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Abstract

Large sequence databases, such as protein, DNA and
gene sequences in biology, are becoming increasingly com-
mon. An important operation on a sequence database is ap-
proximate subsequence matching, where all subsequences
that are within some distance from a given query string are
retrieved. This paper proposes a filter-and-refine algorithm
that enables efficient approximate subsequence matching in
large DNA sequence databases. It employs a bitmap index-
ing structure to condense and encode each data sequence
into a shorter index sequence. During query processing,
the bitmap index is used to filter out most of the irrelevant
subsequences, and false positives are removed in the final
refinement step. Analytical and experimental studies show
that the proposed strategy is capable of reducing response
time substantially while incurring only a small space over-
head.

1. Introduction

Large sequence databases, such as protein, DNA and
gene sequences in biology, are becoming increasingly com-
mon. In such applications, users need to elicit from a
sequence database those subsequences that match certain
query strings. For instance, a biologist may want to retrieve
all known gene sequences that contain certain segments of
nucleotides.

While subsequence matching capability may be pro-
grammed into individual applications, it would be desirable
for the DBMS to offer this capability so as to improve pro-
grammers’ productivity and system efficiency.

While modern database systems provide facilities to
store data sequences, there is a paucity of support for se-
quence manipulation. For example, many systems have a
text data type for variable-length strings and support some
form of keyword indexing such as signature files. In con-
ventional database systems, there are substring matching

operators such as LIKE. Alternatively, data sequences can
be stored in external files where system utilities like grep
and fgrep can operate on them. However, these approaches
allow only exact keyword or substring matching, but not the
sophisticated approximate subsequence matching required
by the applications described above.

Approximate subsequence matching can be defined as an
operation that takes as input an edit distance [23] EditDist
and a query string �Q1 � Q2 � :: � Qm�, where � is a vari-
able length don’t care (VLDC) segment, and each Qi is
a segment of at least one data element and possibly some
fixed length don’t care characters. As output, the opera-
tion returns all subsequences �D1 � D2 � :: � Dm� in the
database that each can be transformed into the query string
by replacing at most EditDist characters, after an optimal
substitution for the VLDCs. With this definition, substring
matching can be viewed as a special case of subsequence
matching where m = 1 [17].

In this paper, we propose a two-step filter-and-refine
query processing strategy for subsequence matching, in the
context of DNA sequences in particular. We introduce BIS,
a bitmap indexing scheme for adding approximate subse-
quence matching capability to database systems. The most
attractive feature of the scheme is that it can speed up
queries very significantly while incurring only the space
overhead of a small fraction of the data size. The data struc-
ture, BIS, uses a hash function to encode and reduce each
data sequence in a collection to a shorter index sequence.
At runtime, the index sequences are used to efficiently filter
out most of the subsequences that do not match a submit-
ted query string. A very desirable characteristic of BIS is
that the false drop rate (the number of subsequences that
filter through even though they do not match the query)
declines exponentially as the query length increases. Two
notable objectives of BIS are (1) reducing the space com-
plexity of the index, and (2) improving the performance of
index processing. For the purpose of performance tuning
and evaluation, a cost model of the scheme that estimates
the achievable response time savings is also presented. We



have implemented the processing strategy as part of a pro-
teomic application system, and also as a stand alone system
to study its efficacy.

The remainder of the paper is organized as follows. Sec-
tion 2 describes a motivating example. Section 3 intro-
duces the basic algorithm and Section 4 presents its ex-
tended form. Section 5 shows the derivation of a cost model
for BIS, which is verified through the experiments reported
in Section 6. The section also analyzes the behavior of BIS
and studies its efficiency. A discussion of related work ap-
pears in the Section 7. Finally, Section 8 concludes the pa-
per.

2. A Motivating Genetic Sequence Application

In this section, we shall describe an application in pro-
teomics. The primary goal in proteomics is to discover what
are the functions of proteins. An important idea in this pro-
cess is the use of protein “motif”. A protein motif is in
essence a signature for an associated protein function. If a
particular motif is detected in a protein, then the protein has
some likelihood of possessing the function associated with
that motif. In order to properly exploit protein motifs, three
items are necessary: (a) a database of known protein mo-
tifs, (b) a tool to automatically discover protein motifs, and
(c) a tool to scan protein databases for motifs obtained from
(a) and (b). One of the most common type of queries asked
by molecular biologists has the form “Which sequences in
a protein database has the function (i.e., motif) that I am
interested in?”, and needs to be answered in real time.

To further motivate our work, consider the polyprotein
of the denguevirus [14] which is known to have helicase ac-
tivity [8]. However, the Swiss Prositescan [2, 3], the most
widely used software for motif checking, reports no helicase
activity for this protein in question. There are only two pos-
sible explanations. The first possibility is that the PROSITE
motif collection used by Prositescan does not contain he-
licase motifs. The other possibility is that PROSITE does
contain helicase motifs, but they are derived from organ-
isms that are too distantly related to denguevirus.

Actually, PROSITE contains the helicase motif
[GSAH].[LIVMF]{3}DE[ALIV]H[NECR]. This mo-
tif is to be read as follows: The first residue is any one of G,
S, A, H; the second residue is a “don’t care”, i.e., a FLDC
of length 1; the next three residues are any of L, I, V, M,
F; the next residue must be D; the one after that must be E;
the next residue is any of A, L, I, V; this is then followed by
a H, and the final residue is any of N, E, C, R. The actual
helicase site in denguevirus polyproteins is NLIIMDEAHF,
which disagrees with that of PROSITE at the two flanking
residues. This explains the failure of Prositescan to detect
the helicase site in denguevirus polyproteins.

