
LEARNING EFFECTIVE EMBEDDINGS FOR

DYNAMIC GRAPHS AND QUANTIFYING

GRAPH EMBEDDING INTERPRETABILITY

SHIMA KHOSHRAFTAR

A DISSERTATION SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

YORK UNIVERSITY
TORONTO, ONTARIO

JANUARY 2023

©SHIMA KHOSHRAFTAR, 2023

Abstract

Graph representation learning has been a very active research area in recent years.

The goal of graph representation learning is to generate representation vectors that

accurately capture the structure and features of large graphs. This is especially

important because the quality of the graph representation vectors will affect the

performance of these vectors in downstream tasks such as node classification and

link prediction. Many techniques have been proposed for generating effective graph

representation vectors. These methods can be applied to both static and dynamic

graphs. A static graph is a single fixed graph, while a dynamic graph evolves over

time, and its nodes and edges can be added or deleted from the graph. We surveyed

the graph embedding methods for both static and dynamic graphs. The majority

of the existing graph embedding methods are developed for static graphs. There-

fore, since most real-world graphs are dynamic, developing novel graph embedding

methods suitable for evolving graphs is essential.

This dissertation proposes three dynamic graph embedding models. In previous

dynamic methods, the inputs were mainly adjacency matrices of graphs which are

not memory efficient and may not capture the neighbourhood structure in graphs

effectively. Therefore, we developed Dynnode2vec based on random walks using the

static model Node2vec. Dynnode2vec generates node embeddings in each snapshot

by initializing the current model with previous embedding vectors and training the

model using a set of random walks obtained for nodes in the snapshot. Our second

model, LSTM-Node2vec, is also based on random walks. This method leverages the

LSTM model to capture the long-range dependencies between nodes in combination

with Node2vec to generate node embeddings. Finally, inspired by the importance

of substructures in the graphs, our third model TGR-Clique generates node em-

beddings by considering the effects of neighbours of a node in the maximal cliques

containing the node. Experiments on real-world datasets demonstrate the effec-

tiveness of our proposed methods in comparison to the state-of-the-art models. In

addition, motivated by the lack of proper measures for quantifying and comparing

ii

graph embeddings interpretability, we proposed two interpretability measures for

graph embeddings using the centrality properties of graphs.

iii

Acknowledgments

My Ph.D. was made possible thanks to many wonderful people. First, I would like

to express my sincere appreciation to my advisor, Prof. Aijun An, for her incredible

guidance, support, encouragement and understanding throughout my Ph.D. stud-

ies. Aijun’s curiosity, immense knowledge and passion for science have continually

inspired me. I am very grateful for her confidence in me and for helping me develop

my skills as a researcher.

I would like to thank my committee members, Prof. Manos Papagelis and Prof.

Michael Brown, for their guidance, time and valuable comments. I’d like to ac-

knowledge past and present members of the Data Mining lab, who have enriched

my graduate experience as labmates, mentors, collaborators and friends. Especially,

I am grateful to Dr. Sedigheh Mahdavi for our close collaboration during several

parts of my thesis. It was a pleasure to work with her and learn from her during

my Ph.D. I also would like to thank Dr. Nastaran Babanejad for our collaboration

in my thesis’s last part and helpful feedback and advice.

I will always be indebted to my dearest parents, who showered me with love and

support in every aspect of my life. I am grateful for all the sacrifices they have made

to enable me to follow my own path. I also thank my two brothers and their families

for being there whenever I needed them. Finally, I wish to thank my husband and

the love of my life for his love and motivation and for patiently standing by my side.

His presence in my life alone brings out the best in me.

iv

Table of Contents

Abstract ii

Acknowledgments iv

Table of Contents v

List of Figures ix

List of Tables xii

List of Abbreviations xv

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Publications and the Statement of Co-authorships 5

1.4 Dissertation Organization . 6

2 Literature Review 7

2.1 Graphs . 7

2.1.1 Graph Embedding . 8

2.1.2 Graph Embedding Applications 10

2.2 Traditional Graph Embedding . 12

2.2.1 Traditional Static Graph Embedding 12

2.2.2 Traditional Dynamic Graph Embedding 18

2.3 GNN based graph embedding . 24

v

2.3.1 Introduction to GNNs . 25

2.3.2 Static Graph Neural Nets . 28

2.3.3 Spatial-Temporal Graph Neural Net (STGNN) 37

2.3.4 Dynamic Graph Neural Net (DGNN) 38

2.3.5 GNN-based method’s real-world applications 41

2.3.6 The limitation of GNNs and the proposed solutions 41

2.4 Interpretability of node embeddings 52

3 Dynnode2vec: Scalable Dynamic Network Embedding 54

3.1 Introduction . 54

3.2 Dynnode2vec: Scalable dynamic network embedding 55

3.2.1 Description of dynnode2vec steps 55

3.3 Experiments . 57

3.3.1 Datasets . 57

3.3.2 Baselines . 58

3.3.3 Link Prediction . 58

3.3.4 Node Classification . 59

3.3.5 Anomaly Detection . 59

3.3.6 Effects of evolving walk generation 60

3.4 Summary . 61

4 Dynamic Graph Embedding via LSTM History Tracking 62

4.1 Introduction . 62

4.2 Problem Statement . 64

4.3 Dynamic Network Embedding Method 64

4.3.1 Overview of LSTM-Node2vec 64

4.3.2 Temporal neighbor walk generation. 65

4.3.3 LSTM Autoencoder . 66

4.3.4 Node2vec . 68

4.4 Experiments . 69

4.4.1 Baselines . 69

vi

4.4.2 Experiment settings . 70

4.4.3 Anomaly Detection . 70

4.4.4 Node Classification . 72

4.4.5 Link Prediction . 73

4.4.6 Effect of length of history parameter L 75

4.4.7 Effects of changes in model structure 75

4.4.8 Time Analysis . 76

4.5 Summary . 77

5 Temporal Graph Representation Learning via Maximal Cliques 78

5.1 Introduction . 78

5.2 Preliminaries . 80

5.3 Problem definition . 82

5.4 Proposed Method . 83

5.4.1 Method overview . 83

5.4.2 Temporal walk generation . 84

5.4.3 Model . 85

5.4.4 Training . 86

5.4.5 Inference . 87

5.4.6 Justification of using maximal cliques 89

5.5 Experiments . 90

5.5.1 Baselines . 90

5.5.2 Settings . 91

5.5.3 Link prediction . 92

5.5.4 Node classification . 93

5.5.5 Ablation study . 94

5.5.6 Parameter sensitivity . 95

5.5.7 Time analysis . 96

5.6 Comparison with our other methods proposed in Chapters 3 and 4 . . 98

5.7 Summary . 100

vii

6 Interpretability measures for Graph Embeddings 102

6.1 Introduction . 102

6.2 Preliminaries . 104

6.3 Problem definition . 105

6.4 Method . 105

6.4.1 Approach overview . 105

6.4.2 The definition of interpretability scores 106

6.4.3 Example . 108

6.5 Experiments . 110

6.5.1 Datasets . 110

6.5.2 Node embedding methods . 111

6.5.3 Quantitative measuring of interpretability of graph embedding

methods . 112

6.5.4 Validation . 112

6.5.5 Interpreting embedding dimensions with visualization 114

6.5.6 Downstream tasks . 115

6.5.7 Parameter sensitivity . 117

6.6 Summary . 118

7 Conclusions and Future Directions 119

7.1 Summary of Contributions . 119

7.2 Future Directions . 121

Bibliography 123

viii

List of Figures

2.1 Facebook as an example of social networks 8

2.2 Example of finance networks . 9

2.3 The graph on the left hand side consists of 6 nodes {a, b, c, d, e, i}
and 8 edges. Graph embedding methods map each node of the graph

into an embedding vector with dimension d. For the demonstration

purpose, the node a is embedded into an embedding vector za of

dimension 4 with given values. 10

2.4 Categories of Graph Representation Learning Methods. 12

2.5 A general supervised framework for training Graph neural net lay-

ers. Two GNN layers are applied on an input graph to compute the

node representation vectors for its nodes. The colors on arrows show

neighbors of a target node that are aggregated to generate the target

node representation. xa is the feature vector of node a and h1a and h2a

are the representation vectors generated for the node a after applying

the first and second GNN layers. The generated embeddings are used

in a node classification task. y′a is the predicted label for the node a. . 26

3.1 Anomaly detection results . 60

4.1 LSTM training for word representation. sj is the jth word in a sen-

tence which is represented by a one-hot encoding vector. Wi is the

weights of input layer in LSTM. 66

4.2 The process of temporal walk generation. a, b, c are three time points

of a temporal network. Given L = 3 the temporal walks for node 1

is generated by sampling from its neighborhood nodes. 66

4.3 Framework for LSTM-Node2vec for creating embedding of Gt using

both temporal and static sequences 69

ix

4.4 A temporal network at two time steps. (a) the graph at time t − 1.

(b) the graph at time t with an star shaped anomaly, one previously

normal node starts attacking multiple nodes shown in red. 71

4.5 Analysis of effect of parameter L on link prediction for Radoslaw and

St-Ov datasets . 74

4.6 Analysis of effect of parameter L on node classification for Acm and

Dblp datasets . 74

4.7 Time complexity Analysis for 4 time steps in 3 datasets 76

5.1 A graph with five nodes {1, 2, 3, 4, 5} with a subgraph depicted in

red: a) the red subgraph is not a clique as there is no edge between

nodes 1 and 3. b) the red subgraph is a clique but not a maximal one

because node 4 can be added to the clique. c) the red subgraph is a

maximal clique as there is an edge between every pair of nodes and

it does not have a supergraph that is also a clique. 81

5.2 The general framework of TGR-Clique for the node classification task.

The input is the temporal graph. We generate the embedding for the

grey node. First, a set of temporal walks are generated for the node

from the maximal cliques containing the node. For the illustration,

the number and length of walks are 3 and 2. Then, these walks

are input to the BiLSTM, attention and mean layers to generate the

node embedding (block with the purple dot). xv, xe, te are the node,

edge and time features associated with each node in the walks. The

framework for link prediction is similar except that embeddings from

two nodes are concatenated to input to the FC layer for link prediction. 83

5.3 Examples of temporal random walks for node a, at time 7 on the

graph’s maximal cliques. For instance, a, d, c is a temporal random

walk of length 2 for node a. In this walk, node d is a neighbor of

node a and node c is a neighbor of node d. The nodes in the walk

belong to the maximal clique {a, b, c, d} which contains node a. The

edges in the walk are sampled in an anti-chronological order such that

7 > 6 > 2. No other edge can be added to the walk after node c. . . 84

5.4 An MRF over random variables X = {x1, x2, x3, x4, x5} with three

maximal cliques MC1,MC2 and MC3. 89

5.5 Parameter sensitivity analysis on the transductive link prediction task. 97

x

5.6 Training time on the SMS dataset over one epoch and different num-

bers of edges. 98

6.1 An example of BCI calculation for one embedding dimension with re-

spect to one category. I. A sample graph with nodes {a, b, c, d, e, f}.
Nodes {a, b, c, d} belong to category 1 (C1) and {e, f} belong to cat-

egory 2 (C2). II. Node embedding matrix of the graph where D =

3. III. Computation of BCI score for embedding dimension 1 with

respect to node category 1. 109

6.2 Dimension and Category decomposition of BCI scores on the Wis-

consin dataset using Node2vec embedding vectors of 128 dimensions:

Left side BCI scores of embedding dimensions 96, 25 and 79 over all

categories. Right side BCI values over all dimensions for the Project,

Faculty and Course category. 114

6.3 Visualization of the embedding of Wisconsin dataset using t-SNE for

top two most populated classes. 116

xi

List of Tables

2.1 Graph embedding methods in both traditional and GNN-based cat-

egories. Trad and GNN stand for Traditional and GNN-based graph

embedding. 13

2.2 Comparison of traditional and GNN-based graph representation learn-

ing. 25

2.3 Some of the real-world applications of graph neural nets deployed

in production . 41

2.4 A summary of major solutions proposed to increase the expressive

power of GNNs . 43

2.5 A summary of major solutions proposed to alleviate oversmoothing of

GNNs. Z is the node prediction label, H is the node representation,

Kl is the convolution of the l-th layer, s is a projection vector, Go is

the discrete gradient operator on the graph, Âdrop is the symmetric

normalized adjacency matrix with certain number of edges dropped,

INFLATION(.,e) = Normal(Power(Softmax(.),e)), fl is the number

of features at layer l, Sl is the clustering assignment matrix, C is

number of groups, µi, σi are the mean and standard deviation of group

i. γi, βi, λ are hyper parameters. TPSD is a total pairwise squared

distance measure, Xdrop is the perturbed feature matrix, p is an step

size, Gv is an extracted subgraph for a node v. Φl is a learnable

parameter, L̃ is symmetric normalized Laplacian matrix. psi is a

learnable function, X is the feature matrix. T is time step. 45

xii

2.6 Time and memory complexities of GCN and some of the proposed

scalable GNN models. L is the number of layers, F is the hidden

dimension of the model, n is the number of nodes, m is the number

of neighbors, b is the batch size, d is the average degree of the graph, sn

is the number of sampled nodes per node,sl is the number of sampled

nodes per layer, δ is the ratio of blocked nodes, s̃n = sn × (1 − δ),

mg is the number of remaining edges, mθ is the number of remaining

connections in the model, k is number of codewords 46

2.7 A summary of major solutions proposed to make GNNs suitable for

both hemophily and heterophily . 49

2.8 The formulas for the major solutions proposed to help GNNs capture

substructures. i is a neighborhood , r is a relationship, τ(zv, zu)

is a function that defines a relationship from node v to node u in

a latent space, xVv are the combined structural features of node v,

eu,v are the edge (u, v) features, hp is the embedding of a simplex

p, mB(p),mC(p),m↓(p),m↑(p) are the aggregation of messages from

the boundary, co-boundary, lower and upper adjacent simplices of

the simplex p, Rv is a row in a node-topic matrix representing the

probabilities of a node v in a graph belonging to the graph’s structural

topics, Sk−BFS
nv,t

is the set of permutation of subset of nodes in egonet

of node v of depth t compatible with k-truncated breadth first search,

απ is a learnable normalization factor for π, f can be an MLP layer,

B
[ego]
v,t is the tensor representation of the egonet of node v, ϕ is an

anonymous walk,R(ϕ) is the concatenation of the attributes of ϕ,

Z = [R(ϕi)]i, Φl is the set of anonymous walks of length l, hx,c is the

representation of a subgraph c, γ is a learnable similarity measure,

Ax is a subgraph at channel x, ax is the representation of Ax. 50

3.1 Link prediction results using four operators a) Weighted-L1 b) Weighted-

L2 c) Hadamard d) Average . 59

3.2 Node classification results . 60

3.3 Running time comparison . 61

3.4 Comparison of dynnode2vec vs dynnode2vec-all 61

4.1 AUC results of anomaly detection . 71

4.2 Anomaly detection AUC scores for three graphs to analyze the effect

of previously seen anomalies . 72

xiii

4.3 Macro-f1 and Micro-f1 scores for node classification 73

4.4 AUC scores for link prediction . 75

4.5 Difference in performance by adding one more layer to the encoder . . 76

5.1 An example showing potential steps for generating maximal clique

{5, 4, 2, 3} in the graph in Figure 5.1 using the original recursive

method in [1]. 82

5.2 The datasets statistics. #MC is the number of maximal cliques in

the training set, #F is the number of node and edge features. 91

5.3 The transductive link prediction results. 93

5.4 The inductive link prediction results. 94

5.5 AUC scores for the node classification. 95

5.6 AUC scores for the ablation study. NC and LP are short for node

classification and link prediction respectively. 95

5.7 Comparison of our 3 proposed dynamic graph embedding methods.

Dyn is short for Dynamic, Cat is Category, Trad is Traditional, Con-

tinu is Continuous and Feat is Feature. 100

5.8 Link prediction results in terms of AUC. 100

6.1 Betweenness centrality importance and Closeness centrality impor-

tance scores . 111

6.2 Macro-F1 and Micro-F1 scores for node classification task using node

degree labels . 113

6.3 Macro-F1 and Micro-F1 scores for node classification task using be-

tweenness centrality node labels . 113

6.4 Macro-F1 and Micro-F1 scores for node classification task using close-

ness centrality node labels . 113

6.5 Downstream link prediction task auc scores 117

6.6 Downstream node classification Macro-F1 and Micro-F1 scores 117

6.7 CCI score using different λ values on the Wisconsin dataset 117

xiv

List of Abbreviations

AP Average Precision

AUC Area Under (ROC) Curve

BC Betweenness Centrality

BCI Betweenness Centrality Importance

BFS Breadth First Search

BiLSTM Bidirectional Long Short Term Memory

CC Closeness Centrality

CCI Closeness Centrality Importance

CNN Convolutional Neural Network

ConvGNN Convolutional Graph Neural Network

DFS Depth First Search

ENC Encoder

GAT Graph Attention Network

GCN Graph Convolutional Network

GNN Graph Neural Network

GRU Gated Recurrent Unit

KL-divergence Kullback–Leibler divergence

LSTM Long Short Term Memory

MLP Multilayer Perceptron

xv

MRF Markov Random Field

NLP Natural Language Processing

RecGNN Recurrent Graph Neural Network

RNN Recurrent Neural Network

TGR-Clique Temporal Graph Representation via maximal Cliques

WL test Weisfeiler-Lehman test

xvi

Chapter 1

Introduction

1.1 Motivation

Graphs are powerful data structures to represent networks that contain entities and

relationships between entities. There are very large networks in different domains

including social networks, financial transactions and biological networks. For in-

stance, in social networks people are the nodes and their friendships constitute the

edges. In financial transactions, the nodes and edges could be people and their

money transactions. One of the strengths of a graph data structure is its generality,

meaning that the same structure can be used to represent different networks. In

addition, graphs have strong foundations in mathematics, which could be leveraged

for analyzing and learning from complex networks.

In order to use graphs in different downstream applications, it is important to repre-

sent them effectively. Graph can be simply represented using the adjacency matrix

which is a square matrix whose elements indicate whether pairs of vertices are ad-

jacent or not in the graph, or using the extracted features of the graph. However,

the dimensionality of the adjacency matrix is often very high for big graphs, and

the feature extraction based methods are time consuming and may not represent all

the necessary information in the graphs. Recently, the abundance of data and com-

putation resources paves the way for more flexible graph representation methods.

Specifically, graph embedding methods have been very successful in graph repre-

sentation. These methods project the graph elements (such as nodes, edges and

subgraphs) to a lower dimensional space and preserve the properties of graphs.

Graph embedding methods can be categorized into traditional graph embedding

and graph neural net (GNN) based graph embedding methods. Traditional graph

embedding methods capture the information in a graph by applying different tech-

1

niques including random walks, factorization methods and non-GNN based deep

learning. These methods can be applied to both static and dynamic graphs. A

static graph is a single fixed graph, while a dynamic graph evolves over time and its

nodes and edges can be added or deleted from the graph. For example, a molecule

can be represented as a static graph, while a social network can be represented by a

dynamic graph. Graph neural nets are another category of graph embedding meth-

ods that have been proposed recently. In GNNs, node embeddings are obtained by

aggregating the embeddings of the node’s neighbors. Early works on GNNs were

based on recurrent neural networks. However, later convolutional graph neural nets

were developed that are based on the convolution operation. In addition, there are

spatial-temporal GNNs and dynamic GNNs that leverage the strengths of GNNs in

evolving networks. We reviewed the advancements in graph embedding methods in

both traditional and GNN-based categories for both static and dynamic settings in

a survey on graph embedding methods [2].

The majority of the existing graph embedding methods are developed for static

graphs as modeling the characteristics of dynamic graphs is more challenging than

modeling static graphs. Some of the traditional dynamic graph embedding models

are DynGEM [3], dyngraph2vecAE [4] and CTDNE [5]. Considering the evolving

nature of most of the real-world graphs and the need to develop effective methods to

model these graphs, we developed two traditional dynamic graph embedding meth-

ods called Dynnode2vec [6] and LSTM-Node2vec [7] and one GNN-based dynamic

method named TGR-Cliques [8].

Our first model Dynnode2vec is the dynamic version of the node2vec method for

static graphs. It is a fast and scalable method based on evolving random walks.

Compared to previous embedding methods that mainly take the adjacency matrix of

a graph as input, dynnode2vec utilizes random walks because they are more memory

efficient and better capture the neighbourhood of nodes. Furthermore, this method

combines the history of interactions of nodes into their current states using the

weights from the previous timestamps models. The second model LSTM-Node2vec

is also based on random walks. Inspired by the success of LSTM in natural language

processing, LSTM-Node2vec takes advantage of the LSTM model to capture the

long-term dependencies between nodes. Then, it combines this information with

the node2vec model to generate the graph embeddings.

Our third model is TGR-Clique which is a GNN-based temporal graph embedding

method. This model takes into account the maximal cliques containing a node in

generating the node embedding. The graph substructures such as maximal cliques

and triads can reveal important information about the groups of nodes that com-

2

monly interact and potentially have the most influence on each other. However,

a few dynamic methods consider graph substructures. Examples of these methods

are MTSN [9] and CAW-N [10]. We develop TGR-Clique that generates temporal

node embedding by aggregating the embeddings of nodes that co-occur in maximal

cliques with the node.

In addition to designing three novel dynamic graph embedding methods, we pro-

posed two interpretability measures for graph embeddings [11]. Despite the success

of graph embedding methods in different applications, not much attention has been

given to interpreting the graph embeddings. In traditional feature engineering meth-

ods, each dimension represents a particular piece of information, such as the degree

or importance of a node, which is meaningful and thus potentially useful in explain-

ing the decision made in the application. Graph embedding dimensions, however,

are usually not explainable. Inspired by advances in interpreting word embeddings

[12, 13], we introduced two interpretability measures for graph embeddings using

the network centrality properties.

1.2 Contributions

In this dissertation, we first review the advances in graph embedding methods. Then,

two traditional dynamic graph embedding methods and one GNN-based temporal

graph emebdding method are introduced. Furthermore, we proposed two inter-

pretability measures for graph embeddings. A summary of our contributions are as

follow:

• Dynnode2vec [6]: We proposed dynnode2vec, a scalable dynamic network

embedding for large evolving networks. In order to handle dynamic networks,

dynnode2vec modifies the well-known static embedding method, node2vec by

employing the previous learned embedding vectors as initials weights for the

skip-gram model. This is motivated by dynamic language models, especially

dynamic Skip-gram models [14, 15]. In addition, we utilize evolving random

walks for updating the trained skip-gram from previous timestamp. The evolv-

ing random walks are only generated for nodes that have changed in consec-

utive times. As random walk generation is the time consuming part of graph

embeddings, we are able to significantly reduce the running time. We eval-

uate the performance of our proposed method in variety of tasks including

link prediction, node classification and anomaly detection on large real-world

graphs.

3

• LSTM-Node2vec [7]: Inspired by the effectiveness of LSTM in preserving

long term dependencies between elements in a sequence in natural language

processing [16, 17, 18], we propose LSTM-Node2vec for computing node em-

beddings in dynamic graphs. Our key contribution is using an autoencoder

LSTM for keeping the history of nodes and training it with a special kind of

temporal random walks that capture the evolving patterns in the structure of

the graphs. In our method, the embeddings obtained from history are used

as initial weights for a node2vec model. Afterwards, node2vec considers the

local information from the current graph and produces an embedding that is

the combination of both temporal and static information for the nodes of the

graph. In addition, for aligning the node embeddings over time, the weights

of the model at previous time points is passed along to the model for the next

graphs. In our experiments, we evaluate the performance of LSTM-Node2vec

in anomaly detection, link prediction and node classification on datasets from

various domains.

• TGR-Clique [8]: We propose a novel temporal graph representation learning

method based on maximal cliques, called TGR-Clique short for Temporal

Graph Representation learning via maximal Cliques. Maximal cliques are im-

portant graph substructures that represent groups of densely connected nodes.

These subgraphs have been successfully used in community detection in so-

cial networks [19, 20], clustering in wireless networks [21] and protein-protein

interaction detection in biological networks [22, 23]. TGR-Clique generates

the node embeddings using maximal cliques. To capture the evolution of tem-

poral graphs, we generate temporal random walks on the maximal cliques.

The embedding of a node is obtained by aggregation of the temporal random

walks starting from the node. We showed that the embeddings generated in

TGR-Clique can lead to better predictive performance in downstream tasks

and that our method is faster than CAW-N and some other state-of-the-art

methods. In addition, our method can be used in both link prediction and

node classification tasks since we produce both node and link embeddings.

• Interpretability metrics for graph embeddingss [11]: We quantify and

compare the interpretability of different graph embedding methods effectively

by adapting the techniques originally designed for quantifying interpretability

of word embeddings [12, 24, 25, 13]. We quantify the interpretability of a node

embedding method based on the extent to which its embedding dimensions can

represent the centrally-located or important nodes in a category with extreme

values. For this purpose, we use centrality properties of nodes which have

4

proven to be very successful in graph clustering and community detection

tasks [26, 27, 28, 29]. In addition, we provide a method for comparing the

interpretabilities of different embedding methods. Our method is general and

can be applied to any graph embedding method based on different techniques

such as random walks, matrix factorization and deep learning.

• A Survey on Graph Representation Learning Methods [2]: In this sur-

vey, we conduct a review of both traditional and GNN-based graph embedding

methods in static and dynamic settings and include over 300 papers consisting

of papers published in reputable venues in data mining, machine learning and

artificial intelligence. In addition, we summarize a number of limitations of

GNN-based methods and the proposed solutions to these limitations. These

limitations are expressive power, over-smoothing, scalability, over-squashing,

capturing long-range dependencies, design space, neglecting substructures, ho-

mophily assumptions, and catastrophic forgetting. Such a summary was not

provided in previous surveys. We also provide a list of the real-world appli-

cations of GNN-based methods that are deployed in production and suggest

a list of future research directions including new ones that are not covered by

previous surveys.

1.3 Publications and the Statement of Co-authorships

The list of the publications/submissions during my Ph.D. study under the supervi-

sion of Prof. Aijun An is as follows:

1. S. Khoshraftar , A. An, A Survey on Graph Representation Methods, under

review by a journal. (Chapter 2 of this dissertation is based on this paper.)

2. S. Mahdavi, S. Khoshraftar , A. An, Dynnode2vec: Scalable dynamic net-

work embedding, pp. 3762-3765, IEEE International Conference on Big Data,

2018. (Chapter 3 of this dissertation is based on this paper.)

3. S. Khoshraftar , S. Mahdavi, A. An, Y. Hu, J. Liu, Dynamic Graph Em-

bedding via LSTM History Tracking, 119-127, IEEE International Conference

on Data Science and Advanced Analytics (DSAA), 2019. (Chapter 4 of this

dissertation is based on this paper.)

4. S. Khoshraftar , A. An, N. Babanejad, Temporal Graph Representation

Learning via Maximal Cliques, IEEE International Conference on Big Data

5

(IEEE Big Data), Dec 17-20, 2022, Online, Regular paper. (Chapter 5 of this

dissertation is based on this paper.)

5. S. Khoshraftar , S. Mahdavi, A. An, Centrality-based Interpretability Mea-

sures for Graph Embeddings, 1-10, IEEE International Conference on Data

Science and Advanced Analytics (DSAA), 2021. (Chapter 6 of this disserta-

tion is based on this paper.)

6. S. Mahdavi, S. Khoshraftar , A. An, Dynamic Joint Variational Graph Au-

toencoders, 385-401, European Conference on Machine Learning and Prin-

ciples and Practice of Knowledge Discovery in Databases (ECML PKDD)

Workshops, 2019.

In the publications where I am listed as the first author, I was responsible for propos-

ing and implementing the methodology, setting up and running the experiments,

analyzing the results and writing the manuscript. My co-authors assisted in provid-

ing valuable feedback to improve the methodology and experiments and editing the

manuscripts. In [5], Sedigheh Mahdavi contributed to proposing the methodology.

In addition, she prepared the Dblp and Acm datasets. In the papers in which I am

listed as the second author, I assisted in brainstorming the methodology, setting up

and running some of the experiments and editing the manuscript.

1.4 Dissertation Organization

In the following chapters, we will elaborate on our contributions. In Chapter 2, we

first provide a literature review on graph emebdding methods. In Chapters 3, 4 and

5, we explain the Dynnode2vec, LSTM-Node2vec and TGR-Clique models. At the

end of Chapter 5, we compare the design and performance of these three methods.

Chapter 6 describes the proposed interpretability measures for graph embeddings.

Finally, Chapter 7 concludes the dissertation and provides the future directions.

6

Chapter 2

Literature Review

2.1 Graphs

Graphs are powerful tools for representing entities and relationships between them.

Graphs have applications in many domains including social networks, E-commerce

and citation networks. In social networks such as Facebook, nodes in the graph are

the people and the edges represent the friendship between them. In E-commerce,

the Amazon network is a good example, in which users and items are the nodes and

the buying or selling relationships are the edges. Figure 2.1 and 2.2 show examples

of social networks and finance networks.

Definition 1 Formally, a graph G is defined as a tuple G = (V,E) where V =

{v0, v1, ..., vn} is the set of n nodes/vertices and E = {e0, e1, ..., em} ⊆ V × V is the

set of m edges/links of G, where an edge connects two vertices.

A graph can be directed or undirected. In a directed graph, an edge ek = (vi, vj) has

a direction with vi being the starting vertex and vj the ending vertex. Graphs can

be represented by their adjacency, degree and Laplacian matrices, which are defined

as follows:

Definition 2 The adjacency matrix A of a graph G with n vertices is an n × n

matrix, where an element aij in the matrix equals to 1 if there is an edge between

node pair vi and vj and is 0 otherwise. An adjacency matrix can be weighted in

which the value of an element represents the weight (such as importance) of the edge

it represents.

Definition 3 The degree matrix D of a graph G with n vertices is an n×n diagonal

matrix, where an element dii is the degree of node vi for i = {1, ..., n} and all other

7

Figure 2.1: Facebook as an example of social networks

dij = 0. In undirected graphs, where edges have no direction, the degree of a node

refers to the number of edges attached to that node. For directed graphs, the degree

of a node can be the number of incoming or outgoing edges of that node, resulting

in an in-degree or out-degree matrix, respectively.

Definition 4 The Laplacian matrix L of a graph G with n vertices is an n × n

matrix, defined as L = D−A, where D and A are G’s degree and adjacency matrix,

respectively.

2.1.1 Graph Embedding

In order to use graphs in downstream machine learning and data mining applications,

graphs and their entities such as nodes and edges need to be represented using nu-

merical features. One way to represent a graph is its adjacency matrix. However, an

adjacency matrix is memory-consuming for representing very large graphs because

its size is |V | × |V |. We can represent a graph and its elements using their features.

