carries information of source as well as structures along the path it travels. It was found that seismic waves generated by shallow events in subduction zones whose ray path coincide with the down going slab structure display waveform complexities that feature multipathing. In Chapter 3, we study deep earthquakes whose depth phases sample the slab structure on their way up to the surface. Differential travel time sP-P analysis shows a systematic decrease of up to 5 seconds from Europe to Australia and then to Pacific which is indicative of a dipping high velocity layer above the source region. Finite-difference simulations showed that a slab shaped structure that follows the Benioff zone at shallow depth and steepens beyond 400 km produces a model that can account for the sP-P differential travel times of 5 seconds for oceanic paths. In Chapter 4, we design a slab operator that can be applied on the 1D synthetics to generate 2D synthetics with slab structure. We hope this operator can be used for generating more accurate Green's functions that could potentially serve earthquake source inversion. In Chapter 5, we design a dynamic rupture model of the Mw 7.8 Gorkha, Nepal earthquake. We employ a novel approach of integrating kinematic inversion results which provide low frequency stress distribution and stochastic high frequency stress motivated by earthquake cycle models and observations. By doing this, we are able to reproduce the observed frequency dependent rupture processes, in particular the concentration of high-frequency radiation in the down-dip part of the rupture. In Chapter 6, I report my on going work on the spectral element method based earthquake cycle simulator. Large scale earthquake cycle simulation with consideration of complicated velocity structure and fault geometry is a great challenge for numerical modeling. I tried to push forward this boundary by extending the existing spectral element earthquake cycle simulator to enable cycle simulations on bi-material faults. This chapter includes a benchmark test in 2D that demonstrates the correctness of this new algorithm and an application of this method on bi-material fault earthquake cycle modeling.</p

    10. 研究成果

    Get PDF
    10.1 研究成果の概要 [492]10.2 研究成果リスト一覧 [493
    corecore