The proposed algorithm underlying a PROSITE appli-

cation must support matching modulo Fixed Length Don’t
Care (FLDC), character classes, and edit distance, and must
be able to rapidly report that denguevirus polyproteins have
helicase sites with 2 mutations on the flanking residues of
the PROSITE helicase motif.

Besides the PROSITE application, we have also devel-
oped several other proteomics applications, including: 1)
ScanSeq that searches segments of sequences satisfying a
given motif; 2) Signature that discovers conserved mo-
tifs in amino acid sequences; 3) Duplicate that looks for
repeats in amino acid sequences; 4) DNADuplicate that
finds tandem and inverted repeats in DNA sequences.

These applications are currently being used by biologists
in their work. Taking advantage of the filter-and-refine util-
ity that is introduced in this paper, the developers were able
to quickly complete the applications to the users’ require-
ments.

3. The Basic Algorithm

When the database is populated, each sequence is en-
coded into a smaller-size bitmap index. During query pro-
cessing, this bitmap index is used at the filtering step to
efficiently eliminate most of the subsequences that do not
match a given query string. At the refinement step, each
matching sequence is further checked using real data se-
quence to remove false positives. Figure 1 illustrates the
process. The idea behind BIS is similar to that of signature
file schemes, where compact signatures are used to filter out
data objects that are irrelevant to a query. Unlike work in
that area which focused on sophisticated signature extrac-
tion and storage structures for the signature files [28], how-
ever, BIS has a simple and efficient index generation and
storage mechanism. Rather, our contribution is a scheme
for using a single, compact bitmap index to quickly find
subsequences that match arbitrary-length patterns in an ad-
hoc querying environment.

In constructing the index, a data element is mapped via
a hash function into an index element that is smaller in size.
In practice, a data element could be a character, a short in-
teger, a long integer, a float, or a double float field, while
an index element could range from one bit to a few bytes.
Figure 1 shows a hash function f that maps a multi-bit data
element into a single index bit. By applying the same hash
function to every data element in a sequence and to each
sequence in the database, we produce a smaller bitmap in-
dex that can be retrieved and matched quickly during query
retrieval.

When a query string is presented, the filtering step uses
BIS to evaluate the index representation of each sequence
in turn to isolate its subsequences that might satisfy the
query string. Only the fraction of subsequences that “drops”
through the index filter will have their data representation
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Figure 1. Filtering and Refining

Notation Meaning Default
N Index element
Nbits Number of bits in an index element 1
D Data element
Dbits Number of bits in a data element 8
NumSeq Number of data sequences 1
SeqLen Avg. number of elements 512 million

per data sequence
QLen Number of query elements 16

Table 1. Algorithm Parameters

checked for an actual match at the refinement step; the re-
maining subsequences can be disqualified immediately. By
selecting the hash function judiciously, most of the irrele-
vant subsequences can be eliminated through the filtering
step. Since the bitmap index is more compact than the
database, the savings from sequential read of fewer data
subsequences and comparing fewer data subsequences is
expected to outweigh the overhead of searching the index.
The notations, which will be explained as they are used, are
summarized in Table 1.

3.1. BIS Index Construction

The first step in index construction is to define a hash
function

f : D ! N

to map each element d in the database to an index element n.
For BIS to be effective, Nbits, the number of bits that make
up an index element, has to be smaller than Dbits, the num-
ber of bits in a data element. This means that several data

values will map to the same index value, hence several dif-
ferent data subsequences could be represented by the same
index subsequence. Consequently, false drops may occur.
If the false drop rate is too high, the overhead of examining
the subsequences at the refinement step makes the whole
processing strategy ineffective.

To ensure the filtering power of BIS, we would like the
maximum number of data subsequences that can be repre-
sented by any index subsequence to be as small as possible.
This happens when every index value is equally likely to oc-
cur, i.e., when N follows a uniform distribution. To derive
such a hash function, we first find the frequency distribution
of D by data sampling, then partition D into intervals with
equal frequency, and finally assign each interval to an index
value. The philosophy is somewhat similar to the bit strings
in high-dimensional database indexing in [25].

To illustrate, suppose D is an unsigned char (1 byte) that
is uniformly distributed between 0 and 255, and N is a sin-
gle bit. If the hash function f maps data values from 0 to
171 to 0, and data values in [172, 255] to 1, the index value 0
will be 3 times as likely to occur as 1. In the worst case, this
allows 3

4
� 3

4
= 9

16
of the subsequences to drop through the

index filter for a 2-character query string. In contrast, if the
hash function splits D into equal halves, only 1

2
� 1

2
= 1

4
of

the subsequences are expected to filter through against any
2-character query string.

While the above illustration shows that N should be
uniformly distributed if possible, D is not required to be
uniformly distributed as well. Indeed, such a requirement
would prove unrealistic as there are often some correlation
among the elements in real-life data sequences. By analyz-
ing the distribution of the data elements, whatever that may
be, it is always possible to define a hash function f that pro-
duces a uniform index distribution during index construc-
tion. The challenge really is to make BIS robust against
updates that shift the data distribution, and consequently
the index distribution, at runtime. Indeed, our performance
study indicates that the proposed strategy does not deterio-
rate appreciably unless N becomes highly skewed.