Especially, a node in the graph can be represented with a set of features that could

help the performance of the representation in a particular application. For example,

in anomaly detection application, the nodes with the densest neighborhood have the

potential to be anomalous. Therefore, if we include the in-degree and out-degree of

nodes in the node representation, we can more likely detect the anomalous nodes

with high accuracy because the anomalous nodes often have larger degrees. However,

8

Figure 2.2: Example of finance networks

it could be hard to find features that are important in different applications and can

also represent the entire structure of the graph. In addition, it is time consuming

to extract these features manually. Therefore, the graph embedding methods have

been proposed, which study the issue of automatically generating representation

vectors for the graphs. These methods formulate the graph representation learning

as a machine learning task and generate embedding vectors leveraging the structure

and properties of the graph as input data. Graph embedding techniques include

node, edge and subgraph embedding techniques, which are defined as follows.

Definition 5 (Node embedding). Let G = (V,E) be a graph, where V and E are

the set of nodes and the set of edges of the graph, respectively. Node embedding

learns a mapping function f : vi → Rd that encodes each graph’s node vi into a low

dimensional vector of dimension d such that d << |V | and the similarities between

nodes in the graph are preserved in the embedding space.

Figure 2.3 shows a sample graph and that an embedding method maps node a in

the graph to a vector of dimension 4.

Definition 6 (Edge embedding). Let G = (V,E) be a graph, where V and E are the

set of nodes and the set of edges of the graph, respectively. Edge embedding converts

each edge of G into a low dimensional vector of dimension d such that d << |V | and
the similarities between edges in the graph are preserved in the embedding space.

9

Figure 2.3: The graph on the left hand side consists of 6 nodes {a, b, c, d, e, i} and 8
edges. Graph embedding methods map each node of the graph into an embedding
vector with dimension d. For the demonstration purpose, the node a is embedded
into an embedding vector za of dimension 4 with given values.

While edge embeddings can be learned directly from graphs, most commonly they

are derived from node embeddings. For example, let (vi, vj) ∈ E be an edge between

two nodes vi and vj in a graph G and zi, zj be the embedding vectors for nodes vi, vj.

An embedding vector for the edge (vi, vj) can be obtained by applying a binary

operation such as hadamard product, mean, weighted-L1 and weighted-L2 on the

two node embedding vectors zi and zj [30].

Definition 7 (Subgraph embedding). Let G = (V,E) be a graph. Subgraph embed-

ding techniques in machine learning convert a subgraph of G into a low dimensional

vector of dimension d such that d << |V | and the similarities between subgraphs are

preserved in the embedding space.

A subgraph embedding vector is usually created by aggregating the embeddings of

the nodes in the subgraph using aggregators such as a mean operator.

As node embeddings are the building block for edge and subgraph embeddings,

almost all the graph embedding techniques developed so far are node embedding

techniques. Thus, the embedding techniques we describe in this survey are mostly

node embedding techniques unless otherwise stated.

2.1.2 Graph Embedding Applications

The generated embedding vectors can be utilized in different applications including

node classification, link prediction and graph classification. Here, we explain some

of these applications.

Node Classification. Node classification task assigns a label to the nodes in the

test dataset. This task has many applications in different domains. For instance, in

social networks, a person’s political affiliation can be predicted based on his friends

in the network. In node classification, each instance in the training dataset is the

10

node embedding vector and the label of the instance is the node label. Different

regular classification methods such as Logistic Regression and Random Forests can

be trained on the training dataset and generate the node classification scores for the

test data. Similarly, Graph classification can be performed using graph embedding

vectors.

Link Prediction. Link prediction is one of the important applications of node

embedding methods. It predicts the likelihood of an edge formation between two

nodes. Examples of this task include recommending friends in social networks and

finding biological connections in biological networks. Link prediction can be for-

mulated as a classification task that assigns a label for edges. Edge label 1 means

that an edge is likely to be created between two nodes and the label is 0 otherwise.

For the training step, a sample training set is generated using positive and negative

samples. Positive samples are the edges the exist in the graph. Negative samples

are the edges that do not exist and their representation vector can be generated

using the node vectors. Similar to node classification, any classification method can

be trained on the training set and predict the edge label for test edge instances.

Anomaly Detection. Anomaly detection is another application of node embedding

methods. The goal of anomaly detection is to detect the nodes, edges, or graphs

that are anomalous and the time that anomaly occurs. Anomalous nodes or graphs

deviate from normal behavior. For instance, in banks’ transaction networks, people

who suddenly send or receive large amounts of money or create lots of connections

with other people could be potential anomalous nodes. An anomaly detection task

can be formulated as a classification task such that each instance in the dataset is

the node representation and the instance label is 0 if the node is normal and 1 if

the node is anomalous. This formulation needs that we have a dataset with true

node labels. One of the issues in anomaly detection is the lack of datasets with true

labels. An alleviation to this issue in the literature is generating synthetic datasets

that model the behaviors of real world datasets. Another way to formulate the

anomaly detection problem, especially in dynamic graphs, is viewing the problem

as a change detection task. In order to detect the changes in the graph, one way

is to compute the distance between the graph representation vectors at consecutive

times. The time points that the value of this difference is far from the previous

normal values, a potential anomaly has occurred [3].

Graph Clustering. In addition to classification tasks, graph embeddings can be

used in clustering tasks as well. This task can be useful in domains such as so-

cial networks for detecting communities and biological networks to identify similar

groups of proteins. Groups of similar graphs/node/edges can be detected by apply-

11

Figure 2.4: Categories of Graph Representation Learning Methods.

ing clustering methods such as the Kmeans method [31] on the graph/node/edge

embedding vectors.

Visualization. One of the applications of node embedding methods is graph visu-

alization because node embedding methods map nodes in lower dimensions and the

nodes, edges, communities and different properties of graphs can be better seen in

the embedding space. Therefore, graph visualization is very helpful for the research

community to gain insight into graph data, especially very large graphs that are

hard to visualize.

2.2 Traditional Graph Embedding

The first category of graph embedding methods are traditional graph embedding

methods. These methods map the nodes into the lower dimensions using differ-

ent approaches such as random walks, factorization methods, and temporal point

processes. We review these methods in static and dynamic settings in this sec-

tion. Figure 2.4 shows the categories of static and dynamic traditional embedding

methods. The upper part of Table 2.1 lists all the methods that we survey in this

category.

2.2.1 Traditional Static Graph Embedding

The traditional static graph embedding methods are developed for static graphs.

The static graphs do not change over time and have a fixed set of nodes and edges.

Graph embedding methods preserve different properties of nodes and edges in graphs

12

Table 2.1: Graph embedding methods in both traditional and GNN-based categories.
Trad and GNN stand for Traditional and GNN-based graph embedding.

Type Graph Methods

Trad
Static Node2vec [30], Deepwalk [32], Graph Factorization [33], GraRep [34],

HOPE [35], STRAP [36], HARP [37], LINE [38], SDNE [39], DNGR
[40], VGAE [41], AWE [42], PRUNE [43], E[D] [44], ULGE [45], APP
[46], CDE [47], GNE [48], DNE [49], DANE [50], RandNE [51], SANE
[52], BANE [53], LANE [54], VERSE [55], ANECP [56], NOBE [57],
AANE [58], Reinforce2vec [59], REFINE [60], M-NMF [61], struct2vec
[62], SNEQ [63], PAWINE [64], FastRP [65], SNS [66], InfiniteWalk [67],
EFD [68], NetMF [69], Lemane [70], AROPE [71], NetSMF [72], SPLIT-
TER [73], Ddgk [74], GVNR [75], LouvainNE [76], HONE [77], CAN
[78], Methods in [79, 80, 81]

Dynamic CTDNE [5], DynNode2vec [6], LSTM-Node2vec [7], EvoNRL [82], Dyn-
GEM [3], Dyn-VGAE [83], DynGraph2vec [84], HTNE [85], Dynamic-
Triad [86], DyRep [87], MTNE [88], DNE [89], Toffee [90], HNIP [91],
tdGraphEmbed [92], DRLAN [93], TIMERS [94], M2DNE [95], DANE
[96], TVRC [97], tNodeEmbed [98], NetWalk [99], DynamicNet [100],
Method in [101]

GNN Static RecGNN [102], GGNN [103], IGNN [104], Spectral Network [105], GCN
[106], GraphSAGE [107], DGN [108], ElasticGNN [109], SGC [110], GAT
[111], MAGNA [112], MPNN [113], GN block [114], GNN-FiLM [115],
GRNF [116], EGNN [117], BGNN [118], MuchGNN [119], TinyGNN
[120], GIN [121], RP-GNN [122], k-GNN [123], PPGN [124], Ring-
GNN [125], F-GNN [126], DEGNN [127], GNNML [128], rGIN [129],
DropGNN [130], PEG [131], GraphSNN [132], NGNN [133], ID-GNN
[134], CLIP [135], APPNP [136], JKNET [137], GCN-PN [138], DropE-
dge [139], DGN-GNN [140], GRAND [141], GCNII [142], GDC [143],
PDE-GCN [144], SHADOW-SAGE [145], ClusterGCN [146], FastGCN
[147], LADIES [148], GraphSAINT [149], VR-GCN [150], GBP [151],
RevGNN [152], VQ-GNN [153], BNS [154], GLT [155], H2GCN [156],
GPR-GNN [157], WRGNN [158], DMP [159], CPGNN [160], U-GCN
[161], NLGNN [162], GPNN [163], HOG-GCN [164], Polar-GNN [165],
GBK-GNN [166], Geom-GCN [167], GSN [168], MPSN [169], Graph-
STONE [170], DeepLPR [171], GSKN [172], SUBGNN [173], DIFF-
POOL [174], PATCHY-SAN [175], SEAL [176], DGCNN [177], AGCN
[178], DGCN [179], CFANE [180], AdaGNN [181], MCN [182], Method
in [183]

Spatial-
temporal

GCRN [184], Graph WaveNet [185], SFTGNN [186], CoST-Net [187],
DSTN [188], LightNet [189], DSAN [190], H-STGCN [191], DMSTGCN
[192], PredRNN [193], Conv-TT-LSTM [194], ST-ResNet [195], STDN
[196], ASTGCN [197], DGCNN [198], DeepETA [199], SA-ConvLSTM
[200], STSGCN [201], FC-GAGA [202], ST-GDN [203], HST-LSTM
[204], STGCN [205], PCR [206], GSTNet [207], STAR [208], ST-GRU
[209], Tssrgcn [210], Test-GCN [211], ASTCN [212], STP-UDGAT [213],
STAG-GCN [214], ST-GRAT [215], ST-CGA [216], STC-GNN [217],
STEF-Net [218], FGST [219], PDSTN [220], STAN [221], GraphSleep-
Net [222], DCRNN [223], CausalGNN [224], SLCNN [225], MRes-RGNN
[226], Method in [227]

Dynamic DyGNN [228], EvolveGCN [229], TGAT [230], CAW-N [10], DySAT
[231], EHNA [232], TGN [233], MTSN [9], SDG [234], VGRNN [235],
MNCI [236], FeatureNorm [237]

13

such as node proximities. Here, we define first-order and second-order proximities.

Higher order of proximities can be similarly defined.

Definition 8 (First-order proximity). Nodes that are connected with an edge have

first-order proximity. Edge weights are the first-order proximity measures between

nodes. Higher weights for edges show more similarity between two nodes connected

by the edges.

Definition 9 (Second-order proximity). The second-order proximity between two

nodes is the similarity between their neighborhood structures. Nodes sharing more

neighbors are assumed to be more similar.

The traditional static graph embedding methods can be categorized into three cat-

egories: factorization based, random walk based and non-GNN based deep learning

methods [238, 239]. Below, we review these methods and the techniques they used.

Factorization based. Matrix factorization methods are the early works in graph

representation learning. These methods can be summarized in two steps [79]. In

the first step, a proximity-based matrix is constructed for the graph where each

element of the matrix denoted as Pij is a proximity measure between two nodes

i, j. Then, a dimension reduction technique is applied in the matrix to generate the

node embeddings in the second step. In the Graph Factorization algorithm [33],

the adjacency matrix is used as the proximity measure and the general form of the

optimization function is as follows:

min
zi,zj

∑
vi,vj∈V

|zTi zj − aij| (2.1)

where zi and zj are the node representation vectors for node vi and vj. aij is the ele-

ment in the adjacency matrix corresponding to nodes vi and vj. In GraRep [34] and

HOPE [35], the value of aij is replaced with other measures of similarity including

higher orders of adjacency matrix, Katz index [240], Rooted page rank [241] and the

number of common neighbors. STRAP [36] employs the personalized page rank as

the proximity measure and approximates the pairwise proximity measures between

nodes to lower the computation cost. In [79], a network embedding update algo-

rithm is introduced to approximately compute the higher order proximities between

node pairs. In [70], it is suggested that using the same proximity matrix for learning

node representations may limit the representation power of the matrix factorization

based methods. Therefore, it generates node representations in a framework that

14

learns the proximity measures and SVD decomposition parameters in an end-to-end

fashion. Methods in [69, 71, 45, 49, 51, 53, 57, 58, 60, 61, 70, 72, 73, 75, 77, 81, 79,

43, 56, 54, 47] are other examples of factorization based methods.

Random walk based. Random walk based methods have attracted a lot of atten-

tion because of their success in graph representation. The main concept that these

methods utilize is generating random walks for each node in the graph to capture

the structure of the graph and output similar node embedding vectors for nodes

that occur in the same random walks. Using co-occurrence in a random walk as

a measure of similarity of nodes is more flexible than fixed proximity measures in

earlier works and showed promising performance in different applications.

Definition 10 (Random walk). In a graph G = (V,E), a random walk is a sequence

of nodes v0, v1, ..., vk that starts from node v0. (vi, vi+1) ∈ E and k+1 is the length of

the walk. Next node in the sequence is selected based on a probabilistic distribution.

DeepWalk [32] and Node2vec [30] are based on the Word2vec embedding method

[242] in natural language processing (NLP). Word2vec is based on the observation

that words that co-occur in the same sentence many times have a similar meaning.

Node2vec and DeepWalk extend this assumption for graphs by considering that

nodes that co-occur in random walks are similar. Therefore, these methods generate

similar node embedding vectors for neighbor nodes. The algorithm of these two

methods consists of two parts. In the first part, a set of random walks are generated,

and in the second part, the random walks are used in the training of a SkipGram

model to generate the embedding vectors. The difference between DeepWalk and

Node2vec is in the way that they generate random walks. DeepWalk selects the

next node in the random walk uniformly from the neighbor nodes of the previous

node. Node2vec applies a more effective approach to generating random walks. In

this section, we first explain the Node2vec random walk generation and then the

SkipGram.

1. Random Walk Generation. Assume that we want to generate a random walk

v0, v1, ..., vk where vi ∈ V . Given that the edge (vi−1, vi) is already passed, the

next node vi+1 in the walk is selected based on the following probability:

P (vi+1|vi) =

αvivi+1

Z
if (vi+1, vi) ∈ E

0 otherwise
(2.2)

where Z is a normalization factor and αvivi+1
is defined as:

15

αvivi+1
=

1/p if dvi−1vi+1

= 0

1 if dvi−1vi+1
= 1

1/q if dvi−1vi+1
= 2

(2.3)

where dvi−1vi+1
is the length of the shortest path between nodes vi−1 and vi+1

and takes values from {0, 1, 2}. The parameters p and q guide the direction

of the random walk and can be set by the user. A large value for parameter p

encourages global exploration of the graph and avoids returning to the nodes

that are already visited. A large value for q on the other hand biases the

walk toward local exploration. With the use of these parameters, Node2vec

creates a random walk that is a combination of breadth-first search (BFS) and

depth-first search (DFS).

2. SkipGram. After generating random walks, the walks are input to a SkipGram

model to generate the node embeddings. SkipGram learns a language model,

which maximizes the probability of sequences of words that exist in the training

corpus. The objective function of SkipGram for node representation is:

max
Φ

∑
vi∈V

logP (N(vi)|Φ(vi)) (2.4)

where N(vi) is the set of neighbors of node vi generated from the random

walks. Assuming independency among the neighbor nodes, we have

P (N(vi)|Φ(vi)) =
∏

vk∈N(vi)

P (Φ(vk)|Φ(vi)) (2.5)

The conditional probability of P (Φ(vk)|Φ(vi)) is modeled using a softmax func-

tion:

P (Φ(vk)|Φ(vi)) =
exp(Φ(vk)Φ(vi))∑

vj∈V exp(Φ(vj)Φ(vi))
(2.6)

The softmax function nominator is the dot product of the node representation

vectors. Since the dot product between two vectors measures their similar-

ity, by maximizing the softmax function for neighbor nodes, the generated

node representations for neighbor nodes tend to be similar. Computing the

denominator of the conditional probability is time consuming between the tar-

get node and all the nodes in the graph. Therefore, DeepWalk and Node2vec

approximate it using hierarchical softmax and negative sampling, respectively.

16

In HARP [37] a graph coarsening algorithm is introduced that generates a hierarchy

of smaller graphs as G0, G1, ..., GL such that G0 = G. Starting from the GL which is

the smallest graph, the node embeddings that are generated for Gi are used as initial

values for nodes in Gi−1. This method avoids getting stuck in the local minimum

for DeepWalk and Node2vec because it initializes the node embeddings with better

values in the training process. The embedding at each step can be created using

DeepWalk [32] and Node2vec [30] methods. LINE [38] is not based on random walks

but because it is computationally related to DeepWalk and Node2vec, its results

are usually compared with them. LINE generates node embeddings that preserve

the first-order and second-order proximities in the graph using a loss function that

consists of two parts. In the first part L1, it minimizes the reverse of the dot

product between connected nodes. In the second part L2, for preserving the second-

order proximity, it assumes that nodes that have many connections in common are

similar. LINE trains two models that minimize L1 and L2 separately and then

the embedding of a node is the concatenation of its embeddings from two models.

Methods in [52, 59, 62, 42, 67, 68, 76, 80, 46, 66, 64] are some other variants of

random walk based methods.

Non-GNN based deep learning. SDNE [39] is based on an autoencoder which

tries to reconstruct the adjacency matrix of a graph and captures nodes’ first-order

and second-order proximities. To that end, SDNE jointly optimizes a loss function

that consists of two parts. The first part preserves the second-order proximity of

the nodes and minimizes the following loss function:

L1 =
∑
vi∈V

|(xi − x′i)⊙ bi| (2.7)

where xi is the row corresponding to node vi in the graph adjacency matrix and x′i

is the reconstruction of xi. bi is a vector consisting of bijs for j from 1 to n (the

number of nodes in the graph). If aij = 0, bij = 1; otherwise, bij = β > 1. aij is the

element corresponding to nodes vi and vj in the adjacency matrix. Using bi, SDNE

assigns more penalty for the error in the reconstruction of the non-zero elements in

the adjacency matrix to avoid reconstructing only zero elements in sparse graphs.

The second part capturs the first-order similarity and optimizes L2:

L2 =
∑

(vi,vj)∈E

aij|(zi − zj)| (2.8)

where zi and zj are the embedding vectors for nodes vi and vj, respectively. In this

way, a higher penalty is assigned if the difference between the embedding vectors

17

of two nodes connected by an edge is higher, resulting in similar embedding vectors

for nodes connecting with an edge. This loss is based on ideas from Laplacian

Eigenmaps [243]. SDNE jointly optimizes L1 and L2 to generate the node embedding

vectors. The embedding method DNGR [40] is also very similar to SDNE with the

difference that DNGR uses pointwise mutual information of two nodes co-occurring

in random walks instead of the adjacency matrix values. VGAE [41] is a variant of

variational autoencoders [244] on graph data. The variational graph encoder encodes

the observed graph data including the adjacency matrix and node attributes into

low-dimensional latent variables.

q(Z|A,X) =
N∏
i=1

q(zi|A,X),

with q(zi|A,X) = N(zi|µi, diag(σ2
i))

where zi is the embedding vector for node vi, µi is a mean vector and σi is the

log standard deviation vector of node vi. A and X are the adjacency matrix and

attribute matrix of the graph, respectively. The variational graph decoder decodes

the latent variables into the distribution of the observed graph data as follows:

p(A|Z) =
N∏
i=1

N∏
j=1

p(ai,j|zi, zj),

with p(ai,j = 1|zi, zj) = sigmoid(zTi , zj)

The model generates embedding vectors that minimize the distance between the p

and q probability distributions using the KL-divergence measure, SGD and reparametriza-

tion trick. Other works in [55, 50, 74, 78, 65, 44, 48, 63], also learn node embeddings

using non-GNN based deep learning models.

2.2.2 Traditional Dynamic Graph Embedding

Most real-world graphs are dynamic and evolve, with nodes and edges added and

deleted from them. Dynamic graphs are represented in two ways in the dynamic

graph embedding studies: discrete-time and continuous-time.

Definition 11 (Discrete-time dynamic graphs). In discrete-time dynamic graph

modeling, dynamic graphs are considered a sequence of graphs’ snapshots at consec-

utive time points. Formally, dynamic graphs are represented as G = G0, G1, ..., GT

which Gi is a snapshot of the graph G at timestamp i. The dynamic graph is divided

18

into graph snapshots using a time granularity such as hours, days, months and years

depending on the dataset and applications.

Definition 12 (Continuous-time dynamic graphs). In continuous-time dynamic

graph modeling, the time is continuous, and the dynamic graph can be represented

as a sequence of edges over time. The dynamic graph can also be modeled as a

sequence of events, where events are the changes in the dynamic graphs, such as

adding/deleting edges/nodes.

Definition 13 (Dynamic graph embedding). We can use either the discrete-time or

the continuous-time approach for representing a dynamic graph. Let Gt = (Vt, Et)

be the graph at time t with Vt, Et as the nodes and edges of the graph. Dynamic

graph embedding methods map nodes in the graph to a lower dimensional space d

such that d << |V |.

Dynamic graph embedding methods are more challenging than static graph embed-

ding methods because of the challenges in modeling the evolution of graphs. Dif-

ferent methods have been proposed for dynamic graph embedding recently. Here,

we provide an overview of the dynamic embedding methods and categorize these

methods into four categories: Aggregation based, Random walk based, Non-GNN

based deep learning and Temporal point process based [245, 246].

Aggregation based. Aggregation based dynamic graph embedding methods ag-

gregate the dynamic information of graphs to generate embeddings for dynamic

graphs. These methods can fall into two groups:

1) Aggregating the temporal features. In these methods, the evolution of the graph

is simply collapsed into a single graph and the static graph embedding methods

are applied on the single graph to generate the embeddings. For example, the

aggregation of the graph over time could be the sum of the adjacency matrices for

discrete-time dynamic graphs [247] or the weighted sum which gives more weights

to recent graphs [97]. One drawback of these methods is that they lose the time

information of graphs that reveals the dynamics of graphs over time. For instance,

there is no information about when any edge was created. Factorization-based models

can also fit into the aggregation based category. The reason is that factorization

based models save the sequence of graphs over time in a three dimensional tensor

∈ R|V |×|V |×T (T is a time dimension) and then apply factorization on this tensor to

generate the dynamic graph embeddings [248, 93, 94, 96].

19

2) Aggregating the static embeddings. These aggregation methods first apply static

embedding methods on each graph snapshot in the dynamic graph sequence. Then,

these embeddings are aggregated into a single embedding matrix for all the nodes

in the graph. These methods usually aggregate the node embeddngs by considering

a decay factor that assigns a lower weight to older graphs [100, 101]. In another

type of these methods, the sequence of graphs from time 0 to t − 1 are fit into a

time-series model like ARIMA that predicts the embedding of the next graph at

time t+ 1 [249].

Random walk based. Random walk based approaches extend the concept of ran-

dom walks in the static graphs for dynamic graphs. Random walks in dynamic

graphs capture the time dependencies between graphs over time in addition to the

topological structure of each of the graph snapshots. Depending on the definition of

random walks, different methods include the temporal information of the graphs dif-

ferently. CTDNE [5] defines a temporal walk to capture time dependencies between

nodes in dynamic graphs. CTDNE considers a continuous-time dynamic graph such

as graph G = (V,ET , T) which V,ET , T are nodes and edges of the graph and time

T : E → R+. Each edge e in this graph is represented by a tuple (u, v, t) which u, v

are the nodes connected by the edge and t is the time of occurrence of that edge.

Definition 14 (Temporal walk). A temporal walk is a sequence of nodes v0, v1, ..., vk

such that (vi, vi+1) ∈ ET and t(vi−1,vi) ≤ t(vi,vi+1).

An important concept in CTDNE is that time is respected in selecting the next

edge in a temporal walk. In order to generate these temporal walks, first a time

and a particular edge in that time, e = (u, v, te) is selected based on one of three

probability distributions: uniform, exponential and linear. The uniform probability

for an edge e is p(e) = 1/|ET |. The exponential probability is:

p(e) =
exp(te − tmin)∑

e′∈ET
exp(t′e − tmin)

(2.9)

where tmin is the minimum time of an edge in the graph. Using exponential proba-

bility distribution, edges that appear at a later time are more likely to be selected.

After selecting e = (u, v, te), the next node in the temporal walk is selected from

the neighbors of node v in time te + k where k > 0 again using one of the uniform,

exponential or linear probability distributions. The generated temporal walks are

then input to a SkipGram model and the temporal node representation vectors are

generated.

20

DynNode2vec [6] is a dynamic version of Node2vec [30] and uses a discrete-time

approach for dynamic graph representation learning. This method represents the

dynamic graph as a sequence of graph snapshots over time as G0, G1, ..., GT . The

embedding for the graph at time 0, G0 is computed by applying Node2vec on G0.

Then, for next time points, the SkipGram model of Gt+1 is initialized using node

representations from Gt for nodes that are common between consecutive time points.

New nodes will be initialized randomly. In addition, dynnode2vec does not generate

random walks at each time step i from scratch. Instead, it uses random walks from

the previous time i − 1 and only updates the ones that need to be updated. This

method has two advantages. First, it saves time because it does not generate all the

walks in each step. Second, since the SkipGram model at time t is initialized with

weights from time t − 1, embedding vectors of consecutive times are in the same

embedding space, embedding vectors of nodes change smoothly over time and the

model converges faster. LSTM-Node2vec [7] captures both the static structure and

evolving patterns in graphs using an LSTM autoencoder and a Node2vec model. The

dynamic graph is represented as a sequence of snapshots over time as G0, G1, ..., GT .

For each graph Gi at time ti, first, a set of temporal walks is generated for each node

in the graph. Each temporal random walk of a node v is represented as w0, w1, ..., wL

of length L which wj is a neighbor of the node v at time tj in graph Gj and tj < tj+1.

These temporal walks demonstrate changes in the neighborhood structure of the

node before time ti. EvoNRL [82] focuses on maintaining a set of valid random

walks for the graph at each time point so that the generated node embeddings

using these random walks stay accurate. To that end, EvoNRL updates the existing

random walks from previous time points instead of generating random walks from

scratch. Specifically, it considers four cases of edge addition, edge deletion, node

addition and node deletion for evolving graphs and updates the affected random

walks accordingly. For instance, in the edge addition case, EvoNRL finds random

walks containing the nodes which are connected by the updated link and updates

those walks. However, updating random walks is time consuming, especially for large

graphs. Therefore, EvoNRL proposed an indexing mechanism for fast retrieval of

random walks. Other examples of these category include [90, 89, 99, 92].

Non-GNN based deep learning. This type of dynamic graph embedding meth-

ods use deep learning models such as RNNs and autoencoders. DynGEM [3] is

based on the static deep learning based graph embedding method SDNE [39]. Let

the dynamic graph be a sequence of graph snapshots G0, G1, ..., Gt. The embeddings

for graph G0 are computed using a SDNE model. The embedding of Gi is obtained

by running a SDNE model on Gi that is initialized with the embeddings from Gi−1.

21

This initialization leads to generating node embeddings at consecutive time points

that are in the same embedding space and can reflect the changes in the graph at

consecutive times accurately. As the size of the graph can change over time, Dyn-

GEM uses Net2WiderNet and Net2DeeperNet to account for bigger graphs [250].

Dyn-VGAE [83] is a dynamic version of VGAE [41]. The input to dyn-VGAE is

the dynamic graph as a sequence of graph snapshots, G0, G1, ..., GT . At each time

point, the embedding of the graph snapshot Gi is obtained using VGAE. However,

the loss of the model at time t has two parts. The first part is related to VGAE

loss and the second loss is a KL divergence measure that minimizes the difference

between two distributions as follows:

Lt
s = KL[qt(Zt|Xt, At)||N(Zt−1, σ

2)] (2.10)

where qt(Zt|Xt, At) is the distribution of latent vectors at time t and N(Zt−1, σ
2) is

a normal distribution with mean Zt−1 and standard deviation σ. This loss places

the current latent vectors Zt near latent vectors of previous time point Zt−1. The

loss function of all the models for the graph at time 0 to T are jointly trained.

Therefore, the generated representation vectors preserve both the structure of the

graph at each time point and evolutionary patterns obtained from previous time

points. Dyngraph2vec [84] generates embeddings at time t using an autoencoder.

This method inputs adjacency matrices of previous times A0, A1, ..., At−1 to the en-

coder and using the decoder reconstructs the input and generates the embeddings

at time t. Dyngraph2vec proposes several variants using a fully connected model

or a RNN/LSTM model for the encoder and the decoder: dyngraph2vecAE, dyn-

graph2vecAERNN and dyngraph2vecRNN. Dyngraph2vecAE uses an autoencoder,

dyngraph2vecAERNN is based on an LSTM autoencoder and dyngraph2vecAERNN

has a LSTM enocoder and a fully connected decoder. Other examples of non-GNN

based deep learning methods include [91, 98].

Temporal point process based. This class of the dynamic graph embedding

methods assumes that the interaction between nodes for creating the graph structure

is a stochastic process and models it using temporal point processes. HTNE [85]

generates embeddings for dynamic graphs by modeling the neighborhood formation

of nodes as a hawkes process. In a hawkes process modeling, the occurrence of an

event at time t is influenced by events that occur before time t and a conditional

intensity function characterizes this concept. Let G = (V,E,A) be the temporal

network which V,E,A are the nodes, edges and events. Each edge (vi, vj) in this

22

graph is associated with a set of events aij = {a1 → a2 → ...} ⊂ A where each ai is

an event at time i.

Definition 15 (Neighborhood formation sequence). A neighborhood formation se-

quence for a node vi is a series of neighborhood arrival events {vi : (u0, t0) →
(u1, t1)...→ (uk, tk)} where ui is a neighbor of vi that occurs at time ti.

