7 research outputs found

    A Survey on Graph Representation Learning Methods

    Full text link
    Graphs representation learning has been a very active research area in recent years. The goal of graph representation learning is to generate graph representation vectors that capture the structure and features of large graphs accurately. This is especially important because the quality of the graph representation vectors will affect the performance of these vectors in downstream tasks such as node classification, link prediction and anomaly detection. Many techniques are proposed for generating effective graph representation vectors. Two of the most prevalent categories of graph representation learning are graph embedding methods without using graph neural nets (GNN), which we denote as non-GNN based graph embedding methods, and graph neural nets (GNN) based methods. Non-GNN graph embedding methods are based on techniques such as random walks, temporal point processes and neural network learning methods. GNN-based methods, on the other hand, are the application of deep learning on graph data. In this survey, we provide an overview of these two categories and cover the current state-of-the-art methods for both static and dynamic graphs. Finally, we explore some open and ongoing research directions for future work

    Learning with Attributed Networks: Algorithms and Applications

    Get PDF
    abstract: Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the attributed networks. In many cases, people are inundated with vast amounts of data that can be structured into attributed networks, and their use has been attractive to researchers and practitioners in different disciplines. For example, in social media, users interact with each other and also post personalized content; in scientific collaboration, researchers cooperate and are distinct from peers by their unique research interests; in complex diseases studies, rich gene expression complements to the gene-regulatory networks. Clearly, attributed networks are ubiquitous and form a critical component of modern information infrastructure. To gain deep insights from such networks, it requires a fundamental understanding of their unique characteristics and be aware of the related computational challenges. My dissertation research aims to develop a suite of novel learning algorithms to understand, characterize, and gain actionable insights from attributed networks, to benefit high-impact real-world applications. In the first part of this dissertation, I mainly focus on developing learning algorithms for attributed networks in a static environment at two different levels: (i) attribute level - by designing feature selection algorithms to find high-quality features that are tightly correlated with the network topology; and (ii) node level - by presenting network embedding algorithms to learn discriminative node embeddings by preserving node proximity w.r.t. network topology structure and node attribute similarity. As changes are essential components of attributed networks and the results of learning algorithms will become stale over time, in the second part of this dissertation, I propose a family of online algorithms for attributed networks in a dynamic environment to continuously update the learning results on the fly. In fact, developing application-aware learning algorithms is more desired with a clear understanding of the application domains and their unique intents. As such, in the third part of this dissertation, I am also committed to advancing real-world applications on attributed networks by incorporating the objectives of external tasks into the learning process.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Learning Effective Embeddings for Dynamic Graphs and Quantifying Graph Embedding Interpretability

    Get PDF
    Graph representation learning has been a very active research area in recent years. The goal of graph representation learning is to generate representation vectors that accurately capture the structure and features of large graphs. This is especially important because the quality of the graph representation vectors will affect the performance of these vectors in downstream tasks such as node classification and link prediction. Many techniques have been proposed for generating effective graph representation vectors. These methods can be applied to both static and dynamic graphs. A static graph is a single fixed graph, while a dynamic graph evolves over time, and its nodes and edges can be added or deleted from the graph. We surveyed the graph embedding methods for both static and dynamic graphs. The majority of the existing graph embedding methods are developed for static graphs. Therefore, since most real-world graphs are dynamic, developing novel graph embedding methods suitable for evolving graphs is essential. This dissertation proposes three dynamic graph embedding models. In previous dynamic methods, the inputs were mainly adjacency matrices of graphs which are not memory efficient and may not capture the neighbourhood structure in graphs effectively. Therefore, we developed Dynnode2vec based on random walks using the static model Node2vec. Dynnode2vec generates node embeddings in each snapshot by initializing the current model with previous embedding vectors and training the model using a set of random walks obtained for nodes in the snapshot. Our second model, LSTM-Node2vec, is also based on random walks. This method leverages the LSTM model to capture the long-range dependencies between nodes in combination with Node2vec to generate node embeddings. Finally, inspired by the importance of substructures in the graphs, our third model TGR-Clique generates node embeddings by considering the effects of neighbours of a node in the maximal cliques containing the node. Experiments on real-world datasets demonstrate the effectiveness of our proposed methods in comparison to the state-of-the-art models. In addition, motivated by the lack of proper measures for quantifying and comparing graph embeddings interpretability, we proposed two interpretability measures for graph embeddings using the centrality properties of graphs

    Developing Robust Models, Algorithms, Databases and Tools With Applications to Cybersecurity and Healthcare

    Get PDF
    As society and technology becomes increasingly interconnected, so does the threat landscape. Once isolated threats now pose serious concerns to highly interdependent systems, highlighting the fundamental need for robust machine learning. This dissertation contributes novel tools, algorithms, databases, and models—through the lens of robust machine learning—in a research effort to solve large-scale societal problems affecting millions of people in the areas of cybersecurity and healthcare. (1) Tools: We develop TIGER, the first comprehensive graph robustness toolbox; and our ROBUSTNESS SURVEY identifies critical yet missing areas of graph robustness research. (2) Algorithms: Our survey and toolbox reveal existing work has overlooked lateral attacks on computer authentication networks. We develop D2M, the first algorithmic framework to quantify and mitigate network vulnerability to lateral attacks by modeling lateral attack movement from a graph theoretic perspective. (3) Databases: To prevent lateral attacks altogether, we develop MALNET-GRAPH, the world’s largest cybersecurity graph database—containing over 1.2M graphs across 696 classes—and show the first large-scale results demonstrating the effectiveness of malware detection through a graph medium. We extend MALNET-GRAPH by constructing the largest binary-image cybersecurity database—containing 1.2M images, 133×more images than the only other public database—enabling new discoveries in malware detection and classification research restricted to a few industry labs (MALNET-IMAGE). (4) Models: To protect systems from adversarial attacks, we develop UNMASK, the first model that flags semantic incoherence in computer vision systems, which detects up to 96.75% of attacks, and defends the model by correctly classifying up to 93% of attacks. Inspired by UNMASK’s ability to protect computer visions systems from adversarial attack, we develop REST, which creates noise robust models through a novel combination of adversarial training, spectral regularization, and sparsity regularization. In the presence of noise, our method improves state-of-the-art sleep stage scoring by 71%—allowing us to diagnose sleep disorders earlier on and in the home environment—while using 19× less parameters and 15×less MFLOPS. Our work has made significant impact to industry and society: the UNMASK framework laid the foundation for a multi-million dollar DARPA GARD award; the TIGER toolbox for graph robustness analysis is a part of the Nvidia Data Science Teaching Kit, available to educators around the world; we released MALNET, the world’s largest graph classification database with 1.2M graphs; and the D2M framework has had major impact to Microsoft products, inspiring changes to the product’s approach to lateral attack detection.Ph.D
    corecore