Having determined a hash function f , we then apply it to
the elements of every sequence in the database to produce
a bitmap index. The index preserves the relative position of
the data elements. This property is pivotal in the runtime
performance of BIS, as locating the data representation of
those subsequences that filter through becomes straightfor-
ward. There is no need for any pointers between the index
and data files, nor any computation overhead. The posi-
tional relationship also simplifies updates greatly.

Since the index construction process involves only a
quick scan through the database, and possibly an earlier
scan to determine the distribution of D, the process has a
time complexity of O(DBSize) and requires only two I/O
buffers, one for the database and one for the index. In



terms of storage overhead, the index is Nbits

Dbits
the size of the

database. Depending on whether D is a character, a short
integer, an integer, a float or a double float, D could be 8,
16, 32, or 64 bits long. As for N , we restrict it to be a di-
visor or a multiple of a byte in our implementation to avoid
grappling with index elements that straddle two bytes. We
will show in the next section that this does not diminish the
usefulness of BIS in practice.

Example 1. Suppose D is an unsigned character that is
uniformly distributed in [0, 255], and N is 1 bit in size. We
choose a hash function that maps [0, 127] to 0, and [128,
255] to 1; this hash function can be implemented very ef-
ficiently by a single comparison operation, or by extracting
the leftmost bit in the binary representation of D. Given a
data sequence [ 75 3 95 189 165 106 229 239 8 222 122
236 200 146 75 33 ... ], the hash function would produce
the index sequence [ 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 ... ].

3.2. Filtering Step

Having introduced the index construction process, we
shall explain how the filtering step uses the BIS index to
speed up the search for subsequences that satisfy a submit-
ted query string. We shall begin with the scenario where N
is one or more bytes in size; sub-byte index elements neces-
sitate bit manipulations that will be described shortly.

Given a query string of QLen data elements, the filtering
algorithm first applies the hash function f to derive the cor-
responding bitmap index representation. This bitmap rep-
resentation of the query is then matched against each se-
quence in the index in turn. The filtering algorithm is de-
signed to iterate over every sequence in the collection. In
each iteration, the algorithm maintains pos, the position in
the current sequence, and a state array state[1::q]. If and
only if state[i] = TRUE, then the last i index elements in
the sequence match the first i index elements in the query
string. The algorithm marches through each element in the
index in turn; there is no backtracking. After reading a new
index element n from the sequence, pos is advanced and the
state array is updated as follows:

state[i] :=

�
(query[1] = n) if i = 1
(query[i] = n) AND state[i� 1] if i > 1

(1)

where query[i] is the ith index element of the query string.
Thus, whenever state[QLen] = TRUE, the subsequence of
length QLen ending at pos “drops” through the index filter
and its data representation is tested for a match. The algo-
rithm is given below.

Filter-and-Refine Subsequence Selection Algorithm

/* definition */
NumSeq = number of seq. in the database;

DSeq[i][j] = element at position j of data seq. i;
DIdx[i][j]= element at position j of data index i;
SeqLen[i] = number of elements in data seq./index i;
QSeq[i] = element at position i of query seq.;
QIdx[i] = element at position i of query index;
QLen = number of elements in query seq./index;

for i = 1 to NumSeq { /* filtering step */
for j = 1 to QLen

s[j] = FALSE;
for j = 1 to SeqLen[i] {

for k = QLen downto 2
s[k] = ((QIdx[k] == DIdx[i][j]) AND s[k-1]);

s[1] = (QIdx[1] == DIdx[i][j]);
if (s[QLen] == TRUE) /* refinement step */
if (DSeq[i][(j-QLen+1)..j] == QSeq[1..QLen])

output("Match at pos %d of seq. %d",j,i);
}

}

Let us now focus on the case whereN is less than a byte, the
smallest unit that is directly addressable. Since we had re-
stricted Nbits to be a divisor of a byte, the number of index
elements per byte BY TE

Nbits
is an integer. We note that there

are BY TE
Nbits

possible ways in which a matching index subse-
quence could be aligned with respect to the byte boundaries.
In all but one of the alignments, the leading index elements
of the subsequence only partially occupy a byte; the left side
of the byte contains index elements belonging to other sub-
sequences that must be masked out. The same is true of the
trailing index elements of the subsequence, except that here
the irrelevant index elements are located at the right side of
the byte. To handle this situation, we need to modify the
filtering sequence matching algorithm slightly.

We re-define query[i] to be a byte in which the jth posi-
tion from the right contains the (i� j + 1)th index element
of the query string. pos is now incremented by BY TE

Nbits
af-

ter each new index byte. Furthermore, the state array has
QLen+ BY TE

Nbits
� 1 entries, and is updated as follows:

state[i] :=

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(query[i] = Right(n, i))

if 1 � i � min(QLen; BY TE
Nbits

)

(query[i] = Left(Right(n, i), QLen + BY TE
Nbits

- i))

if QLen < i � BY TE
Nbits

(query[i] = n) AND state[i - BY TE
Nbits

]

if BY TE
Nbits

< i � QLen

(query[i] = Left(n, QLen + BY TE
Nbits

- i)) AND

state[i - BY TE
Nbits

]

if max(QLen; BY TE
Nbits

) < i < QLen+ BY TE
Nbits

(2)

where Left(n; i) and Right(n; i) mask out the bits in n
except for the i index elements from the left and right, re-
spectively. The two functions are implemented efficiently
by pre-computing a bit mask for each state entry. Whenever



state[i] = TRUE for some QLen � i < QLen + BY TE
Nbits

,
and pos+QLen > i, the subsequence of length QLen end-
ing at position (pos + QLen � i) drops through the index
filter.