HTNE models the neighborhood formation for a node v using the neighborhood

formation sequence Hv. The probability that an edge forms between node v and a

target neighbor u at time t is represented using the following formula:

p(u|v,Hv) =
λu|v(t)∑
u′ λu′|v(t)

(2.11)

where λy|x(t) is defined:

λu|v(t) = exp(µu,v +
∑
h,u

αh,uκ(t− th)) (2.12)

λu|v(t) is the conditional intensity function of a hawkes process which is the arrival

rate of target neighbor u for node v at time t given the previous neighborhood

formation sequence. µu,v is a base rate of edge formation between u, v and it is

equal to |zu − zv|. h is a historical neighbor of the node v in the neighborhood

formation sequence in a time before t. αh,u is the degree that the historical neighbor

h is important for u and it equals |zh− zu|. κ(t− th) is a decay factor to control the

intensity of influence of a historical node on u. HTNE generates embedding vectors

that maximize the
∑

v∈V
∑

u∈Hv
p(u|v,Hv) for all the nodes using SGD and negative

sampling to deal with a large number of computations in the denominator of the

probability function. DyRep [87] captures the dynamic of graphs using two temporal

point process models. DyRep argues that in the evolution of a graph two types of

events occur: communication and association. Communication events are related

to node interactions and association events are the topological evolution and these

events occur at different rates. For instance, in a social network, a communication

event such as liking a post from someone happens much more frequently than an

association event like creating a new friendship. DyRep represents these two events

as two temporal point process models. MTNE [88] is based on two concepts of triad

motif evolution and the hawkes process. This method considers the evolution of

graphs as the evolution of motifs in the graphs and models that evolution using a

hawkes process. MTNE argues that a model such as HTNE based on neighborhood

formation processes considers network evolution at edge and node levels and can

23

not reflect network evolution very well. Therefore, MTNE models dynamics in a

graph as a subgraph (motif) evolution process. M2DNE [95] is another example of

temporal point process based dynamic embedding methods.

Other methods. DynamicTriad [86] generates dynamic graph embeddings by mod-

eling the triad closure process, which is a fundamental process in the evolution of

graphs.

Definition 16 (Triad closure process). Let (vi, vj, vk) be an open triad in the graph

at time t which means that there are two edges (vi, vj) and (vj, vk) in the graph but

no edge exists between vi and vk. It is likely that an edge forms between vi and vk

at time t+ 1 because of the influence of node vj and closes the open triad.

DynamicTriad computes the probability that an open triad (vi, vj, vk) evolves into

a closed triad under the influence of vj at time t as pttr(i, j, k). An open triad can

evolve in two ways: 1) It becomes closed because of the influence of any one of the

neighbors. 2) Stays open because no neighbor could influence the creation of the

open link. These two evolution traces are reflected in DynamicTriad loss function

by maximizing (pttr(i, j, k))αijk × (1− pttr(i, j, k))(1−αijk) for open triad samples that

close under the influence of a neighbor and 1 − pttr(i, j, k) for those samples that

do not close. αijk = 1 if an open triad closes at time t + 1. The loss function also

utilizes social homophily and temporal smoothness regularizations. Social homophily

smoothness assumes that nodes that are highly connected are more similar and

should have similar embeddings. Temporal smoothness assumes that network evolves

smoothly and therefore, the distance between embeddings of a node at consecutive

times should be small.

2.3 GNN based graph embedding

Graph Neural Net (GNN) based graph embedding methods are the second category

of graph embedding methods, which employ GNNs to generate embeddings. These

methods are different from traditional methods in that the GNN-based methods

generalize well to unseen nodes. In addition, they can better take advantage of

node/edge attributes. Table 2.2 shows the advantages and disadvantages of the

different categories of graph embedding methods. In this section, we first introduce

GNNs. Then, three categories of GNN-based methods including static, spatial-

temporal and dynamic GNNs (see Figure 2.4 for subcategories and Table 2.1 for

the list of methods in each category) and their real-world applications are surveyed.

24

Table 2.2: Comparison of traditional and GNN-based graph representation learning.

Category Advantages Disadvantages
Traditional Higher expressive power, scal-

able in some categories
Not generalizable to un-
seen nodes, not considering
node/edge attributes easily

GNN-based Generalize to unseen nodes,
consider node/edge attributes,
can do both task-specific and
node similarity based training

Expressive power, scal-
ability, over-smoothing,
over-squashing, homophily
assumption and catastrophic
forgetting. (More details in
Section 2.3.6)

Finally, we summarize the limitations of GNNs and the proposed solution to these

limitations.

2.3.1 Introduction to GNNs

A GNN is a deep learning model which generates a node embedding by aggregating

the node’s neighbors embeddings. The GNN’s intuition is that a node’s state is

influenced by its interactions with its neighbors in the graph. Below, we explain

GNN’s basic architecture and training.

Basic architecture. GNNs can generate node representation vectors by stacking

several GNN layers. Let hli represent the node embeddings for node i at layer l.

Each GNN layer takes as input the nodes embeddings. The node representations

for node i at each layer l + 1 are updated using the following formula:

h
(l+1)
i = f(hli,

∑
j∈N(i)

g(i, j)) (2.13)

where f and g are learnable functions and N(i) are the neighbors of node i. h0i are

the node i initial features. At each layer, the embedding of the node i is obtained

by aggregating the embeddings of the node’s neighbors. After passing through L

GNN layers, the final representation of node i is hLi , which is the aggregation the

node’s neighbors of L hops away from the node.

GNN training. GNNs can be trained in supervised, semi-supervised and un-

supervised frameworks. In supervised and semi-supervised frameworks, different

prediction tasks focusing on nodes, edges and graphs can be employed for training

the model. Here, we describe the other layers stacked after GNN layers to generate

the prediction results.

25

Figure 2.5: A general supervised framework for training Graph neural net layers.
Two GNN layers are applied on an input graph to compute the node representation
vectors for its nodes. The colors on arrows show neighbors of a target node that are
aggregated to generate the target node representation. xa is the feature vector of
node a and h1a and h2a are the representation vectors generated for the node a after
applying the first and second GNN layers. The generated embeddings are used in a
node classification task. y′a is the predicted label for the node a.

• Node-focused: For node-level prediction such as node classification, the GNN

layers output node representations and then using an MLP or a softmax layer

the prediction output is generated.

• Edge-focused: In edge-focused prediction including link prediction, given two

nodes’ representations, a similarity function or an MLP is used for the predic-

tion task.

• Graph-focused:In graph-focused tasks such as graph classification, a graph

representation is often generated by applying a readout layer on node repre-

sentations. The readout function can be a pooling operation that aggregates

representations of a graph’s nodes to generate the graph representation vector.

A clique pooling operation has also been proposed, which aggregates a graph’s

cliques for generating the graph embedding [251].

A typical way to train a GNN in a node classification task is by applying the cross

entropy loss function as follows:

L =
∑

i∈Vtrain

(yilog(σ(hTi θ)) + (1− yi)log(1− σ(hTi θ)) (2.14)

where hi is the embedding of node i, which is the output of the last layer of GNN

and yi is the true class label of the node and θ are the classification weights. Figure

2.5 shows a general framework for training a GNN using a node classification task.

There are three types of nodes in a node classification in GNN [252]:

26

• Training nodes: Nodes which their embeddings are computed in the last layer

of GNNs and are included in the loss function computation.

• Transductive test nodes: Nodes which their embeddings are computed in the

GNN but they are not included in the loss function computation.

• Inductive test nodes: They are not included in the GNN computation and loss

function.

Transductive node classification in GNNs is equivalent to semi-supervised node clas-

sification. It refers to testing on transductive test nodes that are observed during

training but their labels are not used. On the other hand, inductive node clas-

sification means that the testing is on inductive test nodes (unseen nodes) where

these test nodes and all their adjacent edges are removed during training. The loss

function for graph classification and link prediction tasks can be similarly defined

using graph representations and pair wise node representations. In an unsuper-

vised framework for GNN training, node similarities obtained from co-occurrence of

nodes in the graph random walks can be used for model training. Graph neural nets

often compute node representations using a graph-level implementation to avoid re-

dundant computations for neighbors which are shared among nodes. In addition,

formulating the message passing operations as matrix multiplications are computa-

tionally cheap. As an example for a basic GNN, the node embedding computation

formula can be reformulated as:

H(l+1) = σ(ÂH lW l) (2.15)

where H l contains the embedding of all the nodes in layer l and Wl is the weight

matrix at layer l. Â = D̃−1/2ÃD̃−1/2, where Ã = A + In, D̃ii =
∑

j Ãij, In is an

identity matrix and A,D are the graph’s adjacency and degree matrices. The graph-

level implementation avoids redundant computations, however, it needs to operate

on the whole graph which may lead to memory limitations. A number of methods

have been proposed to alleviate the memory complexities of GNNs which will be

discussed in Section 2.3.6.

Other important concepts in GNNs. In this section, we define some of the

concepts that are frequently used in the GNN based graph representation literature.

• Receptive Field. The receptive field of a node in GNNs are the nodes that

contribute to the final representation of the node. After passing through each

27

layer of the GNN the receptive field of a node grows one step towards its

distant neighbors.

• Graph Isomorphism. Two graphs are isomorphic if they have a simi-

lar topology. Some of the early works on GNN such as GCN [106] and

GraphSAGE[107] fail to distinguish non-isomorphic graphs in some cases.

• Weisfeiler & Lehman (WL) test. The WL test [253] is a classic algorithm

for testing graph isomorphism. It has been shown that the representation

power of the message passing GNNs is upper bounded by this test [121]. The

WL test successfully determines isomorphism between different graphs but

there are some corner cases that it fails. Similarly, GNNs fails in those cases.

The simple way of thinking about how this test works is that it first counts

the number of nodes in two graphs. If two graphs have a different number

of nodes, they are different. If two graphs have a similar number of nodes,

it checks the number of immediate neighbors of each node. If the number of

immediate neighbors of each node is the same, it goes to check the second-hop

neighbors of nodes. If two graphs were similar in all these cases, then they are

identical or isomorphic.

• Skip connections. A skip connection in deep architectures means skipping

some layers in the neural network and feeding one layer’s output as an input

to the next layers, not just the immediate next layer. An skip connection

helps in alleviating the vanishing gradient effect and preserving information

from previous layers. For instance, skip connections are used in GraphSAGE

[107] update step. This method concatenates the node representation at the

previous level with the aggregated representation from node neighbors from

the previous layer in the update step. This way, it preserves more node-level

information in the message passing.

2.3.2 Static Graph Neural Nets

Static GNN based graph embedding methods are suitable for graph representation

learning on static graphs, which do not change over time. These methods can be

divided into two classes: Recurrent GNNs and Convolutional GNNs that will be

explained below.

Recurrent Graph Neural Net (RecGNN). RecGNNs are the early works on

GNN that are based on RNNs. The original GNN model proposed by Scarselli et al.

28

[102] used the assumption that nodes in a graph constantly exchange information

until they reach an equilibrium. In this method, the representation of node v at

iteration t, htv is defined using the following recurrence equation:

htv =
∑

u∈N(v)

f(xv, x
e
(v,u), h

(t−1)
u , xu) (2.16)

where f is a recurrent function. N(v) is a set of neighborhood nodes of node v. xv, xu

are feature vectors of nodes v, u and xe(v,u) is the feature vector of the edge (u, v).

This GNN model recursively runs until convergence to a fixed point. Therefore, the

final representation hTv in this method is a vector that hTv = f(hT−1
v). In this model,

h0v is initialized randomly. The initialization of node representation vectors does not

matter in this model because the function f recursively converges to the fixed point

using any value as an initialization. For learning the model parameters, the states htv

are iteratively computed until the iteration T . An approximate fixed point solution

is obtained and used in a loss function to compute the gradients. This model has

several limitations. One limitation is that if T is large, the iterative computation

of node representation until convergence is time consuming. Furthermore, the node

representations obtained from this model are more suitable for graph representation

than node representation as the outputs are very smooth. GGNN [103] uses gated

recurrent unit (GRU) as the recurrent function in the original RecGNN method

proposed by Scarselli et al. [102]. The advantage of using GRU is that the number

of recurrence steps is fixed and the aggregation does not need to continue until

convergence. The htv formula is as follows:

htv = GRU(h(t−1)
v ,

∑
u∈N(v)

h(t−1)
u) (2.17)

The h0v are initialized with node features. Implicit Graph Neural Net (IGNN) [104]

is another recurrent GNN that generates node representations by iterating until

convergence with no limit on the number of neighbor hops. However, it guarantees

the existence of the solution for the equilibrium equations by defining the concept

of well-posedness for GNNs, which was previously defined for neural nets [254] and

enforces it at the training time.

Convolutional Graph Neural Net (ConvGNN). ConvGNNs are a well-known

category of graph neural nets. These methods generate node embeddings using the

concept of convolution in graphs. The difference between ConvGNNs and RecGNNs

29

is that ConvGNNs use CNN based layers to extract node embeddings instead of RNN

layers in RecGNNs. There are three key characteristics in CNNs that make them

attractive in graph representations. 1) Local connections: CNN can extract local

information from neighbors for each node in the graph, 2) shared weights: weight

sharing in node representation generates node embeddings that consider the infor-

mation of other nodes in the graph, 3) multiple layers: each layer of convolution can

explore a layer of proximities between nodes [255]. ConvGNNs have two categories

that can overlap: Spectral based and Spatial based methods. The spectral based

methods have roots in graph signal processing and define graph signal filters. The

spatial based methods are based on information propagation and message passing

concepts from RecGNNs and are more preferred than spectral methods because of

efficiency and flexibility. Here, we explain these two categories in more detail.

1) Spectral based. Spectral based graph neural nets utilize mathematical concepts

from graph signal processing. Spectral Network [105] is one of the early works

that defines convolution operation on graphs. Here, we define some of the main

concepts shared among spectral based GNNs.

Definition 17 (Graph signal). In graph signal processing, a graph signal x ∈ Rn is

an array of n real or complex values for n nodes in the graph.

Definition 18 (Eigenvectors and eigenvalues (spectrum)). Let L = D − A be the

graph Laplacian of graph G which D,A are the graph’s degree matrix and adjacency

matrix. The normalized graph Laplacian matrix is LN = In − D−1/2AD−1/2 which

can be factorized as LN = UΛUT . U is the matrix of eigenvectors and Λ is the

diagonal matrix of ordered eigenvalues. The set of eigenvalues of a matrix are also

called the spectrum of the matrix.

Definition 19 (Graph Fourier transform). The graph fourier transform is F =

UTx which maps the graph signal x to a space formed by the eigenvectors of LN .

Definition 20 (Spectral graph convolution). The spectral graph convolution of the

graph signal x with a filter g ∈ Rn is defined as:

x ∗ g = F−1(F (x)⊙ F (g)) = U(UTx⊙ UTg) (2.18)

⇒ x ∗ gθ = UgθU
Tx (2.19)

where gθ = diag(UTg) (2.20)

30

Different spectral based ConvGNNs use a different graph convolution filter gθ. For

instance, Spectral CNN [105] defines gθ as a set of learnable parameters. One of

the main limitations of this method is the eigenvalue decomposition computational

complexity. This limitation was resolved by applying several approximations and

simplification in future works. Graph Convolutional Network (GCN) [106] uses a

layerwise propagation rule based on multiplying the first-order approximation of

localized spectral convolution filter gθ with a graph signal x as follows:

x ∗ gθ = θ(In +D−1/2AD−1/2)x (2.21)

where D,A are the degree matrix and adjacency matrix of a graph G and In is

an identity matrix with 1 on the diagonal and 0 elsewhere. θ represents the filter

parameters. GCN also modifies the convolution operation into a layer defined as

H = X∗gΘ = f(ĀXΘ), where f is an activation function and Ā = In+D−1/2AD−1/2.

Using a renormalization trick Ā is replaced with Â = D̃−1/2ÃD̃−1/2, where Ã =

A+ In and D̃ii =
∑

j Ãij. Therefore, the formulation of hl+1
v for node v becomes:

hl+1
v = f(Θl(

∑
u∈{N(v)∪v}

Âv,uxu)) (2.22)

where Â is a constant and is approximately computed in a preprocessing step. N(v)

is the set of neighbors of a node v. Therefore, hl+1
v value can be roughly approximated

as:

hl+1
v ≈ f(Θl.Mean(hlv ∪ {hlu, ∀u ∈ N(v)})) (2.23)

In a neural net setting, f is an activation function such as ReLU and Θl is the matrix

of parameters at layer l. GCN can be viewed as a spatial-based GNN because it

updates the node embeddings by aggregating information from neighbors of nodes.

In [183], a spectral based model is proposed which jointly learns relations between

nodes and relations between attributes of nodes. The node embeddings in this model

are the output of a 2D spectral graph convolution defined as Z = GXF . In this

formula, X is a node feature matrix and G and F are an object graph convolutional

filter and an attribute graph convolutional filter. The object graph convolutional fil-

ter is defined by designing a filter on the adjacency matrix of the graph. For defining

the attribute graph convolutional filter, an attribute affinity graph is constructed on

the original graph by applying either positive point-wise mutual information or word

embedding based KNN on the attributes of the nodes. Directional Graph Networks

(DGN) [108] defines directions for information propagation in the graph using vector

31

fields to improve the message passing in a specific direction in the current GNNs. In

this method, the contribution of a neighbor node depends on its alignment with the

receiving node’s vector field. The vector fields denoted by B are defined using the k

lowest frequency eigenvectors of the Laplacian matrix of the graph as they preserve

the global structure of graphs [256]. The node representations are obtained by mul-

tiplication of the matrix B and the adjacency matrix of the input graph. In [257], it

has been shown that most common GNNs perform l2-based graph smoothing on the

graph signal in the message passing, which leads to global smoothness. Motivated

by the trend filtering idea [258], Elastic GNN [109] accounts for different smoothness

levels for different regions of the graph using l1-based graph smoothing. In [259], a

framelet graph convolution is proposed. This method is based on graph framelets

and their transforms [260]. Framelet convolution can lower the feature and structure

noises in graph representation. This method decomposes the graph into low-pass

and high-pass matrices and generates framelet coefficients. Then, the coefficients are

compressed by shrinkage activation, which improves the network denoising proper-

ties. Simple Graph Convolution (SGC) [110] is a graph convolution network which

simplifies the GCN model by removing the non-linear activation functions at con-

secutive layers. This study theoretically proves that this model corresponds to a

fixed low-pass filtering in spectral domain in which similar nodes have similar em-

beddings. Many other studies introduce different variants of spectral-based GNNs

[261, 262, 263, 264, 177, 178, 179, 164].

2) Spatial based. Spatial-based ConvGNNs define the graph convolution similar to

applying CNN on images. Images can be viewed as a graph such that the nodes

are the pixels and the edges are the proximity of pixels. When a convolution filter

applies to an image, the weighted average of the pixel values of the central node and

its neighbor nodes are computed. Similarly, the spatial-based graph convolutional

filters generate a node representation by aggregating the node representations of

neighbors of a node. One of the advantages of spatial-based ConvGNNs is that the

learned parameters of models are based on close neighbors of nodes and therefore,

can be applied on different graphs with some constraints. In contrast, spectral-

based models learn filters that depend on eigenvalues of a graph Laplacian and are

not directly applicable on graphs with different structures. GraphSAGE [107] is

one of the early spatial based ConGNNs. This method generates node embeddings

iteratively. The node embeddings are first initialized with node attributes. Then,

a node embedding at iteration k is computed by concatenating the aggregation of

32

the node’s neighbor and the node embedding at iteration k − 1. For example, for a

node v,

hkN(v) = Aggregatek(hk−1
u ,∀u ∈ N(v))

hkv = σ(W k.Concat(hk−1
v , hkN(v)))

where hk and W k are the node embedding and weight matrix at iteration k. N(v)

is the set of neighbors of v. GraphSAGE leverages mean, LSTM and pooling aggre-

gators as follows:

• Mean aggregator. The mean aggregation is similar to GCN [106] which takes

mean over neighbors of a node. The difference is that GCN includes the node

representation hk−1
v in the mean but GraphSAGE concatenates the node rep-

resentation with the mean aggregation of neighbor nodes. This way, Graph-

SAGE avoids node information loss.

• LSTM aggregator. An LSTM aggregator aggregates neighbor nodes represen-

tations using an LSTM structure. It is important to note that LSTM preserves

the order between nodes, however, there is no order among neighbor nodes.

Therefore, GraphSAGE inputs a random permutation of nodes to alleviate

this problem.

• Pooling aggregator. In this aggregation, each neighbor node is fed through a

fully-connected neural net and then an elementwise max operation is applied

on the transformed nodes as follows:

Aggregatepool = max ({σ(Wpoolhu + b),∀u ∈ N(v)}) (2.24)

The above equation uses the max operator for pooling however mean operator

can be used as well. The pooling aggregator is symmetric and learnable.

The pooling aggregation intuition is that it captures different aspects of the

neighborhood set of a node.

The aggregation continues until K iterations. The model is trained using a loss

function that generates similar node embeddings for nearby nodes in an unsupervised

setting. The unsupervised loss can be replaced with task specific objective functions.

Graph Attention Network (GAT) [111] utilizes the self-attention mechanism [265] to

generate node representations. Unlike GCN that assigns a fixed weight to neighbor

33

nodes, GAT learns a weight for a neighbor depending on the importance of the

neighbor node. The state of node v at layer k is formulated as follows:

hkv = σ(
∑

u∈N(v)

αk
vuW

khk−1
u) (2.25)

αvu =
exp(LeakyReLU(aT [Whu||Whv]))∑

k∈Nv
exp(LeakyReLU(aT [Whu||Whk]))

(2.26)

h0v = xv (2.27)

where αvu is the attention coefficient of node v to its neighbor u defined using a

softmax function. Nv is the neighbor set of node v. W is the weight matrix and a is

a weight vector. || is the concatenation symbol. In addition to self-attention, GAT’s

results benefit from using multi-head attention. Similar to GraphSAGE, GAT is

trained in an end-to-end fashion and outputs node representations. Multi-hop At-

tention Graph Neural Network (MAGNA) [112] generalizes the attention mechanism

in GAT [111] by increasing the receptive fields of nodes in every layer. Stacking

multiple layers of GAT has the same effect, however that causes the oversmooth-

ing problem. MAGNA first computes the 1-hop attention matrix for every node

and then uses the sum of powers of the attention matrix to account for multi-hop

neighbors in every layer. To lower the computation cost, an approximated value for

the multi-hop neighbor attention is computed. MAGNA model aggregates the node

features with attention values and passes the values through a feed forward neural

network to generate the node embeddings. Message Passing Neural Net (MPNN)

[113] proposes a general framework for ConvGNNs. In MPNN framework, each node

sends messages based on its states and updates its states based on messages received

from its immediate neighbors. The forward pass of MPNN has two parts: A message

passing and a readout phase. In the message passing phase, a message function is

utilized for information propagation and the node state is updated as follows:

htv = Ut(h
t−1
v ,

∑
u∈N(v)

Mt(h
t−1
v , ht−1

u , evu)) (2.28)

h0v = xv (2.29)

where Mt is the message function and Ut updates the node representation. Ut,Mt

are learnable functions. evu is the information of an edge (v, u). In the readout

phase, the readout layer generates the graph embeddings using the updated node

representations, hG = R(htv|v ∈ G). Different ConvGNN methods can be formu-

lated using this framework using different functions for Ut,Mt, R. GN block [114]

proposes another general framework for Graph neural nets that some of the GNN

34

methods could fit in its description. A GN block learns nodes, edges and the graph

representations denoted as hli, e
l
ij, u

l respectively. Each GN block contains three

update functions, ϕ and three aggregation functions, ρ:

el+1
ij = ϕe(elij, h

l
i, h

l
j, u

l) ml+1
i = ρe→v({el+1

ij ,∀j ∈ N(i)}) (2.30)

hl+1
i = ϕv(ml+1

i , hli, u
l) ml+1

V = ρv→u({hl+1
i , ∀i ∈ V }) (2.31)

u(l+1) = ϕu(ml+1
E ,ml+1

V , hli, u
l) ml+1

E = ρe→u({el+1
ij ,∀(i, j) ∈ E}) (2.32)

The GN assumption is that computation on a graph starts from an edge to a node

and then to the entire graph. This phenomenon is formulated with update and

aggregation functions: 1) ϕe updates the edge representations for each edge. 2)

ρe→v aggregates the updated edge representations for the edges connected to each

center node. 3) ϕv updates the node representations. 4) ρv→u aggregates node

representation updates for all nodes. 5) ρe→u aggregates edge representation updates

for all edges. 6) finally, the entire graph representation is updated by ϕu. GNN-FiLM

[115] generates node embedding using the feature-wise linear modulation (FiLM)

idea that was introduced in the visual question answering area [266]. Many common

GNNs such as GCN [106] and GraphSAGE [107] propagate information along edges

using information from the source node of the edges. In GNN-FiLM, the target

node representation transformation is computed and applied to incoming messages

to generate the feature-wise modulation of the incoming messages. Graph Random

Neural Features (GRNF) [116] generates graph embeddings by preserving the metric

structure of the graphs in the embedding space and therefore distinguishing between

any pair of non-isomorphic graphs. This method is based on a family of graph neural

feature maps. The graph neural feature maps are graph neural networks that can

separate graphs. The outputs of these GNNs, which are scalar features, are then

concatenated to generate the graph embedding. E(n) Equivariant Graph Neural

Network (EGNN) [117] is a rotation, translation and permutation equivariant GNN.

These properties are fundamental in representing structures that show rotation and

translation symmetric characteristics, such as molecular structures [267]. EGNN

takes as inputs a feature vector and an n-dimensional coordinates vector for each

graph node along with the edge information and outputs the node embeddings.

The main difference between this method and common GNNs is that the relative

squared distance between a node’s coordinates and neighbors has been considered in

the GNN message passing operation. Bilinear Graph Neural Network (BGNN) [118]

argues that the neighbors of a node can have interactions that may affect the node

representations. Therefore, it augments the aggregation of neighbors of a node by

pairwise interactions of neighbor nodes. Motivated by factorization machines [268]

35

, it models the neighbors’ interaction using a bilinear aggregator denoted by BA,

which computes the average of pairwise multiplication of neighbor nodes of a node.

Then, the convolution operator is defined as follows:

H(k) = (1− α).AGG(H(k−1), A) + α.BA(H(k−1), A) (2.33)

where H(k) is the node representation at k-th layer and α is a tradeoff parameter

between two components. In [269], it is theoretically shown that all attention-based

GNNs fail in distinguishing between certain structures due to ignoring the cardi-

nality information in aggregation. Therefore, this paper introduces two cardinality-

preserved attention (CPA) models named Additive and Scaled. The formulation of

the Additive model is as follows:

hli = f l(
∑

j∈N(i)

αl−1
ij hl−1

i + wl ⊙
∑

j∈N(i)

hl−1
i) (2.34)

which the first term is the original attention formula and the second term captures

the cardinality information. The Scaled model formula is:

hli = f l(ψl(|N(i)|)⊙
∑

j∈N(i)

αl−1
ij hl−1

i) (2.35)

where ψ(|N(i)|) is a function that maps the cardinality value to a non-zero vector.

Both these models improve the distinguishing power of the original attention model.

Multi-Channel graph neural network (MuchGNN) [119] generates graph representa-

tions using graph pooling operation. However, instead of shrinking the graph layer

by layer using graph pooling which may result in loss of information, it shrinks the

graph hierarchically. This method generates a series of graph channels at each layer

and applies graph pooling on them to generate the graph representation at each

layer. The final graph representation is the concatenation of graph representations

at each layer. Policy-GNN [270] captures information for each node using different

iterations of aggregations to capture the graph’s structural information better. To

that end, it uses meta-policy [271] trained by deep reinforcement learning to choose

the number of aggregations per node. TinyGNN [120] proposes a small GNN with

a short inference time. In order to capture the local structure of the graph, this

method generates node representations by aggregating peer-aware representations

of the node’s neighbors. Peer-aware representations consider the interactions be-

tween peer nodes, which are neighbor nodes with the same distance from the center

node. In addition, inspired by knowledge distillation [272], it proposes a neighbor

distillation strategy (NDS) in a teacher-student network. The teacher network is a

36

regular GNN and has access to the entire neighborhood and the student network is

a small GNN that imitates the teacher network. Other spatial based convolution

GNNs include [273, 274, 275, 276, 277, 278, 279, 167, 280, 281, 182, 180, 175, 174].

2.3.3 Spatial-Temporal Graph Neural Net (STGNN)

Spatial-temporal GNNs are a category of GNN that capture both the spatial and

temporal properties of a graph. They model the dynamics of graphs considering

the dependency between connected nodes. There are wide applications for STGNNs

such as traffic flow forecasting [227, 186, 225, 226, 197, 203], epidemic forecasting

[224] and sleep stage classification [222]. For instance, in traffic prediction, the future

traffic in a road is predicted considering the traffic congestion of its connected roads

in previous times. Most of the STGNN methods fall into CNN based and RNN based

categories which integrate the graph convolution in CNNs and RNNs, respectively.

RNN based. Graph Convolutional Recurrent Network (GCRN) [184] is an example

of RNN based STGNN. In this method, an LSTM network is combined with the

convolution operation. GCRN has two variants. In the first variant, a CNN layer is

stacked with an LSTM layer. The CNN layer extracts the features at time t and the

LSTM captures the temporal behavior of nodes over time. In the second variant,

GCRN replaces the matrix multiplication operation in the LSTM with the graph

convolution operation. In [227], the spatial and temporal correlations between nodes

are modeled using three components including a spatial graph neural network layer, a

GRU layer and a transformer layer. The input to the model is a sequence of graphs

over time. The spatial graph neural network layer captures the spatial relations

between nodes in each graph. Then, a GRU and transformer layers are applied

on the sequence of graphs which are output from previous layer and capture the

temporal relations between graphs over time. Other RNN-based spatial-temporal

GNNs include methods in [282, 226, 223, 224, 187, 189, 193, 194, 196, 199, 200, 204,

206, 208, 209, 212, 217, 218, 219, 220, 223].

CNN based. Graph WaveNet [185] is a CNN based spatio-temporal GNN. This

method takes as input a graph and feature matrices of nodes for m previous time

steps and the goal is to predict the next n feature matrices. For example, in a

traffic prediction application, a feature matrix is a N × d matrix that each row

contains traffic features of a node. Each node is a sensor or a road. N is the

number of nodes and d is the feature vector dimension. The framework of Graph

WaveNet consists of two building blocks: a graph convolution layer and a temporal

37

convolution layer. In the graph convolution layer, it combines a diffusion convolution

layer [223] with a self-adaptive adjacency matrix. The central part of the self-

adaptive adjacency matrix is multiplying source and target node embeddings that

are initialized randomly and are learned during the model training. The temporal

convolution layer adopts a gated version of a dilated causal convolution network

[283]. In Spatial-Temporal Fusion Graph Neural Networks (SFTGNN)[186], instead

of modeling the spatial and temporal correlations of nodes separately, a spatial-

temporal fusion graph is constructed using three N × N matrices to capture three

kinds of correlation for each node. 1) A spatial graph for spatial neighbors, 2)

A temporal graph for nodes with similar temporal sequences and 3) A temporal

connectivity graph for connection of a node at nearby time points. The spatial-

temporal fusion graph is then input to spatial-temporal fusion graph neural module

(STFGN module) that generates node representations. In [225, 197, 203, 222, 188,

190, 191, 192, 195, 197, 198, 201, 202, 203, 205, 207, 210, 211, 213, 214, 215, 216, 221],

many other CNN-based spatial-temporal GNNs are proposed.

