1,241 research outputs found

    Fast Filter-and-Refine Algorithms for Subsequence Selection

    Get PDF

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home

    Long-Term Visual Object Tracking Benchmark

    Full text link
    We propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for single object tracking. The dataset consists of 50 HD videos from real world scenarios, encompassing a duration of over 400 minutes (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and train better deep learning architectures (avoiding/reducing augmentation, which may not reflect real world behaviour). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further present thorough qualitative and quantitative evaluation highlighting the importance of long term aspect of tracking. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long-term tracking.Comment: ACCV 2018 (Oral

    Network Uncertainty Informed Semantic Feature Selection for Visual SLAM

    Full text link
    In order to facilitate long-term localization using a visual simultaneous localization and mapping (SLAM) algorithm, careful feature selection can help ensure that reference points persist over long durations and the runtime and storage complexity of the algorithm remain consistent. We present SIVO (Semantically Informed Visual Odometry and Mapping), a novel information-theoretic feature selection method for visual SLAM which incorporates semantic segmentation and neural network uncertainty into the feature selection pipeline. Our algorithm selects points which provide the highest reduction in Shannon entropy between the entropy of the current state and the joint entropy of the state, given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. Each selected feature significantly reduces the uncertainty of the vehicle state and has been detected to be a static object (building, traffic sign, etc.) repeatedly with a high confidence. This selection strategy generates a sparse map which can facilitate long-term localization. The KITTI odometry dataset is used to evaluate our method, and we also compare our results against ORB_SLAM2. Overall, SIVO performs comparably to the baseline method while reducing the map size by almost 70%.Comment: Published in: 2019 16th Conference on Computer and Robot Vision (CRV

    Computational protein structure prediction using deep learning

    Get PDF
    Protein structure prediction is of great importance in bioinformatics and computational biology. Over the past 30 years, many machine learning methods have been developed for this problem in homology-based and ab-initio approaches. Recently, deep learning has been successfully applied and has outperformed previous methods. Deep learning methods could effectively handle high dimensional feature inputs in modeling the complex mapping from protein primary amino acid sequences to protein 2-D or 3-D structures. In this dissertation, new deep learning methods and deep learning networks have been proposed for three problems in protein structure prediction: loop modeling, contact map prediction, and contact map refinement. They have been implemented in the state-of-the-art MUFOLD software and obtained significant performance improvement. The goal of loop modeling is to predict the conformation of a relatively short stretch of protein backbone. A new method based on Generative Adversarial Network (GAN), called MUFOLD-LM, is proposed. The protein 3-D structure can be represented using the 2-D distance map of C [subscript alpha] atoms. The missing region in the structure will be a missing region in the distance map correspondingly. Our network uses the Generator Network to fill in the missing regions in the distance map based on the context, and the Discriminator Network will take both the predicted complete distance map and the ground truth as input to distinguish between them. The method utilizes both the features and context of the missing loop region to make better prediction of the 3-D structure of the loop region. In experiments using commonly used benchmark datasets 8-Res and 12-Res, MUFOLD-LM outperformed previous methods significantly, up to 43.9 [percent] and 4.13 [percent] in RMSD, respectively. To the best of our knowledge, it is the first successful GAN application in protein structure prediction. The goal of contact map prediction is to predict whether the distance between two C [subscript beta] atoms (C [subscript alpha] for Glycine) in a protein falls within a certain threshold. It can help to determine the global s"tructure of a protein in order to assist the 3D modeling process. In this work, a new two-stage multi-branch neural network based on Fully Convolutional Network and Dilated Residual Network, called MUFOLD_Contact, is proposed. It formulates the problem as a pixel-wise regression and classification problem. The first stage predicts distance maps for short-, medium-, and long-range residue pairs. The second stage takes the predicted distances from stage 1 along with other features as input to predict a binary contact map. The method utilizes the distance distribution information in the feature set to improve the binary prediction results. In experiments using CASP13 targets, the new method outperformed single stage networks and is comparable with the best existing tools. In addition to predicting contact directly using deep neural networks, a new method, called TPCref (Template Prediction Correction refinement), is proposed to refine and improve the prediction results of a contact predictor using protein templates. Based on the idea of collaborative filtering from recommendation system, TPCref first finds multiple template sequences based on the target sequence and uses the templates' structures and the templates' predicted contact map generated by a contact predictor to form a target contact map filter using the idea of collaborative filtering. Then the contact-map filter is used to refine the predicted contact map. In experimental results using recently released PDB proteins, TPCref significantly improved the contact prediction results of existing predictors, improving MUFOLD_Contact, MetaPSICOV, and CCMPred by 5.0 [percent], 12.8 [percent], and 37.2 [percent], respectively. The proposed new methods have been implemented in MUFOLD, a comprehensive platform for protein structure prediction. It provides a rich set of functions, including database generation, secondary and supersecondary structure prediction, beta-turn and gamma-turn prediction, contact map prediction and refinement, protein 3D structure prediction, loop modeling, model quality assessment, and model refinement. In this work, a new modularized MUFOLD pipeline has been designed and developed. Each module is decoupled from each other and provides standard communication protocol interfaces for other programs to call. The modularization provides the capability to easily integrate new algorithms and tools to have a fast iteration during research. In addition, a new web portal for MUFOLD has been designed and implemented to provide online services or APIs of our tools to the community
    • …
    corecore