While the modified scheme is more complicated, it can
deliver significant speed-ups. The reason is that each com-
parison operation matches query[i] against BY TENbits

index el-
ements concurrently now, rather than only one at a time.

Now we shall prove the correctness of the algorithm.
Theorem 1. The BIS algorithm is correct, returning all
matching subsequences and no false matches.
Proof: Two cases to consider: Case 1. Suppose that a sub-
sequence a satisfies a query string q. This implies that both
query strong and subsequence contain the same data rep-
resentation. Therefore, a[i] = q[i] 81 � i � QLen. It
follows that f(a[i]) = f(q[i]) where f is the hash function,
and that a and q have the same index representation too.
Consequently, a will pass the filtering step and the subse-
quent refinement step.
Case 2. Suppose subsequence a does not match q. This
implies a[i] 6= q[i] for some 1 � i � QLen, but f(a[i]) =
f(q[i]). Since a drops through the index filter, its data repre-
sentation will be examined. At this stage, BIS will discover
that the ith data element is different and reject a.

We therefore conclude that the BIS algorithm is correct
– all matching subsequences are returned, and there are no
false matches. 2

4. Extended Subsequence Matching

While the basic algorithm works only with query strings
that comprise an arbitrary number of data elements, it can
be extended easily to handle more general queries. Here,
we extend it to support the following queries:

1. Fixed length don’t cares (FLDC). Besides data ele-
ments, a query string may also include one or more
FLDCs that are meant to match any data value. When
updating the state array, the index elements that corre-
spond to the FLDCs are simply masked out.

2. Variable length don’t cares (VLDC). A VLDC sep-
arating the data elements in a query is supposed to
match any string of contiguous elements in a subse-
quence. Unlike FLDCs, the introduction of VLDCs
allows matching subsequences to be longer than the
query string. In our implementation, we first ex-
tract from a query string those segments of contigu-
ous data elements and FLDCs that are separated by
the VLDCs. Next, we treat each segment as a sepa-
rate query and find its set of matching subsequences.
Finally, we return all combinations of subsequences in
which the matching subsequence for segment i precede
the matching subsequence for segment i+ 1.

3. Edit distance. Instead of returning only subsequences
that match a query string exactly, an application may
require all subsequences that contain up to a certain
number of mismatches; i.e., all subsequences that are
within a certain edit distanceEditDist from the query.
To accommodate this, we need only re-define the
state array so state[i] counts the total number of mis-
matches between the first i index elements of the query
and the last i index elements in the current sequence.
Whenever state[i] � EditDist for any i � QLen,
the subsequence ending at position (pos+QLen � i)
is deemed to have passed the filtering step.

4. Alternative characters. A user may need to specify
a set of candidate characters for some position in the
query string, rather than stating one single character
or an FLDC. If all of the candidate characters hash to
the same index value, the filtering step proceeds as per
the single-character case; only subsequences that filter
through need to be matched against the candidate set.
If the candidate characters hash to different index val-
ues, they are treated as an FLDC in the filtering step,
i.e., the index elements corresponding to that position
are masked out when updating the state array. Since
the presence of alternative characters does not require
special handling in the filtering step, we shall not ad-
dress it further.

5. Cost Model

To study the effectiveness and efficiency of the process-
ing strategy, we develop a cost model. The purpose of the
model is three-fold. First, when constructing an index for
a sequence database, the model can provide the best setting
for Nbits, the number of bits needed for each index element.
Second, the model can help a database system to decide
whether BIS will speed up a particular query. Third, the
model can estimate the processing time if BIS is employed.

For reference purposes, we also present the cost of ap-
plying the Baeza-Yates and Gonnet algorithm [1] to the data
sequences directly (denoted by BY G; a brief description of
BYG algorithm is given in Section 7). Besides the algo-
rithm parameters in Table 1, we shall also make use of the
cost parameters in Table 2.

5.1. Cost of BY G

The BY G algorithm essentially marches through each
data element in the sequence collection and compares it
with the QLen entries in the state array. This incurs the cost
of retrieving the data element (CI=O

1), the cost of looping
1Obviously, we do not issue a disk I/O for each data element. Rather,

data are retrieved in large blocks to reduce I/O costs. For this reason,CI=O



Notation Meaning
CI=O Avg. I/O time for fetching a data element in CPU

cycles1. Default=75
Cloop # of CPU cycles to loop through each state entry.

Default=5
Cstate # of CPU cycles to compare data element with an

entry in the query array and store the result in a state
entry. Default=18

Cstring # of CPU cycles to match elements of two data se-
quences. Default=11.