2.3.4 Dynamic Graph Neural Net (DGNN)

Dynamic Graph Neural Nets (DGNN) are Graph neural nets that model a broad

range of dynamic behaviors of a graph, including adding or deleting nodes and edges

over time. EvolveGCN [229] is a dynamic GNN method. The idea behind it is to

use an RNN model to update weights of the GCN at each time point and capture

dynamics of the graph. At each time step t, a GCN layer is used to represent the

graph at time t. In order to integrate historical information of the nodes, the initial

weights for the GCN at time t are the hidden states/output of RNN based models

which take as input the weights of previous GCN models. Each RNN based model is

assigned to a separate layer of GCN models. The EvolveGCN model is trained end

to end for link prediction and edge/node classification tasks. DyGNN [228] proposes

a dynamic GNN method that consists of two components: Update and propagation

components. These two components work in parallel to update and propagate the

information of a new interaction in the graph. Let (vs, vg, t) represent a new directed

edge that emerges between a source node vs and a target node vt at time t. The

update component updates the two nodes vs, vt representations and the propagate

component propagates the interaction information to influenced nodes which are

defined as 1-hop neighbors of the two interacting nodes.

Dynamic Self-Attention Network (DySAT) [231] consists of two components, a struc-

tural block followed by a temporal block to capture the structural and temporal

properties of a graph. This method defines dynamic graphs as a series of graphs

38

over time. In order to capture the structure of the graph at each time point, the

structural block, which is a variant of GAT is applied to the graph at each time

point. Then, to capture dynamic patterns of nodes, DySAT applies a temporal

self attention layer in the temporal block. The inputs to the temporal block are

node representations overtime for every node v such that the node representation

xtv attends over the historical representation of the node (< t) to generate the fi-

nal embedding of each node. Embedding via Historical Neighborhoods Aggregation

(EHNA) [232] aggregates the historical neighbors of a node to capture the evolution

of the node in the graph. In order to capture the historical neighbors of a node,

EHNA first generates k temporal random walks for each node. The transition prob-

ability of each edge in a temporal random walk depends on the weight and time of

the edge. The generated random walks for each node x are first aggregated using an

LSTM model to generate the walk encoding. The sequence of k walk encodings are

aggregated to generate a representation for the node x. Temporal Graph Network

(TGN) [233] generates node embeddings for dynamic graphs that are modeled as a

stream of edges. This model consists of several modules.

• Memory : At each time t, TGN saves a vector si(t) for each node i in the

memory to represent the node history in a compressed format. The vector

si(t) is initialized as a zero vector and updated as more edges emerge.

• Message Function: Every time an edge occurs between two nodes, a message

is sent to the nodes participating in the edge.

• Message Aggregator : A node can be involved in multiple interactions. TGN

keeps the last message in the order of time and the mean of other messages

from other interactions for each node.

• Memory Updater : Every time an event occurs, the memory of the participating

nodes is updated using a learnable memory update function such as LSTM.

• Embedding : The embedding module generates the temporal embeddings for

each node at any time t using a learnable function h that updates the repre-

sentation of each node even if the node was not involved in any interaction

until that point.

In [284], a streaming GNN is modeled as G1, G2, ..., GT where Gt = Gt−1 + δGt and

δGt is the changes of a graph between times t − 1 and t. The loss of the network

at time t is formulated as Lnew + Lexisting. Lnew is the loss of parts of the graph

influenced by the new changes at time t. Lexisting preserves information from pre-

vious time points. In Lnew, the influenced nodes by new changes are replayed in

39

the GNN model. In Lexisting, the important nodes from the history are replayed.

In addition, the model parameters are approximated such that they do not deviate

drastically from the model parameters at the previous time. Temporal Graph At-

tention Network (TGAT) [230] is a dynamic version of GAT [111]. GAT does not

consider time ordering between neighbors of a node and is used for static settings.

However, TGAT assumes ordering between neighbors of a node based on the time

they arrive. The assumption is that a neighbor that occurs more recently is likely

to have more influence on a node. In order to add time to the attention mechanism,

a time vector is concatenated to the node feature vector. Time features that are

used in TGAT are obtained based on the concepts from Bochner’s Theorem and

expressed by mapping the time to Rd is as follows:

ϕd(t) =

√
1

d
[cos(w1t), sin(w1t), ..., cos(wd/2t), sin(wd/2t)] (2.36)

which parameters w1, ..., wd/2 are learnable parameter. Causal Anonymous Walks

Neural Net (CAW-N) [10] generates temporal link embeddings by capturing the mo-

tif evolution in dynamic networks using a variant of anonymous walks [42]. This

method predicts the probability of a link in the future and assumes that if motif

structures of two nodes u, v interact over time, the probability of a link occurrence

between u, v is higher. Therefore, this model defines set-based anonymization on

the temporal random walks to capture the interaction between the motifs of the

two nodes over time. Then, in order to obtain a representation of a link (u, v), all

the anonymized walks for nodes u and v are encoded and aggregated using mean

or attention mechanism and passed through an MLP to obtain the link probability.

In Motif-preserving Temporal Shift Network (MTSN) [9], the dynamic network is

considered as a series of graph snapshots over time and two components for gen-

erating node embeddings at each time point are introduced. The first component

is a Motif Preserving Encoder (MPE) and the second is a Temporal shIft based

on Motif preserving Encoder (TIME). MPE component preserves the high-order

similarity between nodes at each snapshot. First, it generates node embeddings by

running a simplified GCN on the adjacency matrix and a combined motif matrix

of the graph separately and adding their outputs. The combined motif matrix of a

graph is obtained by weighted averaging of motif matrices of the input graph that

are computed using the Parametrized Graphlet Decomposition (PGD) technique

[285]. TIME component considers the effect of time and is inspired by the Temporal

Shift Mechanism in computer vision [286]. It shifts the node embeddings at each

snapshot to capture the temporal evolution. In [234, 235, 236, 237], several other

dynamic/temporal GNNs are presented.

40

Table 2.3: Some of the real-world applications of graph neural nets deployed in
production

The applied Algorithm Application
Standard GNN with Meta-
Gradients [287]

Estimated time of travel (ETA) prediction in
Google Maps

HetMatch [288] Keyword matching for bid keyword recommen-
dation in sponsered search platform of Alibaba
Group

Category-aware GNN [289] Review helpfulness prediction in Taobao
GNN based tag ranking
(GraphTR) [290]

Video recommendation in WeChat Top Stories

DecGCN[291] Online recommendation system in JD.com
DHGAT[292] Search matching in shop search in Taobao
Dynamic Heterogeneous
GNN[293]

Real-time event prediction in DiDi platform

Spatio-temporal graph neu-
ral net (ConSTGAT)[294]

Travel time estimation in Baidu Maps

Heterogeneous Graph At-
tention Maching Network
(HGAMN)[295]

Retrieving point of interests in different languages
in Baidu Maps

PinSage[296] Recommendation system at Pinterest
Gemini[297] Online recommendation at DidiChuXing
M2GRL[298] Recommender system at Taobao

2.3.5 GNN-based method’s real-world applications

Table 2.3 presents some of the real-world applications of graph neural nets which

are deployed in production in several companies.

2.3.6 The limitation of GNNs and the proposed solutions

GNNs have several known limitations such as expressive power, oversmoothing and

scalability. In this section, we summarize the major articles that address these

issues.

Expressive power. The expressive power of a model refers to the model’s ability

to distinguish between different graphs. In other words, the model can map differ-

ent graphs to different embeddings and similar graphs to similar embeddings. The

expressive power of common GNNs such as GCN [106] and GraphSAGE [107] is

bounded by the WL test and they fail to distinguish certain non-isomorphic sub-

structures. A more powerful GNN-based embedding method called Graph Isomor-

phism Network (GIN) is proposed in [121]. GIN employs the sum operator instead of

41

the mean or max operators to aggregate the neighbors of a node using the following

formula:

h(k)v = MLP(k)((1 + ϵ(k))h(k−1)
v +

∑
u∈N(v)

h(k−1)
u) (2.37)

where ϵ can be a fixed or learnable parameter. GIN uses the sum aggregator as its

expressive power is higher than the mean or max operators. For instance, assume

we have two nodes v1 and v2. If v1 has two equal neighbors and v2 has three equal

neighbors. The mean aggregator generates the same embedding for two nodes. The

same applies to the max aggregator. However, the sum operator distinguishes dif-

ferent graph structures and generates different embeddings. It is also theoretically

proven that GIN’s expressive power is equal to the WL test. Identity-aware Graph

Neural Networks (ID-GNN) [134] proposes a coloring mechanism as a solution for

increasing the expressive power of GNNs. This model has two variants. The first

variant has two components: inductive identity coloring and heterogeneous message

passing. For computing the embedding for each node v, a k-hop ego networks of node

v is extracted and the center node of the ego network is colored. Then, for each node

in the ego network of node v, the embedding is computed using a different message

passing component for each node based on color. This paper proposes a fast variant

of ID-GNN that augments the node features instead of coloring nodes by injecting

identity information such as cycle counts for cycles that start and end in the node

v. Nested Graph Neural Net (NGNN) [133] suggests to encode a rooted subgraph

instead of rooted subtree in common GNNs to generate node representations. It ar-

gues that rooted subtrees have limited expressiveness to represent non-tree graphs.

In [127, 176], distance-based features are added to each node to increase the expres-

sive power of GNNs, where distance vectors for each node are computed with respect

to each center node. Table 2.4 summarizes the major studies related to increasing

the expressive power of GNNs.

Oversmoothing. A critical known issue with GNNs is their depth limitation [302,

303]. GNN methods aggregate information from one-hop neighbors of a node in

the first layer. The second layer reaches the two-hop neighbors of a node and

stacking additional layers goes forward in the neighbors of a node similarly. After

passing through multiple layers, the generated nodes vectors will be oversmoothed

because the local information for each node is lost. Graph Random Neural Network

(GRAND) [141] proposes a new framework to address the oversmoothing problem.

This method augments the feature matrix of the input graph using DropNode, which

randomly drops features of some of the nodes, similar to the DropEdge mechanism

[139]. This augmentation helps in making nodes less sensitive to their neighbor

42

Table 2.4: A summary of major solutions proposed to increase the expressive power
of GNNs

Authors Algorithm Brief summary of the solution
Xu et al. [121] GIN Aggregating neighbors using the sum op-

erator
Murphy et al [122] RP-GNN Adding a unique node label
Morris et al. [123] k-GNN Performing message passing between sub-

graph structures instead of the node level
Maron et al. [124] PPGN Considering higher-order message passing
Chen et al. [125] Ring-GNN Using a ring of matrices in addition and

multiplication
Azizian et al. [126] FGNN Augmenting the model with matrix mul-

tiplication
Li et al. [127] DEGNN Adding an extra node feature based on

distance encoding
Balcilar et al. [128] GNNML Designing the convolution in spectral do-

main and masking it with a large receptive
field

Barcelo et al. [299] - Adding local graph parameter to GNNs
Sato et al. [129] rGIN Adding random features to GIN [121]
Papp et al. [130] DropGNN Dropping some of the nodes randomly
Wang et al. [131] PEG Using separate channels to update the

node and positional features
Wijesinghe et al. [132] GraphSNN Injecting structural characteristics in the

message passing
Zhang et al. [133] NGNN Encoding a rooted subgraph for each node

instead of a rooted subtree
You et al. [134] ID-GNN Inductively injecting node identities ei-

ther using coloring mechanism or an aug-
mented node feature

Dasoulas et al. [135] CLIP Using colors to distinguish similar node
attributes

Huang et al. [300] PG-GNN Capturing correlation between neighbor-
ing nodes using a permutation-aware ag-
gregation

Wijesinghe et al. [301] GraphSNN Designing a local isomorphism hierarchy
for nodes neighborhood subgraphs

43

nodes. Then, it aggregates neighbors of a node up to K-hop away using mixed-order

propagation, which lowers the risk of oversmoothing. The mixed-order propagation

formula is X =
∑K

k=0
1

K+1
ÂkX̄, where X̄ is the augmented feature matrix. The

model is trained using consistency regularization [304] also to reduce the overfitting

issue in the semi-supervised setting in the case of scare labels. In [142], it has

been theoretically proved that adding two simple techniques to GCN at each layer

can overcome oversmoothing. First, constructing a connection to input features

to ensure at least a fraction of node features reach the final node representation.

Second, adding the identity matrix to the weight matrix to enforce at least the same

performance as a shallow GCN. The formulation of this deep GCN is as follows:

H(l+1) = σ(((1− αl)ÂH
(l) + αlH

(0))((1− βl)In + βlW
(l))) (2.38)

where αl and βl are the hyperparameters. H(0) are the initial node representa-

tions which are the node features. In is the identity matrix. Table 2.5 shows the

formulation of some of the major methods that are introduced for alleviating the

oversmoothing problem in GNNs.

Scalability. Another bottleneck of GNNs is scalability. In GNNs, the representa-

tions of a node’s neighbors are aggregated to generate the node embeddings. Specif-

ically, for a GNN with L layers, the neighbor aggregation computed by the matrix

multiplication AH l has the time complexity O(LmF), where m is the number of

neighbors and F is the hidden dimension of model. The number of neighbors can

be large in very large graphs, which lowers GNNs training speed and increases the

memory consumption. In [107, 150, 154], this problem is alleviated by sampling a

subset of node neighbors. In [147], neighbors of a node are sampled at each layer in-

dependently. Cluster-GCN [146] reduces the memory problem of GCN by sampling

a subgraph for each batch using clustering techniques and applying a graph convo-

lution filter on the nodes in the subgraph. Some methods such as SGC [110] remove

the non-linear activation function to reduce the training time. RevGNN [152] is

based on the reversible connections [308] and lowers the memory consumption of

GNNs with respect to the number of layers. In this model, the feature matrix is

divided into several groups, which are then input into the model to generate a group

of outputs. The advantage of this model is that only the output of the last input is

saved in memory for backpropagation. In [155], a unified GNN sparsification (UGS)

framework is proposed that jointly simplifies the graph and the model to lower the

GNN’s inference time. The loss function of UGS is:

LUGS = L({mg ⊙ A,X},mθ ⊙Θ) + γ1|mg|+ γ2|mθ| (2.39)

44

Table 2.5: A summary of major solutions proposed to alleviate oversmoothing of
GNNs. Z is the node prediction label, H is the node representation, Kl is the
convolution of the l-th layer, s is a projection vector, Go is the discrete gradient
operator on the graph, Âdrop is the symmetric normalized adjacency matrix with
certain number of edges dropped, INFLATION(.,e) = Normal(Power(Softmax(.),e)),
fl is the number of features at layer l, Sl is the clustering assignment matrix, C is
number of groups, µi, σi are the mean and standard deviation of group i. γi, βi, λ
are hyper parameters. TPSD is a total pairwise squared distance measure, Xdrop is
the perturbed feature matrix, p is an step size, Gv is an extracted subgraph for a
node v. Φl is a learnable parameter, L̃ is symmetric normalized Laplacian matrix.
psi is a learnable function, X is the feature matrix. T is time step.

Algorithm Formula

GCN [106] H(l+1) = σ(ÂH lW l)

APPNP[136] H = σ(ÂH lW l), Z l+1 = (1− α)ÂZ l + αH

JKNet-Concat
[137]

hv = concat(h1v, ..., h
L
v)W

GCN-PN [138] H(l+1) = TPSD(σ(ÂH lW l))

DropEdge [139] H(l+1) = σ(ÂdropH
lW l)

SGC [110] H = ÂLXW

DGN-GNN[140] H(l+1) = S(l+1)H(l+1) + λ
∑C

i=1 γi((H
(l+1)
i − µi)/σi) + βi

DAGNN[305] H = concat(mlp(X), Â1mlp(X), ..., Âkmlp(X))), Z =
softmax(σ(Hs)H)

GRAND [141] Z = mlp(1/(L+ 1)
∑L

i=0 Â
iXdrop)

GCNII [142] H(l+1) = σ(((1− αl)ÂH
(l) + αlH

(0))((1− βl)In + βlW
(l)))

GDC [143] H(l+1) = σ(
∑fl

i=1 Âdrop[:, i]H
l[:, i]W l[i, :])

PDE-GCN [144] h(l+1) = hl − pGTKT
l σ(KlGoh

l)

GRAND-PDE
[306]

H = ψ(X(0) +
∫ T

0
∂X(t)
∂t

dt)

SHADOW-
SAGE [145]

h
(l+1)
v = σ(W l.concat(hlv, aggregate(hlu,∀u ∈ Gv))

GCN+inflation
[307]

H(l+1) = INFLATION(l+1)(σ(ÂH lW l), e)

AdaGNN [181] H(l+1) = H(l) − L̃H(l)Φl

45

Table 2.6: Time and memory complexities of GCN and some of the proposed scalable
GNN models. L is the number of layers, F is the hidden dimension of the model, n
is the number of nodes, m is the number of neighbors, b is the batch size, d is the
average degree of the graph, sn is the number of sampled nodes per node,sl is the
number of sampled nodes per layer, δ is the ratio of blocked nodes, s̃n = sn×(1−δ),
mg is the number of remaining edges, mθ is the number of remaining connections in
the model, k is number of codewords .

Method Solution Time complexity Memory
complexity

GCN [106] - O(LmF + LnF 2) O(LnF)
GraphSAGE [107] Neighbor sam-

pling
O(nsLnF + nsL−1

n F 2) O(sLnbF)

SGC [110] Linear model O(nF 2) O(bF)
ClusterGCN [146] Graph Sampling O(LmF + LnF 2) O(LbF)
FastGCN [147] Layer sampling O(LnslF + LnF 2) O(LslbF)
LADIES [148] Layer sampling O(LnslF + LnF 2) O(LslbF)
GraphSAINT [149] Graph sampling O(LbdF + LnF 2) O(LbF)
VR-GCN [150] Graph sampling O(LmF + LnF 2 + sLnnF

2) O(LnF)
GBP [151] Linear model O(LnF 2) O(bF)
RevGNN [152] Reversible con-

nections
O(LmF + LnF 2) O(nF)

VQ-GNN [153] Vector quantiza-
tion

O(LbdF + LnF 2 + LnkF) O(LbF +
LkF)

BNS [154] Neighbor sam-
pling

O(s̃L−1
n .(snbF +(δ/(1− δ)+

1).bF 2))
O(s̃L−1

n snbF)

GLT [155] Graph Sampling
and model prun-
ing

O(LmgF + LmθnF
2) O(LnF)

where mg,mθ are masks for the unimportant connections in the graph and weights

in GNNs. L is the cross-entropy loss and γ1, γ2 are hyperparameters to control the

regularization of mg,mθ. After the training, these two masks prune the adjacency

matrix and model parameters. Several other papers that studied the scalability

of GNNs are [153, 151, 309, 310, 311, 312, 313, 314, 315]. Table 2.6 provides the

complexity of GCN and some of the proposed approaches for lowering its complexity.

Capturing long-range dependencies in graphs. GNNs struggle to capture

long-range dependencies between nodes in the graph. The reason is that broadening

the GNNs receptive field by increasing their depth encounters the oversmoothing

problem in node representations. To solve this problem, in [316] a transformer

module is combined with the standard GNN to capture the long-range relationships.

Efficient infinite-depth graph neural net (EIGNN) [317] has implicit infinite layers

46

which can capture very long dependencies. The output of EIGNN before the softmax

layer is a limit of an infinite sequence of convolutions:

f(X,F,B) = B(lim
H→∞

Z(H)) (2.40)

where Z(H) = γg(F)Z(H−1)S+X is the output of the H-th layer. F,B are learnable

weight parameters, S is the normalized adjacency matrix of the input graph and

γ ∈ (0, 1]. The g(F) function is defined as 1
|FTF |+ϵF

F TF which is constrained to be

less than one. As a result, the infinite sequence of convolutions is convergent. A

closed-form solution is derived for EIGNN instead of using iterative solvers. In [318],

the depth-wise and breadth-wise propagations are considered to capture long-range

dependencies in graphs. The breadth-wise propagation is between the representation

of a node with its neighbors’ representations from the previous layer, which is a form

of horizontal skip-connections. This model leverages a residual message function to

consider edge features and alleviate the breadth-wise gradient diminishing in the

model’s backpropagation.

Catastrophic Forgetting. Catastrophic forgetting means that the neural network

model may forget previously learned knowledge when trained on a new task. In

[319], a topology-aware weight preserving module (TWP) is proposed to alleviate

this issue in GNNs. This module measures the importance of the GNN’s parameters

after learning each task. Then, it enforces the model to remember the old parameters

when learning a new task by penalizing changes to the important parameters with

respect to the old tasks. In [320], an experience replay based model (ER-GNN)

selects some nodes from previous tasks and replays them when learning new tasks.

The replayed nodes are those whose features are the closest to the mean of features

in each class and have the maximum coverage and influence in model training.

Homophily assumption. GNNs are based on the homophily [321] assumption

which means that nodes that are connected are similar and have the same class

labels. However, this is not true in networks that nodes with opposite characteristics

connect to each other. In [156], three design principles from previous methods

are combined to make the new model suitable for both homophily and heterophily

settings.

1. Separating node embeddings and neighbor embeddings because mixing the

node and neighbor information results in similar embeddings among a neigh-

borhood.

47

2. Considering higher order Neighborhoods to capture more relevant information

from more neighbors.

3. Combining the intermediate representations to increase the range of neighbors

and information considered in node representations.

Similarly, it has been shown in [158] that the disassortativity of many real-world

graphs can lead to the low performance of GNN models on these graphs. Therefore,

this paper proposes to generate a computation graph from the original graph and

then run the GNN on the computation graph. The computation graph is a multi-

relational graph with different types of edges between two nodes based on different

levels of neighborhood similarities such as nodes degrees and neighboring nodes

degrees. In [160], a class compatibility matrix is added into GNNs to improve

the performance of GNNs in graphs that heterophily exist. This framework first

estimates a prior belief of every node’s class label based on the node features. Then,

using a compatibility matrix H, the prior beliefs of nodes are propagated in their

neighborhood. Each element Hij in the matrix H is the empirical probability that

nodes with class label i connects to nodes with class label j in the dataset. The

compatibility matrix which can be learned in this model enables it to go beyond

the homophily assumption. Table 2.7 summarizes some of the major papers that

studied the homophily assumption in GNNs.

Neglecting substructures. It has been shown in [171] that the expressive power

of message passing GNNs in detecting subgraphs of three or more nodes is limited.

Therefore, a Local relation pooling (LPR) model is proposed based on egonets. An

egonet centered at a node is a subgraph consisting of nodes within a certain distance

from the node in the graph. The LPR’s idea is that a pattern in a graph can be

found in the egonet of some node. Therefore, it generates a node representation

by aggregating transformed egonets centered at the node. Graph Structural Kernel

Network (GSKN) [172] accounts for graph substructures such as cliques or motifs

by leveraging anonymous walk-based graph kernels (AWGK). Graph kernels are

similarity measures for pairwise graph comparison. This method defines an anony-

mous walk kernel and a random walk kernel to capture structural information in

the graph. These kernels are defined based on the definition of l-walk kernels, which

compute the similarity between two graphs by comparing all length l walks between

every node in two graphs. Then, the GSKN formulation is derived using the ker-

nel mapping of these two kernels. In message passing simplicial networks (MPSN)

[169], the message passing is performed on simplicial complexes [323] which are a

form of subgraphs consisting of several simplices. For instance, 0-simplex is a node,

48

Table 2.7: A summary of major solutions proposed to make GNNs suitable for both
hemophily and heterophily

Author Algorithm Brief summary of the solution
Zhu et al. [156] H2GCN Combining three designs principles: 1) sep-

aration of ego and neighbor sampling, 2)
higher order neighbors, 3) combining inter-
mediate representations.

Chien et al. [157] GPR-GNN Propagating node hidden features using gen-
eralized pagerank methods

Suresh et al. [158] WRGNN Generating a computation graph based on
nodes’ structural equivalences

Yang et al. [159] DMP Setting an attribute propagation weight for
each edge

Zhu et al. [160] CPGNN Adding a compatibility matrix
Jin et al. [161] U-GCN Extracting three types of node embeddings

from 1-hop, 2-hop and k-nearest neighbors
Liu et al. [162] NLGNN Employing an attention-guided sorting of

neighbor nodes
Yang et al.[163] GPNN Leveraging a pointer network to rank neigh-

bor nodes
Wang et al. [164] HOG-GCN Incorporating a learnable homophily degree

matrix into a GCN
Fang et al. [165] Polar-GNN Using dissimilarities between nodes in the ag-

gregation by introducing attitude polariza-
tion

Du et al. [166] GBK-GNN Utilizing two kernels to capture the ho-
mophily and heterophily and selecting the
appropriate one for each node pair

Li et al. [322] GloGNN Finding global homophily for nodes showing
heterophily by learning a coefficient matrix

49

Table 2.8: The formulas for the major solutions proposed to help GNNs capture
substructures. i is a neighborhood , r is a relationship, τ(zv, zu) is a function that
defines a relationship from node v to node u in a latent space, xVv are the combined
structural features of node v, eu,v are the edge (u, v) features, hp is the embedding of
a simplex p, mB(p),mC(p),m↓(p),m↑(p) are the aggregation of messages from the
boundary, co-boundary, lower and upper adjacent simplices of the simplex p, Rv is
a row in a node-topic matrix representing the probabilities of a node v in a graph
belonging to the graph’s structural topics, Sk−BFS

nv,t
is the set of permutation of subset

of nodes in egonet of node v of depth t compatible with k-truncated breadth first
search, απ is a learnable normalization factor for π, f can be an MLP layer, B

[ego]
v,t

is the tensor representation of the egonet of node v, ϕ is an anonymous walk,R(ϕ)
is the concatenation of the attributes of ϕ, Z = [R(ϕi)]i, Φl is the set of anonymous
walks of length l, hx,c is the representation of a subgraph c, γ is a learnable similarity
measure, Ax is a subgraph at channel x, ax is the representation of Ax.

Algorithm Formula

Geom-GCN
[167]

hl+1
v = σ(Wl.aggregatei,r((e

v,l+1
(i,r) , (i, r)))), e

v,l+1
(i,r) =

aggregate({hlu|u ∈ Ni(v), τ(zv, zu) = r})

GSN-v [168] hl+1
v = σ(hlv,m

l+1
v),ml+1

v = aggregate({hlv, hlu, xVv , xVu , eu,v})

MPSN [169] hl+1
p = aggregate(hlp,m

l
B(p),ml

C(p),ml
↓(p),m

l
↑(p))

GraphSTONE
[170]

hl+1
v = aggregate({ RT

v Ru∑
u RT

v Ru
hlu, u ∈ N(v)})

DeepLPR [171] H l+1
v = 1

|Sk−BFS
nv,t

|

∑
π∈Sk−BFS

nv,t
αl
π ⊙ f l(π ∗B[ego]

v,t (H l))

GSKN [172] hv =
∑

ϕ∈Φl(G,v) σ(ZTZ)−1/2σ(ZTR(ϕ))

SUBGNN [173] hl+1
x,c = σ(W.[glx,c;h

l
x,c]), g

l
x,c = aggregate({γ(c, Ax).ax,∀Ax})

1-simplex is an edge and 2-simplex is a triangle. The representation of each sim-

plex is computed by aggregating four types of messages received from its adjacent

simplices which are present in the graph, including boundary, co-boundary, lower

and upper adjacencies. For example, an edge’s boundary simplices are its vertices

and the co-boundary simplices of a node are its connected edges. Finally, the global

embedding for a simplicial complex is computed using a readout function on the

representation of its simplices. In [167, 168, 170, 173, 324], several other GNNs with

the focus on the subgraphs are presented. Table 2.8 demonstrates the formulas for

some of these methods.

Over-squashing. One of the bottlenecks of GNNs is over-squashing when capturing

long-range dependencies. The over-squashing is different from the oversmoothing

because the oversmoothing occurs when the graph learning task only needs short-

range dependencies and stacking more layers in GNN makes the node embeddings

50

indistinguishable. However, when long-range dependencies are required and more

layers are added to GNNs, the information from distant neighbors is compressed in a

fixed-length vector, resulting in over-squashing and low performance of GNNs [325].

A simple solution for this problem is presented in [325] where a fully-adjacent layer is

added as the last layer to a GNN model. In this layer, every two nodes are connected

which helps consider nodes beyond the nodes’ local neighbors in their representation.

In [326], it is proved that negatively curved edges are the cause of over-squashing.

A negative curvature occurs when an edge becomes a bridge between two sides of

the graph where removing the edge disconnects them. Therefore, a curvature based

graph rewiring model is proposed to solve the over-squashing issue. This rewiring

approach works by adding extra edges to support the most negatively curved edges

and removing the most positively curved edges. Furthermore, the graph edit distance

between the original graph and the modified one is bounded to ensure a local graph

modification.

Design space for GNNs. Designing effective architectures for GNNs in different

tasks and datasets requires manual labor and domain knowledge. Therefore, several

methods were proposed to automatically design suitable architecture for the given

datasets and downstream tasks. Graph neural architecture search method (Graph-

NAS) [327] allows the automated architecture design using reinforcement learning.

In GraphNAS, an RNN generates a GNN architecture that will be trained and vali-

dated on the training and validation sets. The validation result is the reward of the

RNN. The RNN samples the design of each layer from a search space of different

operators such as neighbor sampling, message computation, message aggregation

and readout operators. For example, a sample GNN layer is:

[first-order, gat, sum, 4, 8, relu] (2.41)

where each element in the list corresponds to neighbor sampling, message compu-

tation, message aggregation operators, number of heads, number of hidden layers

and the activation function. In [328], a general design space, task space and eval-

uation method for GNNs are proposed to identify the best GNN architecture for

the given task quickly. The design space consists of intra-layer design, inter-layer

design and learning configuration. The intra-layer design in each layer of GNN con-

sists of batch normalization, dropout, activation function and aggregation function.

The inter-layer design between GNN layers has four dimensions: layer connectivity,

pre-process layers, message passing layers and post-processing layers. The training

configuration concerns the batch size, learning rate, optimizer and training epochs.

51

Then, a task similarity metric is introduced that can identify similar tasks. Finally,

it develops a controlled random search evaluation to quickly find the best GNN de-

sign for the given task among many model-task combinations. In [329, 330], other

methods related to the architecture design of GNNs are introduced.

2.4 Interpretability of node embeddings

Little work has been done towards the interpretation of node embeddings. Dalmia

et al. [331] evaluate each node embedding method based on the accuracy by which it

can preserve different properties of graphs. To do that, first, a set of network elemen-

tary property prediction tasks are defined and used to compare the performances

of the node representation methods on each of these tasks. Then, node embeddings

are applied in downstream tasks. Finally, the paper correlates the performance of

the model on downstream tasks with the node properties that the model can best

encode.

Another study in [332] provides an interpretability score for each embedding di-

mension across node groups and for each node group across embedding dimension

adapted from the work by Senel et al. [12] on word embeddings. Then, it evalu-

ates the effects of changing hyperparameters of node embeddings methods (number

of embedding dimensions) on the performance of the embedding method in down-

stream tasks. However, the results were only provided on one embedding method

(i.e. Node2vec) and the paper does not provide a comprehensive framework for

scoring and comparing interpretability of various node embedding methods.

Several works have studied the interpretability of word embeddings including algo-

rithms based on the word intrusion test [24, 25, 13]. Luo et al. [13] first selected

top words for each dimension according to the descending order of its values. Then,

a word is randomly selected from the lower values of the dimension which has high

values in other dimensions. Then, the embedding dimension interpretability is eval-

uated based on how well human can identify the intruder word (i.e., the word with

the low value) in that dimension given the list of selected words. This is an effective

but expensive method due to human involvement. In [333], the matrix rotation

algorithm was applied to word embedding vectors to improve the interpretability.

Then, interpretability of a dimension is computed according to the distance between

the intruder and the non-intruder words.

For interpreting the sentence representations, Adi et al. [334] proposed using the ac-

curacy of a prediction task to measure how well the sentence representation encodes

52

the structural properties of a sentence. A classifier is trained using representation

vectors to predict a specific sentence aspect (e.g. the length of a sentence). In

another work [12], an interpretable embedding space was introduced according to

distribution statistics of category words in word embedding vectors. Then, the in-

terpretability score was computed based on the number of common words between

top words and words belong to a category. For each dimension i of word embed-

dings, the maximum of interpretability scores for all categories is considered as the

interpretability score of the dimension i. The overall interpretability score is defined

as the average of interpretability scores for all dimensions.

53

Chapter 3

Dynnode2vec: Scalable Dynamic

Network Embedding

3.1 Introduction

In the last few decades, graph embedding methods have achieved remarkable suc-

cess in the analysis of large networks. The basic aim is to represent nodes of a

large, high-dimensional graph in low-dimensional vectors that preserve the neigh-

bourhood information of the graph. Several static graph embedding algorithms

[34, 38, 30, 32, 40, 335, 238, 41] have been developed for a variety of machine learn-

ing tasks such as visualization [336], node classification [337], link prediction [247],

and recommendation [338]. Random walk and edge sampling graph embedding ap-

proaches [38, 30, 32] have a remarkable performance in large networks which contain

more than thousand nodes and edges.

Large real-world networks evolve naturally over time, i.e., nodes and edges appear

or disappear, or edges change. For example, in co-authorship networks new edges

may emerge (new collaborations may be formed) or new nodes can be added (new

authors) and in social networks, users may delete friends (delete edges) or some users

may leave the network (delete nodes). The static graph embedding methods are not

capable of dealing with the critical challenge involved in dynamic networks. The

disadvantage of using static embedding methods at each timestamp independently

are as follows. First, embedding vectors for each timestamp are in different spaces.

Second, learning embedding vectors separately is a time-consuming process.

In this work, we propose dynnode2vec, a scalable dynamic network embedding for

large evolving networks. In order to handle dynamic networks, dynnode2vec modi-

fies the well-known static embedding method, node2vec by employing the previous

54

learned embedding vectors as initials weights for the skip-gram model. This is mo-

tivated by dynamic language models, especially dynamic Skip-gram models [14, 15].

In addition, we utilizes evolving random walks for updating the trained skip-gram

from previous timestamp. The evloving random walks are only generated for nodes

that have changed in consecutive times. As random walk generation is the time con-

suming part of graph embeddings, we are able to significantly reduce the running

time. Our main contributions in this study are:

• We develop a dynamic embedding method dynnode2vec that captures evolving

patterns in large dynamic networks

• dynnode2vec is a fast and accurate method for dynamic graph embedding

• We evaluate the performance of our method in variety of tasks including

link prediction, node classification and anomaly detection on large real-world

graphs

3.2 Dynnode2vec: Scalable dynamic network em-

bedding

We represent a dynamic network G as a sequence of graphs G1, G2, . . . , GT from

timestamps 1 to T . Each graph at time t is represented by Gt = (Vt, Et) where Vt

and Et are the vertices and edges of the graph respectively. Our goal is to modify

the static node2vec embedding method for learning representation of a dynamic net-

work. We begin with a brief description of the static node2vec embedding method.

Then, we explain the steps of dynnode2vec which are summarized in Algorithm 4.

node2vec is an extension of deepwalk algorithm [32] and has two main subcompo-

nents; node2vec random walk and Skip-gram model. node2vec random walk is a

flexible random walk method which samples neighbourhoods of a source node by

Breadth-first Search (BFS) and Depth-first Search (DFS). node2vec first generates

a corpus by sampling a number of random walks γ of length t starting at each vertex.

Then, the Skip-gram uses these random walks to learn the representation vector for

each node.

3.2.1 Description of dynnode2vec steps

The main challenge of modification of the static node2vec is how to learn embedding

at time t by updating embedding vectors in time step t− 1. For a dynamic network

55

G = G1, G2, . . . , GT , we run the static node2vec for the first graph G1 separately,

extract the embedding vectors and keep the structure of trained Skip-gram for the

next timestamp. For all other subsequent timestamps 2, . . . , T , the following steps

are performed between two consecutive timestamps t and t+ 1.

Evolving Walk generation. In the static node2vec, random walks are generated

independently for each timestamp for all nodes which is very time-consuming pro-

cess. In dynnode2vec, we generate an effective set of random walks for only evolving

nodes instead of generating random walks for all nodes in the current timestamp.

Therefore, new random walks from changed regions in the graph Gt can efficiently

update the embedding vectors according to temporal evolution of networks over

time. Assume the structure evolution of the graph Gt from Gt−1 includes sets of

new edges/nodes that are added (Eadd/Vadd), deleted (Edel/Vdel) and their weights

have changed (Echange). The evolving nodes in the timestamp t are defined as fol-

lows:

∆Vt = Vadd ∪ {vi ∈ Vt|∃ei = (vi, vj) ∈ (Eadd ∪ Edel)} (3.1)

Generating evolving random walks is fast and time-efficient since dynamic networks

are evolved gradually and neighbourhoods of most nodes are kept unchanged. How-

ever, in the worst case, evolving nodes include all nodes as all nodes have changed

in the timestamp t.

Dynamic Skip-gram model. In natural language processing domain, several

dynamic word embedding [339, 340, 14, 15] have been proposed to track word evo-

lution such as new words are created (internet), and some words ‘die out’ through-

out time. In [15], for learning the representation vectors in the timestamp t they

train the Skip-gram by initializing word vectors obtained from previous timestamp

t − 1. In this dynamic Skip-gram model, the vocabulary set is updated and the

Skip-gram is retrained by new documents in timestamp t. In network embedding

domains, DynGEM [341] incrementally learns embedding vectors for the timestamp

t by using embedding vectors from the timestamp t− 1 as initial weights for SDNE

atuoencoder in a dynamic network.

dynnode2vec also takes advantage of dynamic Skip-gram model for obtaining em-

bedding vectors at time t and uses the pre-trained Skip-gram model (Skip-gramt−1)

as initial weight for (Skip-gramt). In order to do that, first the vocabulary set of

Skip-gramt is updated according to new evolving walks. Then, Skip-gramt is trained

by new evolving walks generated on the evolving nodes.

56

Algorithm 1 :Algorithm: Dynnode2vec

1: Input: Graphs G = G1, G2, . . . , GT

2: Output: Embedding vectors Z1, Z2, . . . , ZT

3: Run static node2vec for the Graph G1

4: for t = 2 to N do
5: Find a set of evolving nodes,∆Vt,
6: Sample new random walks (Walkn) for ∆Vt
7: Train Skip-Gram Skipt with Walkn and obtain Zt

8: end for

3.3 Experiments

3.3.1 Datasets

The performance of dynnode2vec is evaluated on following datasets.

• Hep-th [342]: This dataset is the coauthorship network of researchers in High

energy physics theory conference. Hep-th has 34k nodes, 421k edges divided

into 60 graphs.

• Autonomous Systems (AS) [342]: AS is built from logs of the BGP (Border

Gateway Protocol) which shows the communication between users. Number

of nodes, edges and time steps are 6k, 13k and 100 respectively.

• Enron [343]: Enron is the email communication network between Enron com-

pany employees. It has 87k nodes and 1.1M edges over 175 months.

• StackOverflow (St-Ov) [344]: This dataset is derived from question and an-

swers in Math Overflow website. Each edge shows users interactions. This

dataset contains 14k nodes and 195k edges over 2350 days. We divided the

datastream into 58 graphs.

• dblp [345]: This is the coauthorship network dataset among researchers of

different fields. It consists of 90k nodes and 749k edges over 18 years. Each

node in dblp has one of the two class labels, database and data mining (VLDB,

SIGMOD, PODS, ICDE, EDBT, SIGKDD, ICDM, DASFAA, SSDBM, CIKM,

PAKDD, PKDD, SDM and DEXA) and computer vision and pattern recog-

nition (CVPR, ICCV, ICIP, ICPR, ECCV, ICME and ACM-MM).

• Darpa [346]: Darpa is a dataset consisting of communications between source

IPs and destination IPs. This dataset contains different attacks between IPs.

We used a subset of darpa consisting of 12k nodes and 22k edges over 100

hours.

57

3.3.2 Baselines

We compared the performance of our method against the following existing methods:

• DeepWalk[32]: This is the first node embedding method based on random

walks. DeepWalk uses Skip-gram model and uniform random walks to learn

the neighborhood structure of the graph.

• node2vec[30]: This method learns node representation in networks by preserv-

ing network neighborhood of nodes. It explores the neighborhood of a node

by generating DFS and BFS random walks for that node.

• DynGEM [341]: This approach is a stable dynamic node embedding method

that works for growing dynamic graphs. It incrementally builds the embedding

vectors at each time using the embedding vectors from previous time. In

dynamic networks with a large number of nodes like Enron and DBLP, the

memory requirement of Dyngem signicantly increases. Therefore, we are only

able to run it on three datasets; AS, Hep-th, and St-Ov.

3.3.3 Link Prediction

Link prediction is an important application of graph embeddings. In this task, fu-

ture edges are predicted given the previous edges. We consider the link prediction

as a classification task similar to [30]. For example, if we have a sequence of graphs

G0, G1, ..., Gt, we predict edges at time t using edges from time 0 to t− 1. For in-

stance, edges of G1 are predicted using the positive and negative edges of G0. For

G2, we use edges from G0 and G1. We do the same for all the graphs at future time

points.

Edge embedding. The embedding of an edge (u, v) can be computed using embed-

ding vectors of nodes u and v. In the literature, different operators are applied

on node embedding vectors to compute edge embeddings including Weighted-L1,

Weighted-L2, Hadamard and average as defined in [30].

We report the link prediction results for all the four aforementioned operators in

Table 6.1. The results are the average AUC (Area Under Curve) with a grid search

over p, q ∈ {0.5, 1, 2, 4}. We evaluated all methods on four datasets: AS, Hep-th,

Enron and St-Ov. The results show that dynnode2vec outperforms baselines in al-

most all datasets. Among different operators, dynnode2vec has the best performance

with Hadamard operator and the worst performance with average operator.

58

Table 3.1: Link prediction results using four operators a) Weighted-L1 b) Weighted-
L2 c) Hadamard d) Average

Op Algorithm Dataset
AS Hep-th Enron St-Ov

A DeepWalk 0.957 0.9887 0.8489 0.5595
node2vec 0.9554 0.9893 0.8533 0.5617
DynGEM 0.7855 0.6246 - 0.6242
dynnode2vec 0.9625 0.996 0.8922 0.66

B DeepWalk 0.9577 0.9882 0.805 0.5561
node2vec 0.9561 0.9894 0.8649 0.5608
DynGEM 0.7701 0.6161 - 0.6246
dynnode2vec 0.9635 0.9977 0.8981 0.6698

C DeepWalk 0.888 0.9749 0.8167 0.7456
node2vec 0.8935 0.9762 0.8236 0.7478
DynGEM 0.8005 0.5882 - 0.6387
dynnode2vec 0.9512 0.9975 0.9012 0.8886

D DeepWalk 0.6197 0.5571 0.5271 0.5182
node2vec 0.6258 0.5577 0.5083 0.5149
DynGEM 0.7949 0.555 - 0.6175
dynnode2vec 0.7718 0.6269 0.6147 0.6824

node2vec settings (p,q) (0.5,1) (0.5,1) (0.5,1) (1,2)

3.3.4 Node Classification

Another application of node embeddings is in node classification. In supervised

classification, nodes have class labels in the dataset. We used logistic regression as

the classification method. Similar to link prediction, node embeddings of previous

time points are used in predicting class labels of future time points. We compared

the results of our method with baselines on dblp dataset. The Micro-F1 and Macro-

F1 results are reported in Table 4.2. Our result are better than other baselines in

terms of Micro-F1 scores.

3.3.5 Anomaly Detection

Anomalies are any deviations from normal behavior. There are different categories

of anomaly detection methods in dynamic settings including detecting anomalous

nodes, edges and change detection. Inspired by DynGEM, we used dynnode2vec to

detect changes in the dynamic network. We computed the norm of the differences

between embedding vectors of common nodes at consecutive time points. High

values for the norm signals a significant change in the structure of the graph. We

applied dynnode2vec and node2vec on a subset of Darpa dataset[346]. Figure 4.4

59

Table 3.2: Node classification results

Metric Algorithm Dataset
dblp

Micro-F1
DeepWalk 0.5337
node2vec 0.5272
dynnode2vec 0.5415

Macro-F1
DeepWalk 0.4141
node2vec 0.3847
dynnode2vec 0.4056

node2vec settings (p,q) (1,2)

Figure 3.1: Anomaly detection results

shows that there are three major peaks in the dynamic node2vec curve. These spikes

correspond to time points that three important attacks occurred in the dataset.

3.3.6 Effects of evolving walk generation

In this work, we only generate walks for the nodes in the graph that have changed

compared to previous time point. This leads to a significant speedup in dynnod2vec

running time. In order to show the time efficiency of dynnod2vec, we compared the

running time of dynnod2vec with two methods: node2vec and dynnod2vec version

denoted by dynnod2vec-all that samples walks for all the nodes. The comparison

results on three datasets: AS (the first fifty time steps), Hep-th and Enron (the first

forty time steps) are shown in Table 4.3. dynnod2vec was faster than other methods.

All experiments are performed on a windows X-64 with 7 cores, 64 GB RAM and a

clock speed of 3.6 GHz.

Additionally in terms of accuracy, we compared the AUC scores of dynnod2vec with

60

Table 3.3: Running time comparison

AS Hep-th
node2vec 23.22 min 14.42 min
dynnode2vec-all 23.10 min 13.52 min
dynnode2vec 4.49 min 1.25 min

Table 3.4: Comparison of dynnode2vec vs dynnode2vec-all

OP Algorithm Dataset
AS Hep-th Enron St-Ov

a dynnode2vec-all 0.9799 0.9973 0.9114 0.6674
dynnode2vec 0.9625 0.996 0.8922 0.66

b dynnode2vec-all 0.9803 0.9976 0.9042 0.6734
dynnode2vec 0.9635 0.9977 0.8981 0.6698

c dynnode2vec-all 0.9099 0.9966 0.9022 0.8825
dynnode2vec 0.9512 0.9975 0.9012 0.8886

d dynnode2vec-all 0.6488 0.5982 0.6364 0.6798
dynnode2vec 0.7718 0.6269 0.6147 0.6824

node2vec setting (p,q) (0.5,1) (0.5,1) (0.5,1) (1,2)

dynnod2vec-all. Table 6.6 indicates the AUC scores in link prediction task. In most

cases the AUC for these two methods are not significantly different.

3.4 Summary

In this work, we propose dynnode2vec, a scalable dynamic network embedding that

learns representation vectors for dynamic networks. dynnode2vec employs the dy-

namic Skip-gram model and evolving random walks to discover information changes

in temporal networks. In the dynamic Skip-gram model, the previous learned embed-

ding vectors are transferred to the next timestamp as initial weights. This results in

smooth embedding vectors for graphs over times. Furthermore, the evolving random

walks are generated to efficiently reflect the changes in dynamic graph structure. By

only considering subset of random walks, dynnode2vec can obtain embedding vectors

in notably less time without sacrificing accuracy. Our experiments demonstrate the

superiority of dynnode2vec as compared with the state-of-the-art embedding meth-

ods in various tasks. Future work will investigate using other dynamic Skip-gram

models [339, 14] for dynamic graph embedding.

61

Chapter 4

Dynamic Graph Embedding via

LSTM History Tracking

4.1 Introduction

Graphs are powerful tools to represent many of the real world data such as social

networks, protein-protein networks, traffic data and scientific collaborations. For

instance, in social networks, nodes of the graph are people and connections between

them are the edges of the graph. Graphs can be either static or dynamic. In static

graphs, the structure of graph is fixed but in dynamic graphs nodes and edges get

added and deleted over time.

Many graph mining algorithms deal with static graphs. With the growing number

of dynamic networks in the real world, there is a tremendous need for developing

efficient algorithms that work properly in dynamic settings. Furthermore, the size

of a network increases rapidly over time and makes it challenging to have a proper

representation of the entire data. This creates the need for effective algorithms

that map networks into a low dimensional space so that they can be utilized in

downstream machine learning applications.

A widely used tool to represent graphs are adjacency matrices. The problem with

adjacency matrices is that they are memory intensive for very large graphs. Var-

ious algorithms were developed to lower the dimensions of these matrices while

preserving the necessary information. These algorithms include matrix factoriza-

tion methods [33, 347, 34, 348] and linear or non-linear dimensionality reduction

techniques such as Principal Component Analysis (PCA) [349]. In general, these

methods are computationally expensive for large graphs and fail to perform well in

many graph mining tasks.

62

A recent alternative approach to learning node embeddings is deep learning tech-

niques designed for static graphs. The state-of-the-art static methods are DeepWalk

[32], LINE[38], node2vec [30] and Variational graph autoencoder [41]. DeepWalk[32]

and Node2vec [30] take advantage of random walk for each node to preserve the

neighborhood structure of the graph. Compared to other embedding methods that

use adjacency matrices as input, random walk based methods capture more than

immediate neighborhood of nodes. As a result, they can produce more accurate

representative vectors for nodes. Furthermore, training the neural networks with

random walks are significantly faster than adjacency matrices based methods.

However, it is still a challenging problem to apply deep node embedding methods

for dynamic graphs. Dynamic graphs can change with different rates over time and

we need mechanisms to reflect temporal changes in the node embeddings. There

have been some recent efforts in this direction that resulted in several algorithms

[341, 5, 6, 350, 41, 6]. DynGEM [341] initializes its model with embeddings from

previous time points to stabilize the overall embeddings in consecutive time points.

The difficulty with this method is that it works with adjacency matrices which

makes it an memory intensive method. Dynnode2vec [6] initializes the node2vec

model at the current timestamp with the previous timestamp’s embeddings and

trains the model using random walks, which capture the neighborhood structure

in the graph better than adjacency matrices. However, this method only generates

random walks for changed nodes between snapshots which may partially reflect the

changes in the graph structure in some cases. The method in [5] generates dynamic

embeddings for each node by defining temporal walks for the nodes and utilizes

them in training a skipgram model [242], which does not consider the order of the

elements in the temporal walks. However, it is essential to avoid losing the order

of time dependencies among sequence elements. On the other hand, LSTM proved

effective in word and sentence representations in natural language processing. It

is specifically useful in preserving long term dependencies between elements in a

sequence [16, 17, 18].

In this work, we propose LSTM-Node2vec for computing node embeddings in dy-

namic graphs. Our key contribution is using an autoencoder LSTM for keeping the

history of nodes and training it with a special kind of temporal random walks that

capture the evolving patterns in the structure of the graphs. In our method, the

embeddings obtained from history are used as initial weights for a node2vec model.

Afterwards, node2vec considers the local information from the current graph and

produces an embedding that is the combination of both temporal and static infor-

mation for the nodes of the graph. In addition, for aligning the node embeddings

63

over time, the weights of the model at previous time points is passed along to the

model for the next graphs.

In our experiments, we evaluate the performance of LSTM-Node2vec in 11 anomaly

detection, link prediction and node classification on datasets from various domains.

Our approach outperforms existing methods in majority of the cases. Overall, our

contributions can be summarized as follows:

• We propose LSTM-node2vec, a novel dynamic embedding method that cap-

tures temporal changes with LSTM and then the learned parameters are trans-

ferred into node2vec to incorporate the local structure of each graph.

• We train an autoencoder LSTM model with temporal walks to capture the

history of nodes over time which is the first study to consider temporal walks

as the input to an LSTM model.

• We evaluate our method on three main data mining tasks including anomaly

detection, link prediction and node classification.

The chapter is organized as follows. We first present the technical details of our

method and show the experiments results. Then, in the conclusion section we sum-

marize the findings in this work.

4.2 Problem Statement

A graph stream is represented by G1, G2, ..., Gt where Gi = (Vi, Ei) is the graph at

time i and Vi and Ei are the nodes and edges of the graph. Given a graph stream,

our goal is to compute the dynamic representation vectors for the nodes of graphs

at each time point. The embedding of a node v into a d-dimensional vector can be

formulated as a mapping function f : v → Rd.

In order to generate an embedding vector for each node in a graph, we propose

LSTM-Node2vec that combines both dynamic and static states of a node to generate

a more accurate representation of the node.

4.3 Dynamic Network Embedding Method

4.3.1 Overview of LSTM-Node2vec

LSTM-Node2vec generates the node embeddings for graph Gi in the graph stream

using three main steps: (1) generating temporal random walks over nodes from a

64

sequence of graphs before Gi, (2) training an autoencoder LSTM with the temporal

neighbor walks to learn node embedding for Gi, and (3) passing the embeddings

as initial weights to a node2vec model. Algorithm 4 presents the steps of LSTM-

Node2vec. Below, we will describe the three steps in detail.

Algorithm 2 :LSTM-Node2vec

1: Input: Graphs Gt−(L−1), Gt−(L−2), ..., Gt, where L is the temporal window size
and t is the current time point.

2: Output: Zt: embedding vectors for all the nodes in Gt

3: for i = 1 to |VGt| do
4: Generate k temporal random walks of maximum length L for node vi of Gt,

and add them to set R
5: end for
6: Initialize the input layer weights of an LSTM encoder with Zt−1

7: Train the LSTM autoencoder with node sequences in set R
8: Initialize node2vec with the input layer weights Wi of the trained LSTM encoder

9: Train a skipgram model with random walks on Gt

10: Return the weights in the input layer of the skipgram model as Zt

4.3.2 Temporal neighbor walk generation.

Inspired by [5] and [85], we define a temporal random walk as follows. Given a

series of graphs G1, G2, ..., Gt a temporal neighbor walk for each node v in graph

Gi is defined as a sequence of neighbors of a node v at L previous time points

represented by ui−L, ui−L+1, ..., ui where ux is the neighbor of node v at time x.

We sample a neighbor for node v at each of L previous time points based on the alias

sampling method used in node2vec [30] for random walk generation. We utilized

the same approach (described in Section E below) to sample a neighbor node for

node v in each time point. The temporal walk is the concatenation of neighbors

of node v in the increasing order of time. By defining the temporal random walk

this way, we track the changes of neighbors of a node at each time point and as a

result the random walk reflects the changes in the structure of the graph over time.

For instance, in the coauthorship temporal network, the temporal walk shows the

changes in the collaboration of a particular author over time. Figure 6.2 illustrate

the temporal walk generation in a temporal network for window size L = 3.

The window size that we consider for generating temporal walk is L. The length

of the temporal walk is allowed to have a value between [2, L]. 2 is the minimum

required length to define a valid sequence and L is the maximum window size. As

mentioned in [5], it is possible that a node does not occur in several time points in

65

Figure 4.1: LSTM training for word representation. sj is the jth word in a sentence
which is represented by a one-hot encoding vector. Wi is the weights of input layer
in LSTM.

Figure 4.2: The process of temporal walk generation. a, b, c are three time points
of a temporal network. Given L = 3 the temporal walks for node 1 is generated by
sampling from its neighborhood nodes.

the L previous time points. As a result, depending of how frequent a node is in the

window, the length of its temporal walk ranges between 2 and L. In addition, we

generate k temporal walks per node in each graph. Therefore, the total number of

generated temporal walks is a multiple of the total number of nodes in the graph.

4.3.3 LSTM Autoencoder

An LSTM is a recurrent neural network (RNN) used for capturing long term order

dependencies between elements in sequences. LSTMs are widely used in many areas

of machine learning, specially natural language processing (NLP), for problems such

as text translation and question answering [351, 352, 353, 354, 355, 356, 357]. A

66

common usage of LSTM in NLP is to generate word representations [16, 17, 18].

Given a set of sentences, an LSTM autoencoder is trained to take a sentence as

input and outputs the same sentence. Given a sentence S = {s1, s2, ..., sn} of length

n where si is the ith word in the sentence, an LSTM autoencoder takes the words

one by one using the one-hot word representation and is trained to produce the same

word in the output layer. After the training, the weights in the input layers are the

word representation for si is obtained from learned weights Wi in LSTM. Figure 4.1

depicts the LSTM training for word representations.

Inspired by the LSTM effectiveness in NLP, we use LSTM to learn node repre-

sentations in graphs. Here, a temporal walk over nodes at different time points

is considered as a sentence. The order in the temporal walk reflects the way that

the neighborhood of a node evolves over time. By training an LSTM over a set of

temporal random walks, LSTM can capture the temporal dependencies between the

neighbors of nodes in the graph evolution. Let R denote a set of all temporal walks

obtained for nodes of graph Gt, R = {r1, r2, ..., rm}. ri = u1, u2, ..., uL is a temporal

walk generated for each node in the graph. m = N × k is the total number of walks

when there is N nodes and k temporal walks are generated for each node. We used

each ri in R for training LSTM autoencoder such that ri is the input and output of

the model. The formula of LSTM in the encoder part of the model is as follows:

it = σ(Wi[ht−1, ut] + bi)

ft = σ(Wf [ht−1, ut] + bf)

ot = σ(Wo[ht−1, ut] + bo)

C̃t = tanh(Wc[ht−1, ut] + bc)

Ct = ft × Ct−1 + it × C̃t

ht = ot × tanh(Ct)

In these equations, ft, it, ot are forget gate, input gate and output gate. ht−1 is the

output of LSTM at previous time point. Ct is the cell state vector which is updated

in two parts. First forget gate ft decides which part of cell state in previous time

Ct−1 will be discarded and then the new values will be stored in cell state. The

output of LSTM in the current time point ht will be a filtered version of cell state.

bx,Wx are biases and weights for respective gates. ut is each node in the temporal

walk and Wi are the node representations.

We run LSTM-Node2vec for every graph in the stream to get the node embeddings

of the graph. It is crucial that the generated embeddings for consecutive graphs be

in the same vector space. In order to do that, the LSTM autoenceder for the first

67

graph G0 is randomly initialized. Then, we initialize the LSTM autoencoder of Gi

with the weights of the previous graph Gi−1 model.

4.3.4 Node2vec

Node2vec [30] is the state-of-the-art node representation method for static graphs.

The node2vec algorithm is built on the concepts that were first introduced in Deep-

Walk algorithm. Both of these methods are categorized as random walk based low

dimensional node representation algorithms. Node2vec algorithm consists of two

parts: random walk generation and skipgram [242]. The main idea of node2vec is to

generate second order random walks for all nodes in the graph such that it effectively

explore neighborhood of the node by interpolating between DFS and BFS search

strategies. In order to create that effect, node2vec defines a biased random walk for

each node using two parameters p and q that control the random walk exploration

procedure. Specifically, p is a return parameter which can change the probability

that the walk returns to an already visited node. q is the inward and outward explo-

ration parameter. Large values of q guide the walk toward exploration of nodes that

are close to the target which is similar to how BFS works and small values of q en-

courage outward exploration similar to DFS. Formally the unnormalized transition

probability between node v and node u is defined as follows:

αpq(v, u) =

1/p, if dvu = 0

1, if dvu = 1

1/q, if dvu = 2

(4.1)

where dvu is the shortest path distance between nodes v and u.

In the next step of node2vec, the random walks generated in previous step are used

to train a skipgram architecture. Skipgram model learns the continuous represen-

tations of each node. The objective function of node2vec is a maximum likelihood

optimization problem that maximizes the probability of preserving neighborhood of

a node in a d-dimensional space. Here is the objective function formula:

max
∑
u∈V

logPr(Ns(u)|f(u)) (4.2)

where u is the target node in the graph G = (V,E). Ns(u) and f(u) are the sample

neighborhood of node u generated using random walks and the embedding vector

of u, respectively. In the context of Natural Language Processing, neighborhood of

a word in a sentence is defined as a window of words close to the target word in the

68

Figure 4.3: Framework for LSTM-Node2vec for creating embedding of Gt using both
temporal and static sequences

sentence. This concept is transferred to graphs using random walks that depending

on the definition sample different neighbors of a node.

We initialize the embedding layer of the node2vec skipgram model with the learned

weights in the input layer of LSTM autoencoder for each graph at time t. This

way, the final node representations in node2vec for graph Gt, which are the output

of LSTM-Node2vec, are the combination of both static and dynamic states of the

graph.

4.4 Experiments

We applied the generated node representation vectors in different data mining tasks

in different datasets. The results of the experiments are given below.

4.4.1 Baselines

The evaluation of LSTM-Node2vec was performed against following the state-of-art

methods for static and dynamic node representations.

• DeepWalk [32]: DeepWalk is a static network embedding method based on

random walks that utilize uniform random walks.

• Node2vec [30]: This method is a static network representation algorithm

consisting of BFS/DFS like random walks and skipgram.

69

• dyngraph2vecAE [4]: It is a dynamic network embedding method based on

dyngraph2vec. It utilizes deep learning models with multiple fully connected

layers to model the interconnection of nodes.

• dyngraph2vecAERNN [4]: This is another variant of the dyngraph2vec

method which is a dynamic representation learning method. It feeds previously

learned representations to LSTMs to generates embedding vectors.