Ccache # of CPU cycles to cache interim results. Default=11
RBYG Response time of Baeza-Yates & Gonnet algorithm
RBIS Response time of BIS algorithm
Speedup Response time speed-up, = RBYG

RBIS

Table 2. Cost Parameters

through the state array (Cloop�QLen), and the cost of com-
paring the data element with query[i], 1 � i � QLen; see
Formula (1). The expected cost of comparing query[i] is
Cstate=jDj

i�1 where jDj is the data alphabet size, as this
comparison is done only if state[i� 1] = TRUE, i.e., all of
the previous i � 1 data elements matched. Since jDj > 1,
the cost diminishes quickly as i increases. For simplicity,
we will include only the first-order term. Therefore, the re-
sponse time for matching a sequence collection is

RBY G = NumSeq � SeqLen�

(CI=O + Cloop �QLen+ Cstate)
(3)

This equation suggests that the I/O cost for retrieving and
the CPU cost for testing each data element is independent
of the number of bytes it contains. While this is not true
in practice, in an efficient implementation the costs increase
only very marginally as D goes from one to several bytes.
We will demonstrate in the next section that dropping Dbits

is acceptable.

5.2. Cost of BIS Processing Strategy

The proposed algorithm consists of two steps: (1)
searching the index representation to weed out irrelevant
subsequences at the filtering step, and (2) examining the
data representation of subsequences at the refinement step.
If each index element N occupies one or more bytes, the
filtering cost alone will match RBY G. Therefore N has to
be smaller than a byte for the index BIS to be effective.

The computation of the filtering cost is similar to that of
RBY G. There are altogether NumSeq�SeqLen� Nbits

BY TE
bytes in the index. In processing each byte, there is an

is obtained by dividing the time needed to fetch a block, by the number of
data elements in the block. The default of 75 CPU cycles is based on a
block size of 8 KBytes.

I/O cost (CI=O), the cost of looping through the state ar-
ray (Cloop � (QLen + BY TE

Nbits
� 1)), the cost of matching

with query[i], and the cost of recording subsequences that
filter through (Ccache). According to Formula (2), we have
to evaluate Query[i] for at least 1 � i � BY TE

Nbits
. Hence,

the filtering cost is

Rfilter = NumSeq � SeqLen�
Nbits
BY TE

�

(CI=O + Cloop � (QLen+ BY TE
Nbits

� 1)+

Cstate
BY TE
Nbits

+ Ccache)

(4)

Next, we consider the cost of matching the subsequences
that filter through. These are expected to make up only
2�Nbits�QLen of the NumSeq � (SeqLen � QLen + 1)
subsequences, as the hash function f is chosen so that N
is (roughly) uniformly distributed between 0 and 1. For
each of these subsequences, there is an I/O cost, the cost
of looping through each element in the subsequence, and
the cost of comparing with the query string. Here, we are
fetching an entire subsequence all at once rather than ele-
ment by element, so the I/O cost does not appreciate signif-
icantly with QLen. This is why the I/O cost is only CI=O.
Also, Cstring, the cost of comparing with the query string,
is lower than Cstate because we are not updating the state
array here. The refinement cost is, therefore,

Rmatch = NumSeq�(SeqLen�QLen+1)

2Nbits�QLen
�

(CI=O + Cloop �QLen+ Cstring)
(5)

and the response time of BIS is

RBIS = Rfilter + Rmatch (6)

5.3. Extended Subsequence Matching

Besides query strings consisting of contiguous data ele-
ments, the cost models presented above can also capture the
cost of the extended queries. Only a few modifications are
necessary.

1. Fixed length don’t cares (FLDC). For a query string
with length QLen that includes i FLDCs, the response
time of the BY G algorithm remains as in Equation
(3). In the case of BIS, the filtering cost (Equation (4))
is not affected, but the cost of checking subsequences
that filter through (Equation (5)) becomes:

Rmatch = NumSeq�(SeqLen�QLen+1)

2Nbits�(QLen�i)
�

(CI=O + Cloop � (QLen� i) + Cstring)
(7)

to account for the larger number of potentially match-
ing subsequences.



Parameter Meaning Default
NumSeq # of data seq. in the database 1
SeqLen Avg. # of elements per data seq. 512 million
Ddist Distribution of data element uniform
Dbits # of bits in a data element 8
Nbits # of bits in an index element 1
QLen # of query elements 16

Table 3. Experiment Parameters

2. Variable length don’t cares (VLDC). As explained in
Section 3.4, a query string with VLDCs is processed
by combining the subsequences that match the seg-
ments separated by VLDCs. As the combination cost
is relatively low, the overall cost is approximately the
sum of the segment refinement costs. This applies to
both RBY G and RBIS .

3. Edit distance. If all subsequences that are within an
edit distance i from a query are needed, Equation (3)
becomes

RBYG = NumSeq � SeqLen�

(CI=O + Cloop �QLen+ Cstate(1 + i))
(8)

because we now need to evaluate i more elements to
disqualify an irrelevant subsequence. Similarly, Equa-
tion (4) is changed to

Rfilter = NumSeq � SeqLen�
Nbits
BY TE

�

(CI=O + Cloop � (QLen+ BY TE
Nbits

� 1)+

Cstate(
BY TE
Nbits

+ i) + Ccache)

(9)

In the case of Rmatch, the fraction of subse-
quences that filter through increases by a factor ofPi

j=1C
QLen
j . The reason is that there areCQLen

j dif-
ferent ways in which a subsequence can differ from the
query string and yet have an edit distance of j. Accord-
ingly,

Rmatch =NumSeq � (SeqLen�QLen+ 1)�

min(1;

P
i

j=1
C
QLen

j

2Nbits�QLen
)�

(CI=O + Cloop �QLen+ Cstring(1 + i))

(10)

6. Experimental Study

To study the performance of the proposed strategy, we
have implemented the strategy BIS, and Baeza-Yates and
Gonnet’s algorithm [1], in the C language. The experiment

platform consists of Sun UltraSparc 170 machines, each
equipped with a 167 MHz CPU, 64 MB of memory, and
a 2.1 GB Fast and Wide SCSI 2 hard disk. We have isolated
and timed relevant portions of the implementation on this
platform to obtain settings for the various cost parameters;
the settings are listed in Table 2. For example, the average
I/O time for fetching a data element, CI=O, is set to 75 CPU
cycles, or 450 nsec on a 167 MHz CPU (i.e., about 3.7 msec
for each 8 KByte block).