4.4.2 Experiment settings

In all the experiments the embedding vector size is 128. The parameter L in LSTM-

Node2vec is selected depending on the size of each dataset. For Radoslaw, Ubuntu,

Contact, St-Ov, AS, Dblp and Acm, the length of L equals 10, 10, 10, 20, 20, 5 and

5, respectively. The LSTM-Node2vec model is trained with the Adam optimizer.

We run Node2vec with (p, q) = (0.25, 1) and DeepWalk with (p, q) = (1, 1).

4.4.3 Anomaly Detection

Anomaly detection is an important data mining and graph mining application.

Anomalies are any deviation from normal behavior. Identifying these irregular pat-

terns in the data is the task of anomaly detection methods [358]. Anomaly detection

is widely applied in static and dynamic network mining tasks such as network intru-

sion detection, bank frauds and social networks [359, 360, 361, 362]. Comprehensive

description of anomaly detection methods in graphs can be found in two surveys

[358, 363]. We evaluated the performance of LSTM-Node2vec in anomaly detection

task and compared the results with those of other static and dynamic embedding

methods.

Datasets: We run our experiments on the following three datasets:

• Radoslaw[364]: This is a dataset of email communications between employees

of a company with 167 nodes, 89K edges over 39 time points.

• Ubuntu[364]: Ubuntu is a network of interactions on the Ask Ubuntu website.

Interaction between users include answering/commenting on other users ques-

tions/comments. This temporal dataset consists of 137K nodes, 280K edges

and has 79 time steps.

• Contact[364]: This dataset is a network of human contacts with 274 nodes

and 28.2K edges. We divided the dataset into 39 graphs.

70

Table 4.1: AUC results of anomaly detection

Algorithm Radoslaw Ubuntu Contact
DeepWalk 0.72095 0.53984 0.67082
node2vec 0.715568 0.674564 0.64213
dyngraph2vecAE 0.431883 0.5787 0.732996
dyngraph2vecAERNN 0.477085 0.5965 0.76226
LSTM-Node2vec 0.895336 0.703182 0.682581

Figure 4.4: A temporal network at two time steps. (a) the graph at time t− 1. (b)
the graph at time t with an star shaped anomaly, one previously normal node starts
attacking multiple nodes shown in red.

Injecting anomalies: Because of the challenges in finding datasets that have

ground truth labels in anomaly detection, we directly injected anomalies into nor-

mal datasets [363, 99]. In network intrusion detection, one of the important type of

anomalies are bursts in activity. For instance, bursts can happen when a particular

node in the network starts attacking other nodes. This creates a star shaped dense

subgraph in the graph structure.

In this work, we inject star shaped anomalies into three datasets. For creating

star anomalies, we add a large number of new edges between a target node and n

other existing nodes in the dataset that did not have an edge with the target node

previously. This shows a sudden burst of activity from the target node toward other

nodes. We create multiple star shaped anomalies and then inject them into dynamic

graphs in each dataset. In order to do that, we inject one anomaly in k consecutive

graphs. For instance, for k = 3 in graph streams G1, G2, ..., G10 we inject anomalies

in G3, G4, G5. Then we jump m graphs and start injecting the second anomaly and

continue similarly on the entire graphs in the dataset.

Classification: We use the anomalous datasets generated in previous step for

anomaly detection tasks. Here, we formulate the anomaly detection as a classi-

fication task. Consider a graph stream of G1, G2, ..., Gt. First, the node represen-

tation vector of all the nodes in each graph in the stream is computed. In our

71

Table 4.2: Anomaly detection AUC scores for three graphs to analyze the effect of
previously seen anomalies

G1 G2 G3

Radoslaw 0.88 0.90 0.91
Ubuntu 0.64 0.89 0.97
Contact 0.76 0.95 0.99

datasets, edges have anomalous or normal class labels because each edge represents

an attack from a source node to a destination node. As a result, we create edge

embedding for all the edges in the stream. There are multiple known ways to create

edge embeddings from node embedding vectors including Hadamard, l1, l2 and av-

erage [30]. In our experiments, we used l1 operator meaning that for an edge (u, v),

f(u, v) = f(u)− f(v), where f(x) is the embedding of x.

After creating edge embeddings for each graph, we perform classification on graph Gi

using edge embeddings of graphs in G0, G1, ..., Gi−1 for i from L to t. The reported

value for each dataset is the average AUC score of classification task over the entire

time points using the Random Forest classifier. The results in Table 4.1 show that

LSTM-Node2vec outperforms other embedding methods in Radoslaw and Ubuntu

datasets and the average AUC score in Contact is less than two other methods.

This can be due to the fact that the changes in the structure of graphs in Radoslaw

and Ubuntu are rather smoother than Contacts and the history is still relevant in

the current time. Therefore, we can say that LSTM-Node2vec works well when the

changes of graphs are not significant over time.

Detecting previously seen anomalies: It is expected that the anomaly detection

accuracy increases if the anomalies have previously occurred in the dataset. We

tested this on three datasets. As explained in previous sections, one anomaly is

injected into k = 3 consecutive time points and the AUC score of anomaly detection

in each of anomalous graphs is computed. The results are shown in Table 4.2. We

first introduced the anomaly in graph G1. As a result, it has the lowest anomaly

detection score. For G2 and G3, however, as the anomaly has existed in the dataset,

the accuracy starts to increase.

4.4.4 Node Classification

Node classification is to classify a node in a graph into a predefined category. Similar

to any classification task, part of the dataset is considered as a training set and the

class labels for the test set are predicted. An approach for node classification is

72

Table 4.3: Macro-f1 and Micro-f1 scores for node classification

Metric Algorithm Dblp Acm
Macro-f1 DeepWalk 0.34 0.3458

node2vec 0.3333 0.3696
dyngraph2vecAE 0.3299 0.334
dyngraph2vecAERNN 0.3682 0.3969
LSTM-Node2vec 0.4658 0.4605

Micro-f1 DeepWalk 0.4632 0.4908
node2vec 0.4624 0.5291
dyngraph2vecAE 0.4523 0.4656
dyngraph2vecAERNN 0.4645 0.4962
LSTM-Node2vec 0.501 0.4995

presented in [341] in the dynamic graph setting. Based on this approach, we classified

each graph at time t using the previous graph at t − 1 by applying the logistic

regression method. We used two measures Macro-f1 and Micro-f1 for evaluating our

method. The results are reported in Table 4.3. The datasets used are as follows:

• Dblp[365, 345]: Dblp is the network of coauthorship between researchers from

2000 to 2017 with 90k nodes and 749k edges. Nodes in this dataset are the

researchers that belong to either database/data mining class (VLDB, SIG-

MOD, PODS, ICDE, EDBT, SIGKDD, ICDM, DASFAA, SSDBM, CIKM,

PAKDD, PKDD, SDM and DEXA) or computer vision/pattern recognition

class (CVPR, ICCV, ICIP, ICPR, ECCV, ICME and ACM-MM).

• Acm[365, 345]: The Acm dataset is similar to Dblp and spans from 2000 to

2015.

As it is evident in Table 4.3, LSTM-Node2vec outperforms other methods in the Dblp

dataset in terms of both Macro-f1 and Micro-f1. In Acm, our performance gain is

above other methods in terms of Marcro-f1 and it is comparable with other results

in terms of Micro-f1. LSTM-Node2vec is remarkable in the node classification task.

This is reasonable as a class label in Acm and Dblp datasets is an area of research of

authors which does not drastically change over time. Thus, including history in the

embedding computation helps in giving a better picture of the author in the current

time.

4.4.5 Link Prediction

One of the main graph mining tasks is link prediction. Link prediction can be for-

mulated as a classification task such that each edge either has a positive or negative

73

(a) Radoslaw (b) St-Ov

Figure 4.5: Analysis of effect of parameter L on link prediction for Radoslaw and
St-Ov datasets

(a) Acm (b) Dblp

Figure 4.6: Analysis of effect of parameter L on node classification for Acm and
Dblp datasets

class label. Then the edges in the test set are classified using a model trained with

the training set. For this purpose, we predict edges in graph Gt using previous

graphs from 0 to t − 1 in the graph stream, based on a method proposed in [341].

Our classifier is logistic regression. Table 6.6 summarizes the results in terms of the

average AUC score for three datasets. This evaluation is performed on the following

three dataset.

• St-Ov[342]: This is the user interaction network in the Math Overflow website.

St-Ov contains 14k nodes and 195k edges with 58 time steps.

• Radoslaw[364]: Explained in the anomaly detection section.

74

Table 4.4: AUC scores for link prediction

Algorithm St-Ov Radoslaw AS
DeepWalk 0.5976 0.6516 0.8858
node2vec 0.6038 0.6738 0.8577
dyngraph2vecAE 0.5098 0.5233 0.7193
dyngraph2vecAERNN 0.5372 0.5612 0.7085
LSTM-Node2vec 0.6857 0.6875 0.8878

• AS[342]: AS is the communication network of who-talk-to-whom gathered

from logs of Border Gateway Protocol. The numbers of nodes, edges and time

steps are 6k, 13k and 100 respectively.

Table 6.6 shows that LSTM-Node2vec outperforms other methods in terms of AUC

scores on all the datasets. Node2vec also has a good performance compared to

other methods. LSTM-Node2vec improves that even more by including the temporal

information of nodes.

4.4.6 Effect of length of history parameter L

We analyze the influence of length of L in the link prediction and node classifica-

tion tasks. We computed the scores using different lengths of L depending on the

datasets. For instance, as Dblp consists of 18 graphs, we compute the results for

L = 3, 4, 5. The same is true for the Acm dataset. We use longer L values for Ra-

doslaw and specially St-Ov as they are bigger datasets. The results of this analysis

are given in Figures 4.5 and 4.6. They show that increasing the length of history

has a positive effects in the results. However, based on our observations, there is a

limit to this increase which is due to the fact that by including very far history in

the current state of a graph, we may consider information that are not relevant to

present time.

4.4.7 Effects of changes in model structure

Evaluating LSTM-Node2vec for all three tasks was performed using one LSTM layer

in the encoder and one LSTM layer in the decoder. In order to analyze the effect of

adding complexity to the model, we computed the results with an additional LSTM

layer in the encoder and reported the difference in performance in Table 6.7. The

results show that making the model more complex does not significantly improve

the performance of the model and in some cases even negatively effects the results.

In general, this means that the LSTM-Node2vec model with one layer for both

75

Table 4.5: Difference in performance by adding one more layer to the encoder

AUC Mac-f1 Mic-f1
Radoslaw -0.0085 - -
St-Ov -0.0014 - -
AS -0.0096 - -
Dblp - -0.0045 0.0086
Acm - 0.0036 0.0059

Figure 4.7: Time complexity Analysis for 4 time steps in 3 datasets

the encoder and decoder can return results that are comparable to more complex

models.

4.4.8 Time Analysis

We compare the running time of LSTM-Node2vec to the static embedding model

Node2vec and two dynamic models dyngraph2vecAE and dyngraph2vecAERNN on

three datasets, AS, Radoslaw and St-Ov. We ran the experiments on a Ubuntu

server with 512 GB RAM, 7 GPUs with 2 x Intel Xeon E5-2687W v4 3.0 GHz

each. The results in Figure 4.7 show that LSTM-Node2vec is slower than Node2vec.

This is because Node2vec only focuses on one graph for the computation. However,

LSTM-Node2vec uses historical information from previous graphs in the current

graph embedding. Compared to the two dynamic embedding models, the running

time of LSTM-Node2vec is better as LSTM-Node2vec uses random walks instead of

adjacency matrices of the graphs. We are working on implementing a distributed

version of LSTM-Node2vec to lower the running time further.

76

4.5 Summary

We have presented LSTM-Node2vec, a dynamic network embedding method that

combines an LSTM autoencoder and the node2vec model to learn node representa-

tions in dynamic graphs. We defined temporal neighbor walks that capture evolving

patterns in the history of nodes of the graphs. In order to generate dynamic network

embeddings, we first trained an LSTM autoencder with temporal neighbor walks to

extract temporal information of nodes over time. The weights of the LSTM model

is then used to initialize a node2vec model to learn node representations based on

the structure of the current graph. This way we incorporated temporal information

into static local states of the nodes, which leads to producing better node represen-

tations. We evaluated the effectiveness of our model in three applications including

anomaly detection, link prediction and node classification tasks. Our method out-

performed other state-of-the-art static and dynamic embedding methods in most

of the cases. For future work, we are interested in adding attention mechanism to

the LSTM-Node2vec model. This approach can be specially useful in the anomaly

detection application that we want the model to focus more on the anomalous parts

of the dataset. Furthermore, in the current version of the method, the length of L is

fixed. One interesting future work is to automate the process of choosing the length

of L. This way the model can adjust L based on how much of the history it wants

to include in the computation. Therefore, if the history of a graph is not relevant

to the current state of the graph, the effects of it in the current embedding will be

limited. Similarly, if a graph does not change significantly over time, the history

will be given better consideration.

77

Chapter 5

Temporal Graph Representation

Learning via Maximal Cliques

5.1 Introduction

Many of the real-world data can be modeled using graphs. Graphs represent the en-

tities using nodes and relationships between entities using edges. Common examples

of graphs are social networks and E-commerce networks. In social networks, nodes

represent people and edges represent interactions between them. In E-commerce

platforms, nodes represent users and items, and edges can represent purchasing re-

lationships between users and items. A key issue in analyzing and learning from

graphs is how to represent the graphs effectively. The goal of graph representation

learning is to preserve the graph’s structure in a way that is useful for downstream

applications such as node classification, link prediction and anomaly detection. De-

pending on their techniques, graph representation learning methods can be catego-

rized into GNN-based and non-GNN-based approaches.

Non-GNN-based methods utilize various techniques such as random walks [30, 6],

temporal point processes [85] and neural networks [7, 341]. These methods can be

applied on static and dynamic graphs. Examples of static non-GNN-based methods

are Node2vec [30] and Deepwalk [32]. Dynnode2vec [6], LSTM-Node2vec [7] and

DynGEM [3] are examples of dynamic non-GNN-based methods. The main limi-

tations of non-GNN-based methods include that they cannot generate embeddings

for unseen nodes and that they do not use node and edge features. The GNN-

based approaches leverage deep learning modules and aggregate the information of

node neighbors to generate node embeddings [366]. These methods have demon-

strated great performance in different applications. One of the main advantages

78

of these methods is that they are inductive and can be applied to unseen nodes.

In addition, they can consider features of nodes and edges in generating node em-

beddings. GNN-based methods are mainly divided into static, spatio-temporal and

dynamic/temporal categories. Static methods such as GCN [106], GraphSAGE

[107] and GAT [367] are suitable for static graphs. These methods generate node

embeddings by averaging embeddings of node neighbors using different operations

including mean, LSTM, pooling and attention. While these methods proved to be

strong in learning representation of static graphs, most of the real-world graphs are

dynamic and change over time.

As a result, spatial-temporal and dynamic/temporal methods have been proposed

to consider evolution of graphs. The spatial-temporal methods integrate graphs’

spatial and temporal features and have been widely applied to traffic prediction

[368, 369] and human trajectory forecasting [370]. Dynamic/temporal GNNs con-

sider a broader range of changes in the graph over time. Examples of these methods

are TGAT [230] and TGN [233]. In TGAT, each node is represented by a concate-

nation of the node and time features. This method obtains node representations by

applying an attention mechanism over neighbors of a node. TGN saves the node

embeddings in memory units to capture the history of nodes and updates them

when new interactions occur in the graph. However, most of these methods do not

consider important substructures such as triads, cliques and motifs in the networks

[9].

There are a few dynamic/temporal GNN-based methods which leverage network

substructures. MTSN [9] captures motifs in dynamic networks. To do so, it first di-

vides the graph into multiple snapshots. Then, it generates the node representations

at each snapshot by applying a graph convolutional network and a temporal shift

operation on adjacency and motif matrices of the snapshot. However, this method

may lose some fine-grained dynamic information between graph snapshots. CAW-N

[10] considers dynamic graphs as a stream of edges and uses set-based anonymous

walks to capture the temporal motif structures. In CAW-N, for each link, an edge

embedding is obtained by aggregating anonymous walks generated for the two nodes

connected by the edge. Although this method is shown to outperform previous meth-

ods in the link prediction task, it does not provide node embeddings for prediction

tasks on nodes such as node classification. Moreover, it does not scale well on large

graphs as we will explain in Section 5.5.7.

In this work, we propose a novel temporal graph representation learning method

based on maximal cliques, called TGR-Clique short for Temporal Graph Representation

learning via maximal Cliques. Maximal cliques are important graph substructures

79

that represent groups of densely connected nodes. These subgraphs have been suc-

cessfully used in community detection in social networks [19, 20], clustering in wire-

less networks [21] and protein-protein interaction detection in biological networks

[22, 23]. TGR-Clique generates a node’s embedding in dynamic graphs by aggre-

gating the node’s temporal random walks on the maximal cliques containing the

node. Temporal random walks respect the time order between nodes and therefore,

capture the temporal dependency between nodes. The embedding of a node is ob-

tained by aggregation of the temporal random walks starting from the node. We will

show that the embeddings generated in TGR-Clique can lead to better predictive

performance in downstream tasks and that our method is faster than CAW-N and

some other state-of-the-art methods. In addition, our method can be used in both

link prediction and node classification tasks since we produce both node and link

embeddings.

In brief, the main contributions of our work are as follows:

• We present a novel temporal graph representation learning method based on

maximal cliques for both inductive and transductive learning tasks.

• Our method generates temporal random walks on maximal cliques of the graph

to capture the evolution of the graph over time. By leveraging maximal cliques

in random walk generation, we identify the most connected neighbors of a node

to consider in its representation.

• We evaluate the performance of our method in link prediction and node classi-

fication tasks on seven real world datasets against five state-of-the-art models

to show that our method achieves better or comparable predictive performance

while being faster than other methods compared. In addition, we perform ab-

lation studies to show the importance of each feature of the proposed method.

In the rest of the chapter, we first provide some preliminaries on maximal cliques.

Then, we describe our model and present the results of the evaluation of the method.

Finally, we conclude the study.

5.2 Preliminaries

In this section, we provide the definitions of cliques and maximal cliques, and briefly

describe the algorithm that we utilize for the maximal clique generation.

80

Figure 5.1: A graph with five nodes {1, 2, 3, 4, 5} with a subgraph depicted in red:
a) the red subgraph is not a clique as there is no edge between nodes 1 and 3. b)
the red subgraph is a clique but not a maximal one because node 4 can be added
to the clique. c) the red subgraph is a maximal clique as there is an edge between
every pair of nodes and it does not have a supergraph that is also a clique.

Definition 21 (Clique [371]). A clique in a graph G is a subgraph of G, in which

there is an edge between every pair of nodes.

Definition 22 (Maximal clique [371]). A maximal clique of a graph G is a clique

that is not contained by another clique of G.

Maximal cliques represent maximal sets of densely connected nodes. Figure 5.1

shows examples of cliques and maximal cliques.

Finding maximal cliques in a graph is a fundamental problem in the graph theory.

Solving this problem is time-consuming as the number of cliques in graphs can be

exponential. However, many of the real-world graphs are sparse [372]. Therefore,

several algorithms were proposed to solve this problem in much less time considering

the sparsity property of real-world graphs [373, 374, 375]. We employed the Eppstein

et al. algorithm [373, 374] which is one of the fastest algorithms for maximal clique

generation. This algorithm is based on Bron et al. [1] and Tomita et al. [375]

algorithms. The Bron et al. algorithm is a simple depth-first search (DFS) method.

It starts from every node in the graph and recursively traverses the neighbors of

the node to find the maximal cliques containing the node. For instance, Table 5.1

shows the potential steps in this DFS search to find the maximal clique {5, 4, 2, 3}
in the graph in Figure 5.1. In step 1, it starts from node 5. In step 2, among

the neighbors of 5 it selects node 4 and adds it to the partial clique created until

this step. In each future step, a node from the candidate neighbors set which is

the intersection of neighbors of all the nodes in the partial clique is selected and

added to the partial clique in the next step. Finally, in step 4, when no node is

left in the candidate neighbors set, the maximal clique is returned. The Tomita et

al. algorithm proposes an improved version of this algorithm that avoids generating

duplicate maximal cliques when traversing all the nodes in the graph. However,

the worst-case time complexity of this algorithm is O(3n/3) where n is the number

81

Table 5.1: An example showing potential steps for generating maximal clique
{5, 4, 2, 3} in the graph in Figure 5.1 using the original recursive method in [1].

Step Node Partial clique Candidate neighbors
1 5 {5} {1,2,3,4}
2 4 {5,4} {2,3}
3 2 {5,4,2} {3}
4 3 {5,4,2,3}∗ {}

of nodes in the graph. The Eppstein et al. algorithm significantly speeds up the

Tomita et al. algorithm by leveraging the concept of degeneracy which is low in

sparse graphs.

Definition 23 (Degeneracy [373, 374, 376]). The degeneracy of a graph G = (V,E)

is the smallest number d such that every subgraph of G contains a node v where

degree(v) ≤ d.

A graph of degeneracy d has a degeneracy ordering of nodes, in which at most d of a

node’s neighbors appear after it [373, 374]. For instance, in the graph in Figure 5.1,

the degeneracy of the graph is 3 and one possible degeneracy ordering of the graph

is 1, 5, 4, 3, 2. As an example, node 5 has 3 of its neighbors that occur after it in the

ordering. The Eppstein et al. algorithm utilizes the degeneracy ordering to limit the

number of nodes that are considered to be added to the maximal clique to at most d

in each recursive call. In order to do that, it first sorts the nodes in the graph based

on the degeneracy order of the graph. Then, it calls the Tomita et al. algorithm on

each node to generate its maximal cliques using its neighbors that appear after that

node in the degeneracy ordering of the graph. The time complexity of this algorithm

is O(dn3d/3) which is much faster than the previous methods as the degeneracy d is

small in sparse graphs. For details of the algorithm, please see [373, 374].

5.3 Problem definition

Let G = (V,E, T) be a temporal graph where V is the set of nodes, E is the set

of edges and T is the set of time stamps on the edges. An edge in the graph is

denoted as (vi, vj, ti,j) where vi and vj are the nodes connected by the edge and ti,j

is the time stamp the edge occurs. Our goal is to generate temporal embeddings for

nodes and edges in the graph so that they can be used in downstream tasks such

as node classification and link prediction. We generate temporal node embeddings

using maximal cliques to capture the most connected neighbors of nodes in the

82

Figure 5.2: The general framework of TGR-Clique for the node classification task.
The input is the temporal graph. We generate the embedding for the grey node.
First, a set of temporal walks are generated for the node from the maximal cliques
containing the node. For the illustration, the number and length of walks are 3
and 2. Then, these walks are input to the BiLSTM, attention and mean layers to
generate the node embedding (block with the purple dot). xv, xe, te are the node,
edge and time features associated with each node in the walks. The framework for
link prediction is similar except that embeddings from two nodes are concatenated
to input to the FC layer for link prediction.

embeddings. We obtain the temporal node and link embeddings by taking temporal

random walks on maximal cliques.

5.4 Proposed Method

5.4.1 Method overview

The core of our method generates temporal node representations in two main steps:

1) for each node v at a time point, a set of temporal random walks is generated on

maximal cliques that contain the node v; 2) the set of generated random walks are

encoded and aggregated by our model TGR-Clique using a BiLSTM and attention

mechanisms to generate the final embedding for the node. Figure 5.2 illustrates our

model.

83

Figure 5.3: Examples of temporal random walks for node a, at time 7 on the graph’s
maximal cliques. For instance, a, d, c is a temporal random walk of length 2 for node
a. In this walk, node d is a neighbor of node a and node c is a neighbor of node
d. The nodes in the walk belong to the maximal clique {a, b, c, d} which contains
node a. The edges in the walk are sampled in an anti-chronological order such that
7 > 6 > 2. No other edge can be added to the walk after node c.

5.4.2 Temporal walk generation

At the beginning of training, maximal cliques of the training graph are generated

using Eppstein et al. algorithm [373, 374] as described in Section 5.2. A temporal

walk for node vi at time t, denoted as vi, vi+1, ..., vi+l, is generated on a maximal

clique that contains the node vi. Therefore, all the nodes of a walk belong to the

same maximal clique. In order to consider the temporal behavior of the nodes in

the graph, edges in the walk are sampled in the anti-chronological order, meaning

that the time that the edge (vk, vk+1) occurs is more recent than the time that

the edge (vk+1, vk+2) occurs and all the edges have occurred before time t, where

k = i, ..., i + l − 2 and l is the length of the walk. Formally, a temporal walk for

node vi at time t is expressed as:

wt
i ={vi, vi+1, ..., vi+l |t > ti,i+1 > ... > ti+l−1,i+l,

(vk, vk+1) ∈MCm for {k = i, i+ 1, ..., i+ l − 1}}
(5.1)

where MCm is the mth maximal clique containing node vi. Figure 5.3 shows ex-

amples of valid walks that can be generated on a toy graph. For each node, we

generate M temporal random walks from M maximal cliques that are randomly

sampled with replacement from the entire set of maximal cliques that contain the

node. By doing random sampling, the walks for a node are generated from a variety

of maximal cliques containing the node, so that a variety of its neighbors can be

included in the random walks.

84

5.4.3 Model

After generating a set of temporal walks for a node vi at time t represented as W t
i ,

the TGR-Clique model encodes and aggregates the walks of a node to generate the

node embedding. In a walk wt
i ∈ W t

i , each node is represented by the concatenation

of the node features, features of the edge connecting to the node in the walk and

features of the timestamp when the edge occurs.

wt
i ={vi, vi+1, ..., vi+l} = {(xk ⊕ xek−1,k ⊕ f(tk−1,k)),

for {k = i, i+ 1, ..., i+ l}}
(5.2)

where xk are the features of the node vk, xek−1,k are the features of the edge (vk−1, vk),

f computes time features of the timestamp the edge occurs, and ⊕ is the concatena-

tion operator. As the walk starts from node vi, x
e
i−1,i is replaced with a zero vector

and ti−1,i = t. The function f encodes the time into a vector of length dt using the

harmonic encoder [230, 10]:

f(t) = [cos(w1t), sin(w1t), ..., cos(wdt/2t), sin(wdt/2t)] (5.3)

where parameters w1, ..., wdt/2 will be learned during training. This time encoding

method has shown to do better time modeling than using the actual time values

[230]. Our model encodes the walk which is a sequence of node representation

vectors into a single vector using a BiLSTM model as follows:

Enc(wt
i) = BiLSTM(wt

i) (5.4)

The matrix containing all the encoded walks of a node is denoted as Enc(W t
i) ∈

RM×dc , where dc is the length of concatenation of node features, edge features and

time features for a node. Inspired by [10], the set of encoded walks of a node are

then projected using a scaled dot-product multi-head attention mechanism [265] to

capture the relations between walks. In the multi-head attention, each attention

head output h is defined as:

h = Attention(Enc(W t
i)) = Softmax(

QKT

√
dc

)V (5.5)

where Q = Enc(W t
i)PQ, K = Enc(W t

i)PK and V = Enc(W t
i)PV are queries, keys

and values and PQ, PK , PV are learnable weight matrices. Assuming there are N

heads, we haveN attention head outputs denoted as {hk = Attentionk(Enc(W t
i)), for {k =

85

1, ..., N}}. The multi-head attention output is the concatenation of the output of

N heads as follows:

Multi-head attention(Enc(W t
i)) = (h1 ⊕ ...⊕ hN)PO (5.6)

where PO is a learnable weight matrix. The projected encoded walks are then

aggregated using a mean operation:

zi = Mean(Multi-head attention(Enc(W t
i))) (5.7)

where zi is the representation vector for node vi at time t.

5.4.4 Training

TGR-Clique is trained for the link prediction task and can be applied to both link

prediction and node classification. For this task, the embedding of a link (vi, vj)

denoted by zi,j is obtained by concatenation of zi and zj vectors where zi and zj

are the embedding of nodes vi and vj, respectively. The zi,j is then forwarded to a

two-layer MLP which generates a probability score for the link being positive. The

link prediction loss is the binary cross entropy.

Loss =
∑

(vi,vj)∈E+∪E−

yi,j log(σ(z
T
i,jθ)) + (1− yi,j)log(1− σ(zTi,jθ)) (5.8)

where E+ and E− are positive and negative samples. Positive samples are the links

in the temporal graph and negative samples are generated between nodes that do

not have any interaction in the dataset. Following [230, 10, 233], an equal number of

negative samples are used in the dataset. yi,j is the true label of the sample (vi, vj),

where yi,j = 1 if there is a link between vi and vj and 0 otherwise. σ and θ are the

sigmoid function and parameters of the MLP layers.

The training framework is shown in detail in Algorithm 1. The input graph is a set of

time-stamped edges, which is divided into training and validation sets where all the

edges in the validation set occur after the edges in the training set. The algorithm

first generates the maximal cliques based on the training set. Then, the training

data is split into B batches along the time dimension. In each epoch, we iterate

over training batches. For each edge (vi, vj, ti,j) in a batch, M temporal random

walks are generated for both vi and vj with respect to time ti,j. The walks are used

to generate the embeddings (zi and zj) of vi and vj by aggregating the encoded

walks using the BiLSTM, Multi-head attention and Mean layers. The two node

embeddings are then concatenated into an edge embedding zij. For each batch, we

86

also randomly generate a set of ”negative” edges which do not occur in the training

set. The embedding of each negative edge is computed in the same way as for the

positive edges. At the end of each batch, the loss function is computed and all the

model parameters are updated using backpropagation. We use an early stopping

mechanism in training. After each training epoch, the model is evaluated on the

validation set for link prediction. If the improvement in the average precision of

the model over the best model in the previous epochs does not exceed a threshold

after a consecutive round of epochs, the training stops and the best model so far is

returned. The average precision is computed as
∑

i(ri − ri−1)pi, with pi and ri

denoting precision and recall at ith probability threshold that determines whether

an edge is positive or not based on the predicted probability score.

5.4.5 Inference

For inference on the validation set, we perform link prediction on each edge in the

validation set and a set of random negative edges generated between nodes that

do not have any direct connections in the training and validation sets. In order

to generate a prediction for an edge, we generate a set of temporal random walks

for each node of that edge. A temporal random walk from a node of an edge is

generated by starting at the edge and walking randomly in the anti-chronological

order along the edges in both validation and training data. The temporal random

walks for each node are then input to the trained model and the model returns the

link prediction.

Similarly, the inference on the test set is performed by evaluating the model for edges

that exist in the test set and a set of random negative edges generated between nodes

that are not directly connected in the entire dataset. The temporal walks for each

node of an edge are obtained by taking random walks in the anti-chronological order

on the edges that occur before that edge in the dataset. These walks are given to

the model to generate node and link embeddings. The temporal walks for the nodes

in the validation set and test set are generated on the graph rather than maximal

cliques to avoid generating maximal cliques during inference to speed up prediction.