The performance metrics that will be used to present
the results are response time and speed-up, defined as
RBYG=RBIS . For every experiment, we run 100 queries
and average their results. Each query string is composed
from randomly picked portions of one of the data se-
quences, so the query elements have the same distribution
as the data elements. The parameters for the experiments
are summarized in Table 3.

Apart from analytical experiments, the proposed algo-
rithm was implemented as part of the system described in
Section 2, which is being used by molecular research scien-
tists for supporting their work.

6.1. Effect of Nbits

Before we construct an BIS index, we first need to de-
termine a setting for Nbits, the number of bits per index
element. We note that a smaller Nbits lowers filtering cost
(Equation (4)) but raises Rmatch (Equation (5)). The key
factor that decides whether the net effect is beneficial is the
query length QLen. Since both RBY G and RBIS increase
with QLen, we want to configure BIS for large QLen’s.
With a large QLen, the number of subsequences that filter
through is small regardless of Nbits. Consequently, filtering
cost dominates, leading us to conclude that Nbits should be
as small as possible, i.e., 1 bit.

To verify the above conclusion, we first build a database
with NumSeq = 1, SeqLen = 512 million elements, D
following a uniform distribution and Dbits = 16. Different
indices are then created for Nbits = 1, 2, 4, and 8. Finally,
query strings of the form q1q2::q16 are generated and run
against each of the indices, and against the database directly.

Figures 3 and 4 plot the average response times and the
speed-ups, respectively, produced by both the experiment
and the cost models. The experiment results agree with the
estimations from Equations (3) and (6). Moreover, the re-
sults confirm that performance worsens as Nbits increases.
We shall therefore set Nbits to 1 from now on.

6.2. Effect of Query Length

Having determined the best Nbits setting for index con-
struction, we now need a criterion for deciding when BIS
will speed up query processing. Referring to Equations (3),



Figure 3: Response vs. Nbits Figure 4: Speed-up vs. Nbits

Figure 5: Response vs. Query Length Figure 6: Speed-up vs. Query Length

(4) and (5), we note that NumSeq and SeqLen get can-
celled out in Speed-up = RBY G / RBIS when SeqLen >>
QLen, leaving QLen as the only variable. In other words,
whether BIS is beneficial depends only on the length of the
query string.

In this experiment, we set Dbits to 8, Nbits to 1, and vary
QLen. The rest of the parameter settings remain as before.
The resulting response times and speed-ups are plotted in
Figures 5 and 6.
While it may not be obvious in Figure 4 because the x-axis
represents log2QLen rather than QLen, the time taken by
the BY G algorithm increases linearly with QLen. This
agrees with Equation (3). As for BIS, its response time re-
duces initially as savings from fewer subsequences filtering
through dominate rising filtering cost. However, eventually
filtering cost prevails, and the response time of BIS embarks
on a gradual uptrend. Nevertheless, overall there is a net
savings over BY G. As Figure 6 shows, BIS breaks even
at QLen = 2, and the speed-up rises roughly linearly with
log2QLen. Again, the experiment results corroborate the
cost models.

6.3. Effect of Data Size

In this experiment, we want to verify if the perfor-
mance gain of the proposed strategy is sustainable as the
database scales up. Theoretically, they should, as Speed-up
= RBY G=RBIS is independent of NumSeq and SeqLen.

Figure 7: Response vs. DB Size Figure 8: Speed-up vs. DB Size

Figure 9: Response vs. Index Dist.

For this experiment, we fix the query length at 16,
NumSeq at 1, and vary SeqLen. We create databases with
SeqLen ranging from one to 512 million. The results, given
in Figures 7 and 8, confirm that response time increases lin-
early, and that the speed-up achieved remain constant, ex-
actly as predicted by the cost models.

6.4. Effect of Data Distribution

While gene and protein collections are fairly static, it is
important for any processing strategy to be dynamic and
perform well under different data distributions with differ-
ent skewness. It is therefore necessary to see how BIS copes
with updates that shift the data and, consequently, index dis-
tributions at runtime. This experiment is intended to pro-
file any adverse effect that skewed index distributions might
have on the performance of BIS.

Here, we build a database with NumSeq = 1,
SeqLen = 512 million, D following a uniform distribu-
tion and Dbits = 8. Various skewed index distributions are
generated via a family of hash functions that map x% of the
data values to 0, and the rest to 1. Having done that, we then
run queries withQLen = 16 against each of the indices and
against the database directly.

Figure 9 plots the response time against the filter element
distribution x. The figure shows that the performance of BIS
remains stable as x swings from 20% to 80%. As the filter
element distribution becomes even more skewed, however,



Figure 10: # Subsequences vs. FLDCs Figure 11: Response vs. FLDCs

BIS deteriorates rapidly, though it remains beneficial even at
x = 5% and x = 95%. Nevertheless, when the distribution
becomes so skewed, the filter should be re-constructed with
an updated hash function to restore BIS’s effectiveness.

6.5. Effect of Fixed Length Don’t Cares Segments

In this experiment, we set NumSeq = 1, SeqLen =
512 million, Dbits = 8, Nbits = 1 (uniformly distributed)
and QLen = 16. Moreover, we introduce FLDCs at ran-
domly selected positions in the query strings.

As Figure 10 indicates, the average number of subse-
quences that pass BIS’s filtering step in the experiment
matches the cost model’s prediction almost exactly. The
number increases very slowly initially as we introduce more
FLDCs. Consequently, BIS’s response time remains almost
unchanged until the number of data elements in the query
strings becomes less than six, as shown in Figure 11. This
is yet another confirmation that filtering cost (Equation (4))
dominates refinement cost (Equation (7)) unless there are
very few data elements in the query string. Even then, BIS is
still faster than BY G, which is not affected by the FLDCs.

6.6. Effect of Variable Length Don’t Cares Seg-
ments

Besides FLDCs, another kind of extended subsequence
matching operations involves variable length don’t cares
(VLDC) in the query strings. Such queries are processed
by matching the component segments separately and then
combining the results. Consequently, the overall response
time is the sum of the individual segment’s processing time.
This is confirmed in Figure 12, which is obtained with the
same parameter settings as in the previous experiment, ex-
cept that there are no FLDCs.

6.7. Effect of Edit Distance

The third kind of extended subsequence matching op-
erations that we have implemented is support for edit dis-
tances. Using the same parameter settings as the previous

Figure 12: Response vs. VLDCs

Figure 13: # Subsequences vs. Edit Dist. Figure 14: Response vs. Edit Dist.

experiment (minus the VLDCs), we run BIS and BY G with
different edit distances. The experiment results, together
with the estimations from Equations (8)-(10), are given in
Figures 13 and 14. The number of subsequences that fil-
ter through in the experiment (plotted in Figure 13) again
matches those obtained from Equation (10). As for response
time, the agreement is not as good as before – the experi-
ment shows BIS outperforms BY G up to an edit distance of
14, whereas the cost models indicate only 10. Nevertheless,
both BIS and the cost models are useful for edit distances
that are low relative to the query length.

Experimental results show that BIS’s speed-up improves
with QLen, and BIS remains advantageous for larger edit
distances if the query string is longer. For example, at
QLen = 32, BIS outperforms BY G even when the edit
distance reaches 30.

6.8. Effect of Dbits

In deriving the cost models, we have omitted the impact
of Dbits on the ground that, in an efficient implementation,
both CPU and I/O costs increase only marginally as D goes
from one to several bytes. To verify this, we ran several
experiments to investigate the impact of Dbits at different
QLen and Nbits settings. Figures 15 and 16 give the re-
sponse times produced by BY G and BIS in one of these
experiments, where QLen = 16 and Nbits = 1. As the fig-
ures show, the variations introduced by higher Dbits’s have



Figure 15: BY G vs. Dbits Figure 16: BIS vs. Dbits

little effect on either the efficacy of BIS or the accuracy of
the cost models.

7 Related Work

Many algorithms have been proposed to address the
problem of approximate subsequence matching. In this sec-
tion, we shall discuss work related to our proposal, and
highlight the differences between them.

The general approach to subsequence matching is to
evaluate every sequence in response to a query, by con-
structing for it an automaton or a dynamic-programming ta-
ble. Algorithms of such nature include the classical Knuth-
Morris-Pratt (KMP) [9] and Boyer-Moore (DM) [5] algo-
rithms, and algorithms proposed in [16, 19, 10, 1, 27]. If
these algorithms are applied directly to the data sequences,
the processing time may be unacceptably long, especially
if the sequence database is large. However, they can be
employed in conjunction with BIS to examine its index se-
quences. An earlier work related to our own was carried
out by Karp and Rabin [7]. In [7], the authors presented
a scheme in which each subsequence is mapped to an in-
dex number. Subsequently, rather than the longer, original
subsequences, the index numbers are employed to search
for matching subsequences. This scheme is similar to BIS
in using a filter to weed out most of the irrelevant subse-
quences. However, there is a fundamental difference: Since
the subsequences to consider are not defined until the query
is known (as they need to have the same length), Karp and
Rabin’s scheme is not suitable for pre-indexing in database
systems that must process ad-hoc queries. In contrast, BIS
encodes and maps each data element to an index element
during index construction. The processing of subsequence
matching is performed dynamically at runtime, at which
point the bitmap index representations are dynamically de-
fined from the index that correspond to the data elements in
the subsequences. Hence, BIS offers greater flexibility as it
is not tailored to a particular query.