Our model can do both transductive and inductive inference. In the transductive

inference, all the nodes in the test/validation set were observed in the training set.

In the inductive inference, some nodes in the test/validation set did not exist in the

training set. A new node in the test/validation set may or may not have a connection

to other nodes in the data. If a new node does not have any connection, the temporal

random walks for that node only contains that node and only node features are used

87

Algorithm 3 : Training framework

1: Input: Graph G = (V,E, T) containing a training set of an edge sequence and
a validation set of an edge sequence, number of random walks M , length of
random walks l, batch size B, maximum number of epochs epochmax

2: Output: Trained model
3: MC ← Generate all the maximal cliques for the training set
4: Divide the training data (a sequence of edges ordered by timestamps) into B

batches (E+
1 , E

+
2 , ..., E

+
B) along the time dimension

5: for i = 1, 2, ..., epochmax do
6: for each batch E+

b ∈ training set (b = 1, ..., B) do
7: for all (vi, vj, ti,j) ∈ E+

b do
8: Generate M temporal walks of length l for vi on MC containing vi using

edges that occur before ti,j
9: Generate M temporal walks of length l for vj on MC containing vj using

edges that occur before ti,j
10: zi, zj ← Generate embedding for vi, vj by aggregating their encoded walks

using the BiLSTM, Multi-head attention and Mean layers
11: zij ← Concatenate zi, zj to get the edge embedding
12: Compute the output of the fully connected layers
13: end for
14: E−

b ← Generate a random negative sample of size b containing pairs (vi, vj)
where nodes vi and vj exist in E+

b but there is no edge between them in the
training data.

15: for (vi, vj) ∈ E−
b do

16: zi, zj ←Get the embeddings of vi, vj, which were computed in the above
for-loop for positive examples

17: zij ← Concatenate zi, zj to get the edge embedding
18: Compute the output of the fully connected layers
19: end for
20: Compute Loss based on Equation (5.8)
21: Update all the model parameters based on the Loss via backpropagation
22: end for
23: Evaluate the model on the validation data
24: if Average precision on the validation set does not improve the previous best

model by a tolerance value for a consecutive few epochs (e.g., 3 epochs in our
experiment) then

25: return the best model in the previous epochs
26: end if
27: end for
28: return the trained model

88

Figure 5.4: An MRF over random variables X = {x1, x2, x3, x4, x5} with three
maximal cliques MC1,MC2 and MC3.

as the input to the trained model to generate the node embedding. In cases where

a new node is connected to other nodes either in the training or test/validation set,

a random walk longer than one node can still be generated to obtain an embedding

of the node considering both the node features and its connection structures.

In addition to link prediction, our model can also be used for node classification

by training a node classification model with the node embeddings generated by our

model.

5.4.6 Justification of using maximal cliques

We explain why TGR-Clique is designed to walk within maximal cliques when gen-

erating the random walks for node embedding. To that end, we take a probabilistic

view on graphs using Markov random fields (MRF). An MRF is an undirected

graphical model described by a graph in which each node is associated with a ran-

dom variable. Nodes in an MRF satisfy the Markov property stating that a node

is independent of other nodes given its immediate neighbors, which are connected

by an edge to the node [377, 378]. Therefore, assuming this property, a node is

independent of other nodes given the nodes in all the maximal cliques contain-

ing the node because the nodes in the maximal cliques containing a node are all

the immediate neighbors of the node. For instance, in Figure 5.4, we can say,

p(x1|x2, x3, x4, x5) = p(x1|x2, x3, x4). The goal of TGR-Clique in generating random

walks on the maximal cliques is to capture the nodes in maximal cliques and the

dependencies between them. Assuming that all the nodes in the maximal cliques

containing x1 are captured in the random walks, x1 is independent of others nodes.

Even though it is possible that TGR-Clique does not cover all the nodes in the

maximal cliques by random walks, it excludes the nodes that x1 is less dependent

on, which are the nodes not in any of x1’s maximal cliques.

89

In addition, the probability distribution p(X) over random variablesX = {x1, ..., xn}
in an MRF can be expressed as follows [378, 379]:

p(X = {x1, ..., xn}) =
1

Z

∏
MCi∈MC

ϕMCi
(XMCi

) (5.9)

where MC is the set of all the maximal cliques of the graph and MCi is the ith

maximal clique. Z > 0 is a normalization term. ϕMCi
(or in short ϕi) is a non-

negative potential function of MCi, which captures dependencies of variables within

the clique. XMCi
is the set of the nodes in the MCi. Based on Equation (5.9), the

following can be derived with our example1:

p(x1|x2, x3, x4, x5) =
p(x1, x2, x3, x4, x5)

p(x2, x3, x4, x5)
(5.10)

=
1
Z
ϕ1(x1, x2, x3)ϕ2(x1, x4)ϕ3(x3, x5)∫

1
Z
ϕ1(x1, x2, x3)ϕ2(x1, x4)ϕ3(x3, x5)dx1

=
ϕ1(x1, x2, x3)ϕ2(x1, x4)∫
ϕ1(x1, x2, x3)ϕ2(x1, x4)dx1

Therefore, as p(x1|x2, x3, x4, x5) = p(x1|x2, x3, x4), the probability distribution of

x1 given all the nodes in the maximal cliques containing x1 correlates with the

product of potential functions of all maximal cliques containing x1. To account

for this, TGR-Clique generates separate walks on each maximal clique to capture

the dependencies between nodes in each clique and then aggregate the walks to

generate the embedding of node x1. The same applies to other nodes in the graph.

We demonstrate that TGR-Clique have better or comparable predictive performance

compared to other baselines in our experiments in Section 5.5. We will also show

that TGR-Clique is faster and more scalable than other baselines.

5.5 Experiments

We evaluate the performance of TGR-Clique in link prediction and node classifica-

tion tasks.

5.5.1 Baselines

We compare the results of our model against the following state-of-the-art graph

representation learning methods.

1The derivation follows the one in [377].

90

Table 5.2: The datasets statistics. #MC is the number of maximal cliques in the
training set, #F is the number of node and edge features.

Dataset Nodes Edges Time #MC #F
Contacts 11k 415k 80 days 14k 0
SMS 44k 548k 338 days 35k 0
Wiki 9k 157k 1 month 13k 172
Fb 2k 60k 216 days 9k 0
Reddit 10k 672k 1 month 63k 172
Dblp 61k 493k 9 years 27k 0
Acm 38k 226k 8 years 14k 0

• Jodie [380]: Joint Dynamic User-Item Embedding method consists of update

and project operations that update embedings of users and items after each

interaction and project the future embedding of users.

• DyRep [87]: DyRep captures the evolution of graphs using two temporal point

processes for communication and association events which occur between nodes

and their neighbors.

• TGN [233]: Temporal Graph Network is a temporal GNN that uses mem-

ory modules to keep history of nodes and updates nodes embeddings as new

interactions emerge.

• TGAT [230]: TGAT is a temporal GNN and a temporal version of GAT model.

It concatenates time features with node features to consider evolution of the

graph.

• CAW-N [10]: CAW-N is a temporal GNN model that captures the evolution

of motifs in the graph using set-based anonymized random walks.

5.5.2 Settings

For TGR-Clique, we use the Adam optimizer with a learning rate 1e−4. The batch

size is 64 and the max epoch number is 50 using early stopping with a tolerance 1e−3

and max-round epochs 3. All the experiments were performed on an Ubuntu 16.04

server with a NVIDIA GeForce GTX 1080Ti 11 GB GPU and an Intel Xeon 3.0

GHz 12-core processer. The results are the average over 10 runs. The datasets are

undirected. Following [230, 10], for datasets that have no feature, we used all-zero

feature vectors. The dimension of feature vectors is set as 100. We used the public

implementation of CAW-N and TGAT methods. The code for Jodie, DyRep and

91

TGN were all provided in the TGN public repository. All the baselines are run with

their default parameters. The only exception is the CAWN method on the Wiki

dataset for which the default parameters do not yield good results (achieving only

70% AUC) and we thus set α = 1e− 5 as suggested in the README file provided

in the code package [381]. The AUC and AP values for the DyRep method on Wiki

in Table 5.3 and 5.4 were taken from [382] as its program returned memory errors

on our server. The results for Jodie, DyRep, TGN and TGAT on Reddit for both

inductive and transductive link prediction tasks were also taken from [382].

5.5.3 Link prediction

The link prediction task was performed on the following five public datasets. Table

5.2 shows the dataset statistics.

• Fb-messages (Fb) [364]: a social network similar to Facebook for students of

UCI. The nodes are the students and the edges are the messages sent between

them.

• Contacts-dublin (Contacts) [364]: a human contact network from an ex-

hibition in Dublin, where nodes are people and an edge means that the two

people have been in contact.

• SMS-A (SMS) [364]: a communication network where a node is a user and

an edge represents messages sent between two users.

• Wikipedia (Wiki) [381]: a network between users and Wikipedia pages.

Nodes are users and pages. There is an edge between a user and a page if a

user edited that page.

• Reddit [381]: a network where users and subreddit pages are nodes. An edge

occurs between a user and a subreddit, if the user posts in the subreddit.

Each data set is divided into training, validation and test sets with the 70:15:15 split

ratio along the temporal order of the edges. Tables 5.3 and 5.4 present the results

for transductive and inductive link prediction tasks in terms of area under ROC

curve (AUC) and average precision (AP) scores which are commonly used for link

prediction tasks [10, 233, 230]. Both scores are computed using the corresponding

functions in the Scikit-Learn library with the predicted probabilities of testing edges

being positive and their true labels as inputs. For the inductive task, similar to [230,

233], we remove some of the nodes and their connected edges from the training set so

92

Table 5.3: The transductive link prediction results.

Method Score Contacts SMS Wiki Fb Reddit

Jodie
AUC 0.965 0.974 0.948 0.587 0.976
AP 0.959 0.977 0.944 0.541 0.970

DyRep
AUC 0.965 0.972 0.942 0.511 0.980
AP 0.961 0.977 0.946 0.493 0.980

TGN
AUC 0.998 0.990 0.983 0.879 0.986
AP 0.997 0.991 0.984 0.883 0.987

TGAT
AUC 0.973 - 0.931 0.719 0.980
AP 0.977 - 0.938 0.687 0.981

CAW-N
AUC 0.999 0.983 0.988 0.980 0.999
AP 0.999 0.987 0.989 0.986 0.999

TGR-Clique
AUC 0.999 0.997 0.992 0.982 0.998
AP 0.999 0.997 0.994 0.986 0.999

that the validation and test sets contain some nodes that did not occur in the training

set. The length and number of random walks for Contacts, SMS, Fb, Wiki and

Reddit are (3,8), (4,7), (2,10), (1,64) and (1,64) respectively, which are determined

by a grid search around the average length and number of maximal cliques per node

in the training set. Results from other parameter settings are shown in Section

5.5.6. We observe from the results that our method (TGR-Clique) outperforms

Jodie, DyRep, TGN and TGAT on all the datasets in transductive and inductive

link prediction tasks. TGAT did not finish on SMS and returned errors. The results

suggest that considering neighbors of a node that co-exist in maximal cliques with

the node provides better node representations than other methods. In comparison

to CAW-N, which is a very competitive method, TGR-Clique outperforms CAW-

N on SMS and Wikipedia and has a comparable performance on Contacts, Fb and

Reddit. In Section 5.5.7, we will show that TGR-Clique runs much faster than CAW-

N. Overall, our results indicate that considering substructures of graphs in node

representations (as in TGR-Clique or CAW-N) yields better results in comparison

to other methods.

5.5.4 Node classification

We ran our method on the following two datasets for the node classification tasks.

Statistics of the datasets are shown in Table 5.2.

• Dblp[345]: a co-authorship network where nodes represent researchers and

edges represent co-authorship. A node belongs to one of the two classes: data

science and computer vision. A data science label is assigned to a node if

93

Table 5.4: The inductive link prediction results.

Method Score Contacts SMS Wiki Fb Reddit

Jodie
AUC 0.922 0.932 0.928 0.538 0.954
AP 0.920 0.944 0.930 0.518 0.945

DyRep
AUC 0.923 0.931 0.910 0.508 0.957
AP 0.922 0.943 0.919 0.508 0.957

TGN
AUC 0.991 0.968 0.976 0.800 0.975
AP 0.987 0.973 0.977 0.821 0.976

TGAT
AUC 0.953 - 0.889 0.640 0.964
AP 0.953 - 0.900 0.631 0.966

CAW-N
AUC 0.999 0.980 0.969 0.989 0.993
AP 0.999 0.984 0.973 0.993 0.994

TGR-Clique
AUC 0.999 0.995 0.996 0.980 0.999
AP 0.999 0.995 0.996 0.985 0.999

the majority of its papers appear in VLDB, SIGMOD, PODS, ICDE, EDBT,

SIGKDD, ICDM, DASFAA, SSDBM, CIKM, PAKDD, PKDD, SDM or DEXA

conferences. Similarly, the computer vision label is assigned to a node with

the majority of its publications being in CVPR, ICCV, ICIP, ICPR, ECCV,

ICME or ACM-MM conferences.

• Acm[345]: a co-authorship networks similar to Dblp in which a node belongs

to either data science or computer vision class.

Each data set is divided into training, validation and test sets with the 70:15:15 split

ratio along the temporal order of the edges. The length and number of walks for

both Acm and Dblp are 2 and 2. Table 5.5 shows the results of node classification in

terms of AUC similar to [230, 233]. Based on the results, our method outperforms

all the baseline methods on both datasets, which suggests that considering neighbors

of a node in maximal cliques in the node representation can better distinguish the

node classes in the Acm and Dblp datasets. On Dblp, TGAT raises errors and was

not able to finish. CAW-N is not applicable in node classification task as it only

generates link embeddings. Our method is suitable for the prediction tasks on both

nodes and edges.

5.5.5 Ablation study

We investigate the effects of different components of TGR-Clique on node classi-

fication and link prediction with four datasets: Acm, Dblp, Wiki and Fb. Table

5.6 depicts the results of the experiments. A major component of our model is

94

Table 5.5: AUC scores for the node classification.

Method Acm Dblp
Jodie 0.486 0.458
DyRep 0.509 0.547
TGN 0.513 0.532
TGAT 0.500 -
CAW-N NA NA
TGR-Clique 0.533 0.551

Table 5.6: AUC scores for the ablation study. NC and LP are short for node
classification and link prediction respectively.

Dataset Task Original No-clique No-time LSTM
Acm NC 0.533 0.515 0.456 0.472
Dblp NC 0.551 0.483 0.496 0.538
Wiki LP 0.992 0.969 0.612 0.992
Fb LP 0.982 0.973 0.981 0.981

the maximal cliques. To validate the effectiveness of maximal cliques, we compare

our method with the No-clique variant in which the temporal walks are generated

on the graph itself. As shown, taking random walks on maximal cliques performs

better than doing these on graphs as it more likely considers similar and influential

neighbors in the node embeddings. We also replace time features with zeros in the

No-time variant and see that time features are helpful in our model performance.

The reason is that the input graph is temporal and time features provide insights

into the history of the nodes interactions. In addition, we experimented with re-

placing BiLSTM with LSTM. Our model performs better using BiLSTM on Acm

and Dblp in node classification tasks as it considers both backward and forward

dependencies between nodes in the walks. However, using BiLSTM does not have a

significant effect on the performance on Wiki and Fb.

5.5.6 Parameter sensitivity

Effects of the length of walks. Part a) of Figure 5.5 depicts the effects of changing

the length of walks on our method’s performance on the Contacts, Fb and SMS

datasets. We changed the walk length from 1 (containing 2 nodes) to 4 (containing

5 nodes). Other parameters are fixed in this experiment (which also applies to the

other experiments in this section). As shown in the plot, on Contacts, the method

works very well for all walk lengths and longer walks do not have significant effects on

the performance of the method. On SMS, longer walks have better performance. On

95

Fb, the best result is achieved at the length 2 and the performance starts dropping

after that. This could be due to the fact that the average length of maximal cliques

in this dataset is around 2 and generating longer walks hurts the performance of

the method. We recommend that grid search around the average length of maximal

cliques in the training be conducted to determine the length of the walks.

Effects of the number of walks. Part b) of Figure 5.5 shows the effects of

changing the number of walks in our method on the Contacts, Fb and SMS datasets.

As shown, increasing the number of walks improved the performance on the Contacts

dataset. The performance on SMS and Fb increases at the beginning when increasing

the number of walks, but decreases slightly at the end. Similar to the length of walks,

a grid search around the average number of maximal cliques per node in the training

set can be used to find the best number of walks.

Effects of the output embedding dimension. We computed the AUC values

for link prediction with our method on the Contacts, Fb and SMS datasets with

embedding dimension values {50, 100, 150, 200}. Part c) of Figure 5.5 shows that

the embedding dimension of 150 leads to the best results on all the datasets. We

used an embedding dimension of 100 on these datasets in our experiments although

other values may achieve better performance.

Effects of the number of attention heads. The AUC values for the link predic-

tion task with different number of heads {1, 2, 4, 8} on the Contacts, Fb and SMS

datasets are shown in part d) of Figure 5.5. Increasing number of heads does not

have a significant effect on the performance on Contacts. However, the model has

the best performance on Fb and SMS with 8 attention heads. We use 8 for the

number of attention heads in other experiments.

5.5.7 Time analysis

Training time analysis. We compare all the methods in terms of training time on

the SMS dataset. The batch size is 64 for all the methods. For the two random-walk

based methods (ours and CAW-N), the number of walks is set to 10 and the walk

length is 2. To see the scalability of each method, we experiment with different

subsets of SMS, whose number of edges ranges from {80k,160k,240k,320k}. Figure

5.6 depicts the training time of one epoch for all the methods over different sizes

of the graph. As shown on the plot, our method is significantly faster than all

the baselines. Interestingly, CAW-N is one of the most time-consuming methods

96

Figure 5.5: Parameter sensitivity analysis on the transductive link prediction task.

among the methods evaluated, although it is also based on random walks. This

could be due to the fact that CAW-N does the set-based anonymization of random

walks (which takes time) after the walks are generated, while in our method we

directly use the random walks to compute node representations. In addition, CAW-

N, TGN and TGAT generate a node’s embedding by sampling a subgraph from the

node’s neighbors and then aggregating the neighbors of a node from its subgraph

[383]. However, TGR-Clique does not construct a subgraph for each node which is

time consuming. Instead, it generates the node’s random walks on maximal cliques

containing the node, which are computed at the beginning of the training.

DyRep and Jodie are also among the top time-consuming methods on larger graphs

with DyRep being the worst performer in terms of training time on one epoch.

This could be because DyRep uses two temporal point processes to model graphs’

dynamics, which makes the model complex and time-consuming to train specially

when the number of edges increases. We also measure the total run time of all the

methods using the whole SMS dataset with all the edges and let all the programs

run until its completion. The tolerance and the max-round epoch values used in

early stopping for all the methods are set as 1e − 3 and 3, respectively. The total

run time of DyRep, Jodie, TGN, CAW-N and TGR-Clique are 15307, 15086, 14380,

97

Figure 5.6: Training time on the SMS dataset over one epoch and different numbers
of edges.

14443 and 9403 seconds respectively. The results indicate that our method has the

lowest total run time among all the baselines.

Run time of maximal cliques generation. The run time of the maximal cliques

generation algorithm on the training set of SMS is 0.163 seconds which is very fast.

Similaly, on Fb, Contacts, Wiki, Dblp, Acm and Reddit, the time for generating all

the maximal cliques is 0.037, 0.073, 0.048, 0.184, 0.107 and 0.198 seconds respec-

tively.

5.6 Comparison with our other methods proposed

in Chapters 3 and 4

In chapters 3 and 4, we proposed two dynamic graph embedding models: Dynn-

ode2vec and LSTM-Node2vec. In this section, we compare these methods with

TGR-Clique in terms of the models design and performance in the link prediction

task.

Model design. The differences in the designs of Dynnode2vec, LSTM-Node2vec

and TGR-Clique models are as follows:

1. Dynnode2vec: Dynnode2vec belongs to traditional dynamic graph embedding

methods and is based on random walks. Compared to using the graph’s adjacency

98

matrix as input in the previous embedding methods, random walks are more

memory efficient and better capture the neighbourhood structure of the graph.

Dynnode2vec is a discrete-time dynamic graph embedding method, meaning that

its inputs are snapshots of the graph over time. The model at the current time

point is a node2vec model that is initialized with the model’s weights from the

previous time point. In addition, the temporal walks are only created for a set

of nodes that have changed in the current time. The training of Dynnode2vec

is unsupervised in the sense that no node or edge labels are needed during the

training.

2. LSTM-Node2vec: LSTM-Node2vec is also a traditional and discrete-time dy-

namic graph embedding method based on random walks. In LSTM-Node2vec,

we tried to improve our previous method by integrating node2vec with an LSTM

autoencoder. The reason was that an LSTM autoencoder was a powerful seq2seq

model in Natural Language Processing for capturing the long-term dependencies

between words. Therefore, our goal was to capture dependencies between nodes

and their neighbours over time using an LSTM autoencoder and then use the

LSTM’s weights to initialize the node2vec model at each time point. Similar to

Dynnode2vec, LSTM-node2vec is trained in an unsupervised fashion in the sense

that no node or edge labels are needed during the training.

3. TGR-Clique: Inspired by the recent success of GNNs, we designed TGR-Clique,

a GNN-based dynamic graph embedding method. This method generates a node

embedding by aggregating the node’s neighbours’ embedding. In contrast to

Dynnode2vec and LSTM-Node2vec, TGR-Clique can use the node, edge and time

features. In addition, TGR-Clique is continuous-time which means that it takes as

input a stream of edges with a time stamp over each edge. Compared to discrete-

time methods, the advantage of continuous-time methods is that they do not

lose fine-grained dynamic information between snapshots. Another distinction

between TGR-Clique and the two previous methods is that TGR-Clique considers

the maximal cliques in the graph, which can show strong relationships between

nodes. In addition, similar to most of the other GNN-based methods, TGR-

Clique uses the node or link labels as ground-truth labels during training, and

thus its training is considered supervised. A summary of the differences in the

design of our three methods is shown in Table 5.7.

Link prediction. We compared the performance of these methods in the link

prediction task for St-Ov, Radoslaw and AS datasets. The specification of these

99

Table 5.7: Comparison of our 3 proposed dynamic graph embedding methods. Dyn
is short for Dynamic, Cat is Category, Trad is Traditional, Continu is Continuous
and Feat is Feature.

Model Type Cat Input Technique Substruct Feat Training
Dynnode2vec Dyn Trad Discrete Random walk - - Unsupervised

LSTM-Node2vec Dyn Trad Discrete
Random walk
& LSTM

- - Unsupervised

TGR-Clique Dyn GNN Continu. Aggregation
Maximal
clique

yes Supervised

Table 5.8: Link prediction results in terms of AUC.

Model St-Ov Radoslaw AS
Dynnode2vec 0.660 0.629 0.962
LSTM-Node2vec 0.685 0.687 0.887
TGR-Clique 0.714 0.730 0.631

datasets are given in Chapters 3 and 4. Results of this comparison is shown in Table

5.8 in term of AUC. The result of each method is computed using its own setup. As

can be seen, TGR-Clique has the best performance compared to other methods in St-

Ov and Radoslaw datasets. However, in the AS dataset, dynnode2vec has the best

performance. This could be due to the fact that in AS dataset, the graph does not

change significantly in each snapshot. Therefore, Dynnode2vec, which initializes the

weights of the current model with the weights from the previous model can generate

very accurate node embeddings. However, AS dataset lacks the time information in

each snapshot and among snapshots. Therefore, to create an edge stream from these

snapshots, we had to give a similar time to all the edges in the same snapshot which

may have an adverse effect on generating temporal random walks in TGR-Clique.

Thus, the final dataset was not ideal for TGR-Clique to perform well.

5.7 Summary

We proposed TGR-Clique, a novel method for generating temporal node embed-

dings for temporal graphs by leveraging the history of node interactions. We utilize

maximal cliques for generating temporal random walks for the nodes to consider the

most connected neighbors of a node in the node representation. We compared the

performance of our method in link prediction and node classification tasks on seven

datasets against five state-of-the-art models. Our method is shown to have better

or comparative predictive performance in both tasks while being faster than other

methods compared. Furthermore, we performed an ablation study on our method

and demonstrated the impact of each component of the proposed method. Finally,

100

we compared the performance of TGR-Clique with our two other methods proposed

in Chapter 3 and 4. As future work, we will employ these temporal embeddings

in other graph mining applications such as recommendation and anomaly detection

and evaluate their performance.

101

Chapter 6

Interpretability measures for

Graph Embeddings

6.1 Introduction

Graph data are rapidly growing in recent years and powerful graph representation

methods are required to represent the graph information. One of the most effective

ways to represent large graphs is graph embedding. Graph embedding methods

map nodes or edges into a lower dimensional space such that similar nodes or edges

are represented by similar vectors in the embedding space. A large number of

graph embedding methods have been proposed including Node2vec[30], LINE[38],

DeepWalk[32] and SDNE[39]. The use of graph embedding vectors in downstream

tasks, such as node classification, link prediction and anomaly detection, has shown

superior performances compared to the use of traditional methods of feature engi-

neering for node representation [30, 38, 239].

Although graph embedding methods have been highly successful in different appli-

cations, not much attention has been given to interpreting the graph embeddings.

In traditional feature engineering methods, each dimension represents a particular

piece of information, such as the degree or importance of a node, which is meaning-

ful and thus potentially useful in explaining the decision made in the application.

Graph embedding dimensions, however, are usually not explainable. There have

been some studies on the quantifying interpretability of the word embeddings whose

embedding algorithms are the basis for some of the graph embedding methods. The

common approaches in that area are based on defining prediction tasks for different

aspects of language structures [334] and word intrusion test [12, 24, 25, 13].

102

In [334], a framework is proposed for measuring interpretability of the sentence

representations. This method inspects different sentence embedding methods with

respect to their capacity to encode different language information. To that end,

it defines a set of prediction tasks around sentence properties including sentence

length, the word content and their order in the sentence. Then, it demonstrates

the relative strength of the sentence embedding methods in terms of their accuracy

in those prediction tasks. This was one of the first works to design experiments to

compare different embedding methods in a task-independent manner.

In [24, 25, 13], interpretability of word embeddings is evaluated using word intrusion

test. In the word intrusion detection test, a noisy, unrelated word is added to a set

of top 5 words with high values in each word embedding dimension and a human is

asked to identify the intruder word. This is based on the idea that if an embedding

dimension is coherent and as a result interpretable, a human can detect the intruder

word easily. This method for evaluating intepretability of embeddings needs human

effort which is costly. Therefore, [12] automates this task by comparing a set of top

words in each word embedding dimension with different sets of semantically similar

words to measure how well the word embedding matrix captures categories of similar

words.

There are few works towards the graph embedding interpretation. In [331], node

embedding methods are evaluated based on the accuracy of predicting some elemen-

tary features of the graph. [332] computes a score for each embedding dimension

across node groups and a score for each node group across the embedding dimen-

sions. These scores are based on the number of common nodes between top nodes in

an embedding dimension and a node group. In addition, this paper evaluates effects

of changing hyperparamerters of node embedding methods, namely the number of

embedding dimensions on their performance in downstream tasks. However, this

study only focuses on one node embedding method (Node2vec) and does not pro-

vide a comprehensive method for scoring and evaluating interpretability of different

node embedding methods.

In this work, we aim to quantify and compare the interpretability of different graph

embedding methods effectively by adapting the techniques originally designed for

quantifying interpretability of word embeddings [12, 24, 25, 13]. We quantify the

interpretability of a node embedding method based on the extent to which its em-

bedding dimensions can represent the centrally-located or important nodes in a

category with extreme values. For this purpose, we use centrality properties of

nodes which have proven to be very successful in graph clustering and community

detection tasks [26, 27, 28, 29]. In addition, we provide a method for comparing

103

the interpretabilities of different embedding methods. Our method is general and

can be applied to any graph embedding method based on different techniques such

as random walks, matrix factorization and deep learning. Overall, our contribution

can be summarized as follows:

• We propose two interpretability measures for node embedding methods using

the betweenness centrality and closeness centrality properties of the nodes in

a graph.

• We empirically validate the new interpretability measures by comparing the

ranking of embedding methods using our interpretability scores with that us-

ing a node classification task whose class labels are defined based on node

centrality.

• We illustrate how to use the proposed measures to interpret embedding di-

mensions.

• We investigate whether there is a relationship between the proposed inter-

pretability scores of the embeddings and the predictive performance of a down-

stream classification task with the embeddings.

The chapter is organized as follows. First we introduce the problem and our proposed

method. Then, in the experiment section, we show the results of our experiments.

6.2 Preliminaries

We use betweenness centrality and closeness centrality properties of nodes in the

definition of our interpretability measures. In this section, we briefly review the

definition of these properties of graphs.

Definition 24 (Betweenness centrality [384]). The betweenness centrality of a node

measures the number of times that the node occurs in the shortest path between each

pair of nodes in the graph. The normalized version of this property is formulated for

each vertex v in the graph as follows:

BC(v) =

∑
s ̸=t̸=v∈V

σ(s,t|v)
σ(s,t)

(n− 1)(n− 2)/2
(6.1)

where σ(s, t) is the number of the shortest paths between vertices s and t, σ(s, t|v)

is the number of the shortest paths between vertices s and t that passes through v. n

104

is the total number of nodes in the graph, and (n− 1)(n− 2)/2 is the normalization

factor over all node pairs in the graph excluding node v.

Definition 25 (Closeness centrality [384]). The closeness centrality of a node is

the inverted mean length of the shortest paths between the node and all other nodes

of the graph. The normalized version of this property is defined in the following

equation:

CC(v) =
n− 1∑

s ̸=v∈V distance(v, s)
(6.2)

where distance(v, s) is the length of the shortest path between nodes v and s and n

is the total number of nodes in the graph.

6.3 Problem definition

Let G = (V,E) denote a graph G, where V and E are nodes and edges of the

graph, respectively. A graph embedding method computes an embedding matrix

Z|V |×D which contains one D-dimensional embedding vector for each node of the

graph where D << |V |. The embedding vectors of nodes in the embedding space

are generated in such a way that similar nodes in the graph have similar vectors in

the embedding space. In this study, our objective is to quantify and evaluate the

interpretability of the graph embeddings.

Inspired by the framework for quantifying the interpretability of word embeddings

from [12], we define several interpretability scores for graph embeddings using cen-

trality properties of nodes. Node centrality is an important graph property and

has been used in many studies for graph clustering and community detection tasks

[26, 27, 28, 29]. We leverage the centrality properties of nodes to interpret the em-

bedding dimensions in terms of how well they capture central or important nodes

in a category.