BYG [1] is a well-known algorithm for string matching
with mismatches, which consists in representing the state

of the search by a bit number and, at each step, in perform-
ing a number of bit operations. The algorithm searches a
pattern in a text (without errors) by parallelizing the gener-
ation of a non-deterministic finite automation that looks for
the patterns. For a search pattern of length m, and a text of
length n, the automation has m + 1 states. The algorithm
first builds a table B which for each alphabet character c
stores a bit mask B[c] = bm::bi. The mask in B[c] has the
bit bi in one if and only if the ith character in the pattern is
equal to c. The state of the search in kept in a machine word
D = dm::d1, where di is one whenever P1::i matches the
end of the text read up to now (i.e. the ith state). A match
is reported whenever dm = 1. D is set to 1m originally,
and for each new text character Tj , D is updated using the
formula D’ = ((D >> 1) j 10m�1) & B[Ti])), where >>
is the bitwise shift, j is the bitwise OR, and & is the bit-
wise AND operation. For patterns longer than the computer
word, the algorithm uses dm/we words (w is the length of
a computer word). The algorithm achieves O(mn/w) worst-
case time, O(m/w (m+j�j)) preprocessing time, and O(m/w
j�j) extra space, where � denotes the alphabet.

An alternative approach to subsequence matching is to
build a suffix tree [24, 12] index for the sequence database
in advance, and to search the index rather than the actual
data sequences at runtime. Solutions based on this approach
include those reported in [11, 20, 22]. Suffix trees suffer
from a number of performance problems.

For a sequence database consisting of l elements, each
with a size of Dbits bits, a suffix tree index may need up to
l leaf nodes and l � 1 internal nodes [17]. Since each node
stores its corresponding starting and ending positions in a
data sequence, together with a child pointer and a sibling
pointer, the suffix tree could reach 32 times the database size
with typical 4-byte fields. Moreover, many nodes need to be
traversed for long query strings, while the presence of don’t
care segments blows up the number of branches that need
to be searched, all of which lead to significant performance
degradation. Finally, update is expensive as it affects both
the structure, and the starting and ending positions recorded
in multiple leaf nodes.

In [6], Faloutsos et al took a different approach. They
proposed an algorithm that extracts the features in a window
as it slides over the data sequence, thus transforming the se-
quence into a trail in a multi-dimensional feature space. The
trail is then divided into sub-trails that are represented by
their minimum bounding rectangles, and are indexed using
traditional spatial access methods like the R�-tree [4]. The
algorithm is designed for sequences of continuous numbers,
where the metric is the average Euclidean distance between
a data element and the corresponding query element. In
contrast, our algorithm targets sequences of discrete sym-
bols, where the concern is whether a data element has the
same value as the corresponding query element. For ex-



ample, the subsequences ADC and AEC have different dis-
tances from ABC under Faloutsos’ algorithm, whereas both
are equally good/bad matches under our algorithm.

Recently, bitmap indexing has been used increasingly in
other applications such as data warehouse query process-
ing [26] and attribute based query processing [13] [15].
In [25], the VA-file (vector approximate file) which uses
short bit strings to represent attribute values to index high-
dimensional databases for similarity search. The perfor-
mance gain due to shorter compact presentation and linear
scan of the transformed vector file makes it a simple and yet
one of most efficient high-dimensional indexes so far. Al-
though the applications are different, the design philosophy
is similar: they are designed to reduce index space overhead
while improving query performance.

In [29, 30] Altschul et al. proposed the BLAST tech-
nique to find local similarities. BLAST, the most popular
string matching tool for biologists, runs in two phases. In
the first phase, all the substrings of the query of some pre-
specified length (typically between 3 and 11) are searched
in the database for an exact match. In the second phase,
all the matches obtained in the first phase are extended in
both directions until the similarity between the two sub-
strings falls below some threshold. This technique keeps a
pointer to the starting locations of all possible substrings of
the pre-specified length in the database to speedup the first
phase. Therefore, the space requirement of BLAST is more
than the size of the database. Furthermore, BLAST does
not find a similar substring to the whole query string, only
similarities between the query substrings and the database
substrings.

8 Conclusion

In this paper, we propose a filter-and-refine two-step pro-
cessing strategy for approximate subsequence matching in
large sequence databases. It employs BIS to map a data el-
ement to an index element that is smaller in size. The hash
function is applied to every data element in a sequence and
to each sequence in the database to produce an index. When
a query string is presented, the filtering step evaluates the
index representation of all the subsequences to isolate those
that might be relevant. Only this fraction of subsequences
need to have their data representation tested for a match at
the refine step. Since the index is more compact than the
database, doing so is expected to shorten the response time
while saving on index storage space.

To evaluate performance, we have developed a cost
model. The model enables us to determine the best size
for an index element during BIS index construction. It also
helps a DBMS to decide when to exploit BIS for query pro-
cessing. Finally, the model can estimate the achievable re-
sponse time savings over searching the database directly.

Extensive experiments were conducted using both syn-
thetic and genetic sequence databases. The results of these
experiments agree closely with the estimations of the cost
model. More importantly, the experiments consistently con-
firm that BIS is space efficient, that it significantly reduces
response time, and that it scales up with the database. For
example, by constructing an index that is 1

8
the size of the

database, we have achieved more than 5 times speed-ups for
query strings that are longer than 100 data elements.

We are currently conducting experiments and analy-
sis using the large genomic databases, such as GenBank
[31, 32] which contains approximately 1.3 billion bases,
to develop the confidence in these early, but intriguing re-
sults. We also plan to improve the algorithm by compress-
ing the bitmap index: frequent substrings in the sequences
and queries can be encoded into much shorter index ele-
ments, and the filtering step can be speed up by the quick
lookup of the frequent substrings in the index.
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