6.4 Method

6.4.1 Approach overview

For quantifying the intepretability of graph embeddings, we first define an in-

tepretability score for each embedding dimension and then the interpretability of

the embedding method is obtained by averaging these scores for all dimensions.

The interpretabiliy score for the embedding method shows overall how well the

105

embeddings capture the important nodes. For evaluating the interpretability of

each embedding dimension, we select nodes with either high or low values of each

embedding dimension and define the Betweenness Centrality Importance (BCI) or

Closeness Centrality Importance (CCI) scores of each embedding dimension with

respect to each category using these nodes. Then, the interpretability score of the

embedding dimension is the maximum score of the dimension over all categories.

Algorithm 4 presents the steps of the BCI computation. The computation of CCI

follows the same steps.

Algorithm 4 :BCI score computation

1: Input: Graph G = (V,E), Node embeddings Z ∈ R|V |×D, K node categories,
Ck ⊂ V set of nodes that belong to the kth category

2: Output: BCI score for the node embeddings
3: for d = 1...D do
4: for k = 1...K do
5: BCI+d,k ← Average({BCId,k(vx),∀vx ∈ N+

d,k ∩ Ck, BCId,k(vx) ̸= 0})
6: BCI−d,k ← Average({BCId,k(vx),∀vx ∈ N−

d,k ∩ Ck, BCId,k(vx) ̸= 0})
7: BCId,k ← max(BCI+d,k, BCI

−
d,k)

8: end for
9: BCId ← max ({BCId,k, ∀k ∈ {1, ..., K}})
10: end for
11: BCI ← Average ({BCId,∀d ∈ {1, ..., D}})

6.4.2 The definition of interpretability scores

In this section, we define the interpretability scores for graph embedding methods.

Assume that there are K categories and nodes in the graph can belong to one or

more of these K categories. Cj ⊂ V is the set of nodes that belongs to the jth

category. These categories of similar nodes can be defined based on the predefined

class labels, communities or partitions of the graph [332].

For measuring the interpretability of an embedding dimension d with respect to a

category Ck, two sets of nodes are selected based on the values of the nodes in the

embedding dimension. The first set, denoted as N+
d,k, has the highest values for

dimension d, and the second set, denoted as N−
d,k, has the lowest values for d. The

number of nodes in the two sets depends on category Ck. When used for category

Ck, the number of top or bottom nodes for dimension d is set to λ ∗ nk where nk

is the total number of nodes in category Ck. The parameter λ ∈ [1, |V |
nk

] determines

how many nodes can be selected from each dimension. Assigning a large value

for λ relaxes the strictness of the interpretability scores of each category and each

106

dimension because it allows more of nodes in each dimension to be considered in the

computation. A small value for λ has the opposite effect. We use λ = 1 because it

gives the best result (shown in Section 6.5.7).

Definition 26 (Betweenness centrality importance). For each node vx ∈ (N+
d,k ∪

N−
d,k)∩Ck, we define the Betweenness Centrality Importance (BCI) of vx with respect

to dimension d and category Ck, based on the number of times vx is placed on a

shortest path between two other nodes of Ck as follows:

BCId,k(vx) =

∑
vi ̸=vj ̸=vx∧{vi,vj ,vx}⊆Ck

σ(vi,vj |vx)
σ(vi,vj)

nb

(6.3)

where σ(vi, vj) is the number of the shortest paths from node vi to node vj, σ(vi, vj|vx)

is the number of those paths that pass through node vx, and nb is the number of node

pairs in category Ck at least one of whose shortest paths passes through vx (that is,

σ(vi, vj|vx) is nonzero).

Note that if nb = 0 (meaning that for all node pairs (vi, vj) in a category Ck,

σ(vi, vj|vx) = 0), we assign BCId,k(vx) to 0 because node vx does not appear in the

shortest path of any node pairs in category Ck and as a result, it is not a centrally

important node in that category.

Definition 27 (Closeness centrality importance). For each node vx ∈ (N+
d,k∪N

−
d,k)∩

Ck, we define the Closeness Centrality Importance (CCI) of node vx with respect to

dimension d and category Ck, based on the sum of the shortest distances between top

nodes of dimension d and the category Ck as follows:

CCId,k(vx) =
nc∑

vx∈Ck∧vj∈Ck
distance(vx, vj)

(6.4)

where distance(vx, vj) is the length of the shortest path between nodes vx and vj.

Note that nc is the number of times that distance(vx, vj) values are greater than

zero.

The betweenness centrality importance of dimension d in both directions with re-

spect to category Ck, denoted as BCI+d,k and BCI−d,k, is defined by averaging the

non-zero BCI scores for all the nodes in N+
d,k ∩ Ck and N−

d,k ∩ Ck, respectively. We

average over nodes with non-zero scores because these are the centrally important

nodes in the category. The betweenness centrality importance of dimension d with

respect to category Ck, denoted by BCId,k is the maximum of BCI+d,k and BCI−d,k

107

because the distinctive nodes of the dimension could be in either direction of embed-

ding dimension [12]. The closeness centrality importance of dimension d with respect

to category Ck, denoted by CCId,k is defined similarly. Intuitively, the BCId,k and

CCId,k scores measure how well dimension d represents the category Ck in terms of

capturing the centrally located nodes of category Ck with its extreme values. That

is, the higher the BCId,k or CCId,k value, the better dimension d of the embedding

matrix is in capturing the centrally important nodes in the category Ck.

The betweenness centrality and closeness centrality interpretability measures of a

dimension d are then computed as the maximum of BCId,k and CCId,k scores over

all categories Ck (k ∈ {1, 2, ..., K}) because this way we assign a score to each

dimension based on the best category that it represents:

BCId = max
k∈{1,...,K}

BCId,k (6.5)

CCId = max
k∈{1,...,K}

CCId,k (6.6)

Using the BCId and CCId measures for all the embedding dimensions d ∈ {1, ..., D},
we define the BCI and CCI scores for a node embedding method by averaging over

all the D embedding dimensions generated by the node embedding method:

BCI =
1

D

D∑
d=1

BCId (6.7)

CCI =
1

D

D∑
d=1

CCId (6.8)

The higher the BCI or CCI score of a graph embedding method, the better it can

represent or distinguish the important nodes.

6.4.3 Example

Figure 6.1 shows the BCI score computation for one dimension with respect to one

category in a small example. In this figure, a small graph is shown along with the

embedding of nodes with embedding dimension D = 3 and 2 node categories C1, C2.

For computing the BCI score of the embedding dimension 1 with respect to the

category 1, we compute BCI+1,1 and BCI−1,1 and the BCI1,1 = max(BCI+1,1, BCI
−
1,1).

For computing BCI+1,1, first a set of nodes with high values in the dimension 1 is

108

Figure 6.1: An example of BCI calculation for one embedding dimension with respect
to one category. I. A sample graph with nodes {a, b, c, d, e, f}. Nodes {a, b, c, d}
belong to category 1 (C1) and {e, f} belong to category 2 (C2). II. Node embedding
matrix of the graph where D = 3. III. Computation of BCI score for embedding
dimension 1 with respect to node category 1.

109

selected. |N+
1,1| = 1 ∗ 4 = 4 as n1 = 4. Therefore, four nodes with high values

in dimension 1 are selected to be compared with nodes in category 1. The set

N+
1,1 = {a, c, f, b}.

Then, the common nodes between nodes with high value in dimension 1 and cat-

egory 1 are selected which is N+
1,1 ∩ C1 = {a, c, b}. For each node vx in this set,

the BCI1,1(vx) is computed. As an example, for node a, the BCI1,1(a) equals be-

tweenness centrality score of the node a with respect to any node pairs in category

1 except itself, which are {(b, c), (b, d), (d, c)}. For nodes b and c, BCI1,1 equals 0 as

they did not occur in any shortest paths of any node pairs of category 1. Therefore,

the BCI+1,1 which is the average of non-zero BCI scores of nodes {a, c, b} equals 1.

Assume that the BCI−1,1 is 0. Then, the overall BCI score for dimension 1 with

respect to category 1, is 1.

6.5 Experiments

In this section, we compute the betweenness centrality importance and closeness

centrality importance scores for four graph embedding methods on three datasets.

We further empirically validate validity of the our interpretability measures. We

also demonstrate how to use the proposed measures to interpret some dimensions

of node embeddings. At the end, we investigate if there is a correlation between the

interpretability measures and performance of the embeddings in downstream tasks.

6.5.1 Datasets

We computed the BCI and CCI scores for the embedding vectors generated for the

following 3 datasets:

• Fb-cmu [364]. This dataset is from facebook website for students of CMU.

The nodes and edges are the students and the friendship between them. The

Fb-cmu dataset consists of 6k nodes, 249k edges and 3 categories of nodes.

• Wisconsin [385]. Wisconsin is a web network collected from the computer

science department of Wisconsin university. The webpages are the nodes and

the hyperlinks are the edges of this dataset. The categories of this dataset are

student, project, course, staff and faculty. The number of nodes and edges are

251 and 499.

110

Table 6.1: Betweenness centrality importance and Closeness centrality importance
scores

Dataset Score Node2vec LINE SDNE HOPE

Wisconsin
BCI 0.3824 0.3560 0.4867 0.4520
CCI 0.5006 0.4958 0.5350 0.5134

Squirell
BCI 0.0349 0.0309 0.0424 0.0327
CCI 0.3711 0.3583 0.3931 0.3973

Fb-cmu
BCI 0.1099 0.0969 0.1069 0.1237
CCI 0.5662 0.5596 0.5679 0.5673

• Squirrel [386]. This is a Wikipedia network dataset on the topics related to

Squirrels. In this dataset, nodes are the wiki pages and edges are the mutual

links between them. Nodes are classified into five classes based on the average

of monthly traffic on each webpage. There are 5k nodes and 217k edges in this

dataset.

6.5.2 Node embedding methods

The representation vectors of the datasets are generated using the well-known graph

embedding methods given below.

• Node2vec[30]: Node2vec is a random walk based node embedding method. It

generates random walks to capture the neighborhood structure of a graph and

then learns the embedding by training a skipgram model.

• LINE[38]: LINE learns the representation of a graph by optimizing a loss

function that preserves the first order and second order proximity in the graph

separately. This method is a node embedding method that uses probabilities

similar to random walk based methods.

• SDNE[39]: Structural Deep Network Embedding (SDNE) is a network embed-

ding method that leverages an autoencoder model to preserve first-order and

second order proximities of the nodes in the network.

• HOPE[35]: High-Order Proximity preserved Embedding method (HOPE) is

based on matrix factorization and captures high order proximities in graphs.

111

6.5.3 Quantitative measuring of interpretability of graph

embedding methods

We computed the betweenness centrality importance and closeness centrality impor-

tance scores for four graph embedding methods on three datasets. The categories

of nodes are the true class labels of nodes in each dataset. The embedding dimen-

sion for all datasets is 128. Table 6.1 shows the results of BCI and CCI scores for

the graph embedding methods. As shown in Table 6.1, for the Wisconsin dataset,

both the BCI and CCI scores are the highest for the SDNE method. In the Squirell

dataset, SDNE has the max BCI score and the CCI scores of the SDNE and HOPE

are very similar and the highest compared to Node2vec and LINE. For the Fb-cmu

dataset, HOPE has the best BCI and again HOPE and SDNE have the highest CCI

scores compared to other methods. Overall, BCI and CCI scores perform similarly

and identify SDNE and HOPE as the most interpretable embedding methods on

all the datasets. HOPE and SDNE both use adjacency matrices of the graph to

generate embedding vectors and based on the results, they preserve the important

nodes in categories in the graph better than Node2vec and LINE which generate

embeddings based on random walks.

6.5.4 Validation

In this section, we investigate the validity of the BCI and CCI scores of node em-

beddings in terms of whether they capture the centrality of nodes. For evaluating

the word embedding interpretability, Adi et al. [334] score the interpretability of the

sentence embeddings based on the accuracy of a classifier that is trained on the gen-

erated embeddings in predicting different aspects of sentence structures. Similarly,

[331] uses this technique for interpreting node embeddings. Here, we investigate if

there is a correlation between the ranking of node embedding methods from our

BCI and CCI scores and that from a node classification method (defined below to

predict node centrality) according to the classification accuracy.

To that end, we train three classifiers on node embeddings to classify nodes based on

some graph information. In these classification tasks, each instance in the dataset

is the embedding vector of a node and the instance label is a binary label based on

some node properties. Here, we create binary labels for each node by discretizing the

degree, betweenness centrality and closeness centrality of nodes. For degree label,

the label of a node is 1 if the node degree is above the median of node degrees in the

graph and 0 otherwise. For betweenness centrality and closeness centrality, the label

of a node is 1 if the value of the node property is above the mode of the value in

112

Table 6.2: Macro-F1 and Micro-F1 scores for node classification task using node
degree labels

Dataset Score Node2vec LINE SDNE HOPE

Wisconsin
Macro-F1 0.6197 0.4645 0.8820 0.3480
Micro-F1 0.6297 0.4887 0.8847 0.5339

Squirell
Macro-F1 0.7800 0.5041 0.9576 0.8399
Micro-F1 0.7842 0.5089 0.9577 0.8456

Fb-cmu
Macro-F1 0.7230 0.6334 0.8594 0.8603
Micro-F1 0.7259 0.6340 0.8684 0.8627

Table 6.3: Macro-F1 and Micro-F1 scores for node classification task using between-
ness centrality node labels

Dataset Score Node2vec LINE SDNE HOPE

Wisconsin
Macro-F1 0.5261 0.4100 0.8149 0.6388
Micro-F1 0.5342 0.4139 0.8177 0.6759

Squirell
Macro-F1 0.5397 0.5130 0.8030 0.6956
Micro-F1 0.5415 0.5134 0.8035 0.7035

Fb-cmu
Macro-F1 0.5527 0.5793 0.7939 0.8079
Micro-F1 0.5729 0.5799 0.8042 0.8106

Table 6.4: Macro-F1 and Micro-F1 scores for node classification task using closeness
centrality node labels

Dataset Score Node2vec LINE SDNE HOPE

Wisconsin
Macro-F1 0.7698 0.5239 0.9881 0.9920
Micro-F1 0.7789 0.5281 0.9881 0.9920

Squirell
Macro-F1 0.8560 0.5233 0.9517 0.8995
Micro-F1 0.8569 0.5236 0.9517 0.9004

Fb-cmu
Macro-F1 0.7435 0.6581 0.8469 0.8572
Micro-F1 0.7456 0.6586 0.8556 0.8591

the dataset and 0 otherwise. As the betweenness centrality and closeness centrality

of many nodes in the graph can be zero, the mode in these values is zero.

For these classification tasks, we utilized 10 fold cross validation using the logistic

regression classifier. Table 6.2, 6.3 and 6.4 depict the results of the classification

using labels defined by node properties. As shown in these tables, the Micro-F1

and Macro-F1 scores of the node classification are highly aligned with BCI scores in

Table 6.1 on all three datasets with SDNE having the highest F1 scores followed by

HOPE, Node2vc and then LINE. These scores also have the trends similar to those

of CCI in Table 6.1, with HOPE and SDNE being close top 2 performers, followed

by Node2vec and LINE. These node classification results provide strong validation

on the accuracy of our BCI and CCI scores.

113

Figure 6.2: Dimension and Category decomposition of BCI scores on the Wisconsin
dataset using Node2vec embedding vectors of 128 dimensions: Left side BCI scores
of embedding dimensions 96, 25 and 79 over all categories. Right side BCI values
over all dimensions for the Project, Faculty and Course category.

6.5.5 Interpreting embedding dimensions with visualization

In Figure 6.2, we use examples to visualize the BCI scores of node embedding di-

mensions for some categories to provide an interpretation for some dimensions. We

also show the distribution of BCI scores for some of the categories. Visualization

for the CCI scores can be done in the same way. The sample graph is Wisconsin

which consists of 5 categories: Student, Course, Project, Faculty and Staff. The

embeddings are generated by Node2vec.

The left side of Figure 6.2 depicts the BCI scores of three sample embedding di-

mensions (96, 25 and 79) over node categories. Based on the figures, dimension 96

captures the important nodes in three categories Project, Staff and Course with the

highest score for Project category. Dimension 25 has the highest score for category

Faculty compared to other categories which means that it is an important dimension

for representing category Faculty in terms of its central nodes. Dimension 79 has a

relatively similar score for three categories.

On the right hand side of Figure 6.2, we show the dimensional decomposition of

three sample categories. In the Project category, some embedding dimensions such

as 96 and 43 are dominant in representing the central nodes in the category. The

important nodes in the Faculty category are much better represented by a small

114

subset of embedding dimensions, but not by other embedding dimensions. For the

Course category, however, the encoding of central nodes in the category is distributed

among many embedding dimensions. In general, dimensions with the highest scores

for a category are important dimensions in representing central nodes in the category.

This type of visualization provides a way to understand the embedding dimensions

in terms of whether they capture the important nodes in a category.

6.5.6 Downstream tasks

In this section, we apply the node embedding methods in downstream tasks to

see whether there is an agreement between the BCI and CCI scores of each node

embedding method and the predictive performance of the node embedding methods

in downstream tasks including link prediction and node classification.

Link prediction: One of the main applications of node embeddings is link pre-

diction. In the link prediction task, a classifier is trained on a subset of edges and

tested on the ability to predict the existence of edges in a test set. Each edge is rep-

resented by an edge embedding vector that is obtained using mean of the embedding

vectors of nodes connected by the edge [30]. We applied the obtained node embed-

ding vectors from four methods to the link prediction task. The dataset is split into

training and test sets with a 80-20 ratio. In each set, the positive samples are the

existing edges and equal number of negative edges are randomly sampled between

nodes that are not connected in the dataset, following Node2vec [30] approach. We

used Logistic regression as the classification method. Table 6.5 shows the results of

the experiment.

As can be seen in the table, for Wisconsin and Squirrel datasets, SDNE has the

highest performance among other methods. This is highly aligned with the BCI

score of SDNE in those datasets. The Fb-cmu dataset has the best AUC score using

HOPE node embeddings which also has the highest BCI scores. We computed the

correlation between BCI ranking and AUC score ranking of link prediction using

Kendall rank correlation coefficient [387]. On average, the correlation between these

two rankings is about 0.8 which shows a strong agreement between link prediction

performance of node embedding methods with the BCI scores.

Node classification: We apply the node embedding methods in another down-

stream task, which is node classification using the true node labels in the datasets.

We applied 10-fold cross validation with Logistic Regression as the classification

115

Figure 6.3: Visualization of the embedding of Wisconsin dataset using t-SNE for
top two most populated classes.

method for the downstream task. Table 6.6 shows the results of the node classifica-

tion for each of the node embedding methods on the three datasets.

For the Wisconsin and Squirell datasets, SDNE has the highest node classification

scores. The general ranking of the embedding methods in F1-scores is highly aligned

with that of these methods using the BCI and CCI scores on these datasets (see

Table 6.1). Figure 6.3 is the visualization of node embeddings generated by four

embedding methods on Wisconsin dataset in two categories of nodes using t-SNE

[336]. In these figures, two classes are represented by green and red colors and it

seems that SDNE better captures or distinguishes the two classes compare to other

embedding methods in Wisconsin dataset. For the Fb-cmu dataset, Node2vec works

best in the node classification task, while SDNE and HOPE have the highest BCI

and CCI scores although the BCI and CCI scores of Node2vec are very close to the

best ones. We conjecture that the node categories in the Fb-cmu dataset are not as

distinguishable as in two other datasets in terms of the node centrality properties1.

In terms of correlation between BCI scores and node classification scores, the average

Kendall rank correlation [387] of BCI and CCI score with node classification scores

in Wisconsin and Squirell datasets is around 0.7 which shows a good correlation.

However, as expected a weak correlation around 0.4 is found in the Fb-cmu dataset.

1The node labels in the Fb-cmu dataset are 1, 2 and 3 and their meanings are not provided.

116

Table 6.5: Downstream link prediction task auc scores

Dataset Node2vec LINE SDNE HOPE
Wisconsin 0.5888 0.4944 0.6111 0.5000
Squirell 0.6766 0.5275 0.7013 0.6728
Fb-cmu 0.5934 0.5516 0.6021 0.6138

Table 6.6: Downstream node classification Macro-F1 and Micro-F1 scores

Dataset Score Node2vec LINE SDNE HOPE
Wisconsin Macro-F1 0.2322 0.1249 0.3190 0.1279

Micro-F1 0.4713 0.4546 0.6134 0.4703
Squirell Macro-F1 0.2646 0.1956 0.4081 0.3209

Micro-F1 0.2730 0.1959 0.4157 0.3419

Fb-cmu
Macro-F1 0.4436 0.3388 0.4283 0.3231
Micro-F1 0.6635 0.5605 0.6549 0.5923

Table 6.7: CCI score using different λ values on the Wisconsin dataset

λ Node2vec LINE SDNE HOPE
1 0.5006 0.4958 0.5350 0.5134
2 0.9606 0.9488 0.9668 0.9653
3 0.9999 0.9999 0.9999 0.9999

6.5.7 Parameter sensitivity

We evaluate the effects of the parameters λ in the interpretability scores. λ is the

parameter used in computing the BCI and CCI scores such that λ∗nk determines how

many top nodes in each embedding dimension are considered in the calculation and

can reflect the strictness of the score definition. In order to evaluate the effect of λ, we

compute the CCI scores using λ values ranging in {1, 2, 3} on the Wisconsin dataset

and report the results in Table 6.7. As can be seen in the Table 6.7, increasing λ

values results in the CCI scores that are harder to distinguish among embedding

methods. For instance, when λ = 2 the CCI scores are smoother than when λ = 1.

When λ = 3, it is not possible to distinguish among different embedding methods

based on the CCI scores. The reason for this is that as λ increases more nodes from

each embedding dimension are included in the interpretability score computation

and as a result the interpretability scores are less distinguishable. Therefore, it

is important not to choose a big value for parameter λ. We use λ = 1 in other

experiments.

117

6.6 Summary

We proposed two new interpretability measures, betweenness centrality importance

and closeness centrality importance scores, for quantifying the interpretability of

node embedding methods. We used the measures to compute the interpretability

scores for four graph embedding methods on three graph datasets. These scores

are validated by comparing the ranking of embedding methods using the proposed

interpretability scores with that using a node classification task whose class labels

are defined according to node centrality measures. We also showed that the proposed

measures can be used to explain the graph embedding dimensions via visualization.

Another interesting finding is that embeddings with high BCI and CCI scores tend

to do well in downstream link prediction and node classification tasks.

As future work, we will investigate how these scores can be used in developing bet-

ter graph embedding methods. In addition, other properties of graphs such as the

neighborhood structure of a graph could be utilized in defining new interpretability

scores. In this study, we focused on intepretability measures for static graph em-

bedding methods. Dynamic graphs are more challenging because of the dynamic

characteristics of the graphs. We would like to investigate intepretability scores for

dynamic graph embedding methods in the future. In addition, we will also inves-

tigate how to design an interpretability space of graph embedding vectors by using

rotation matrix algorithms.

118

Chapter 7

Conclusions and Future Directions

7.1 Summary of Contributions

Graph embedding has been a very active area of study recently. Different methods

were proposed to represent graphs effectively. Most of these methods are developed

for static graphs. However, the majority of the graphs in real-world are dynamic

and more challenging to represent. In this dissertation, we first surveyed the graph

embedding methods in both static and dynamic setting. Then, we introduced three

dynamic graph embedding methods to capture evolving characteristics of graphs.

Finally, we proposed two interpretability measures for graph embedding methods.

A summary of our contributions are given below. In a survey on graph embedding

methods, we review both traditional and GNN-based graph embedding methods.

The distinction between our surveys and others are as follows:

• We put together the graph embedding methods in both traditional and GNN-

based categories for both static and dynamic graphs and include over 300

papers consisting of papers published in reputable venues in data mining,

machine learning and artificial intelligence 1 since 2017 until the time of this

submission, and also influential papers with high citations published before

2017.

• We summarize a number of limitations of GNN-based methods and the pro-

posed solutions to these limitations until the time of submission. These limi-

tations are expressive power, over-smoothing, scalability, over-squashing, cap-

turing long-range dependencies, design space, neglecting substructures, ho-

1The venues include KDD, ICLR, ICML, NeurIPS, AAAI, IJCAI, ICDM, WWW, WSDM,
DSAA, SDM, CIKM.

119

mophily assumptions, and catastrophic forgetting. Such a summary was not

provided in previous surveys.

• We provide a list of the real-world applications of GNN-based methods that

are deployed in production.

• We suggest a list of future research directions including new ones that are not

covered by previous surveys.

Then, to address the challenges and limitations in modeling dynamic graphs, we

developed three dynamic graph embedding methods. Our first method Dynnde2vec

is a fast and scalable traditional dynamic graph embedding method that adapt the

well-known node2vec model to dynamic settings. Our major contributions in this

collaboration are as follows:

• We develop a dynamic embedding method dynnode2vec that captures evolving

patterns in large dynamic networks

• dynnode2vec is a fast and accurate method for dynamic graph embedding

• We evaluate the performance of our method in variety of tasks including

link prediction, node classification and anomaly detection on large real-world

graphs

Secondly, we developed LSTM-Node2vec which combines benefits of LSTM model

and node2vec. In this work, following contributions are achieved:

• We propose LSTM-node2vec, a novel dynamic embedding method that cap-

tures temporal changes with LSTM and then the learned parameters are trans-

ferred into node2vec to incorporate the local structure of each graph.

• We train an autoencoder LSTM model with temporal walks to capture the

history of nodes over time which is the first study to consider temporal walks

as the input to an LSTM model.

• We evaluate our method on three main data mining tasks including anomaly

detection, link prediction and node classification.

Third, TGR-Clique is introduced which is a GNN-based temporal graph embedding

methods that considers the effects of neighbors of a node in the maximal cliques in

the node embedding. This works has the following major contributions:

120

• We present a novel temporal graph representation learning method based on

maximal cliques for both inductive and transductive learning tasks.

• Our method generates temporal random walks on maximal cliques of the graph

to capture the evolution of the graph over time. By leveraging maximal cliques

in random walk generation, we identify the most connected neighbors of a node

to consider in its representation.

• We evaluate the performance of our method in link prediction and node classi-

fication tasks on seven real world datasets against five state-of-the-art models

to show that our method achieves better or comparable predictive performance

while being faster than other methods compared. In addition, we perform ab-

lation studies to show the importance of each feature of the proposed method.

Finally, motivated by the lack of proper metrics to quantify the interpretability of

the graph embeddings, we proposed two metrics for this purpose with the following

contributions:

• We propose two interpretability measures for node embedding methods using

the betweenness centrality and closeness centrality properties of the nodes in

a graph.

• We empirically validate the new interpretability measures by comparing the

ranking of embedding methods using our interpretability scores with that us-

ing a node classification task whose class labels are defined based on node

centrality.

• We illustrate how to use the proposed measures to interpret embedding di-

mensions.

• We investigate whether there is a relationship between the proposed inter-

pretability scores of the embeddings and the predictive performance of a down-

stream classification task with the embeddings.

7.2 Future Directions

Although numerous techniques were developed for graph representation learning,

there are still significant issues and challenges that need to be addressed. We will

discuss some of them here.

121

Proposing solutions for limitations of GNNs. GNNs have several limitations

such as expressive power, scalability and over-squashing. Different solutions have

been proposed for these issues. However, some of them, such as over-squashing, were

newly discovered and solutions to them are still preliminary, which have potential

for further research. In addition, the proposed solutions for the limitations of GNNs

were all for static GNNs and not much work has been done on solving the problems

of dynamic and spatial-temporal GNNs. Furthermore, there might be new issues

in dynamic settings that are not discovered yet and are worth studying. Finally,

by applying GNNs to different real-world problems and datasets, new drawbacks of

GNNs may be discovered, which will be interesting to study and solve.

Studying the theory side of GNNs. GNNs have been very successful in differ-

ent applications, and researchers have tried to understand the theoretical aspects

of GNNs success. However, the theoretical analyses of GNNs models in terms of

optimization properties and generalization across graph sizes are less understood.

In [388], the first steps in understanding the global convergence of gradient descent

in GNNs are studied. In addition, in [389], it is shown that GNNs that are trained

on some graph distributions cannot generalize to larger unseen graphs. Therefore,

future work is needed to understand these topics fully.

Defining new GNNs by employing differential equations. Partial differential

equations (PDE) are used to model physical phenomena [390]. Recently, PDEs have

been used to model the information propagation in graphs and design new GNN

models [306, 144]. One of the advantages of these new GNNs is that they address

the over-smoothing limitations of GNNs. Therefore, it is an interesting future work

to investigate what other GNN models can be proposed using differential equations

and if these models are more powerful than other GNNs.

Including domain-knowledge into GNNs. The domain knowledge is the infor-

mation about a specific problem that may not be available for a machine learning

model. This knowledge can be included in the models by changing the input, loss

function, and model architecture [391]. For instance, we can enrich the input data by

considering additional relationships or constraints on existing relationships among

the entities in the data. A few works incorporate domain knowledge into GNNs,

such as [392, 393], but this area is still new and has the potential for further research.

Limited training data labels. Training neural networks with limited training

data has always been challenging, which is also true for training the graph neural

122

nets. Solutions such as self-supervised learning, data augmentation, and contrastive

learning, have been proposed to solve the label scarcity problem and are employed in

graph neural nets. However, there are still opportunities for further studying these

types of learning in GNNs in both static and dynamic settings.

Transferring advances in deep learning models to GNNs. Graph neural

nets use deep learning techniques. Any advances and new models that are proposed

in deep learning can be adapted in graph neural nets. Specially, computer vision

and natural language processing are very active areas and the new models that

are developed for images, videos and texts can be studied in graphs as well. For

instance, ideas from video representation learning might be useful in dynamic graph

learning because the concept of objects moving in a video’s frames is similar to nodes

changing over time.

More applications. GNNs achieved great success in application in many domains

such as social networks, financial networks, and protein structures. Some of the

newer applications of GNNs are in electrical power grid monitoring [394], drug over-

prescription prediction [395], and paper publication prediction [396]. Therefore, it

is interesting to investigate the effectiveness of GNNs in other applications.

123

Bibliography

[1] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected

graph,” Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.

[2] S. Khoshraftar and A. An, “A survey on graph representation learning meth-

ods,” arXiv preprint arXiv:2204.01855, 2022.

[3] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding method

for dynamic graphs,” 3rd International Workshop on Representation Learning

for Graphs (ReLiG), IJCAI 2017, 2017.

[4] P. Goyal, S. Rokka Chhetri, N. Mehrabi, E. Ferrara, and A. Canedo, “Dy-

namicgem: A library for dynamic graph embedding methods,” arXiv preprint

arXiv:1811.10734, 2018.

[5] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,

“Continuous-time dynamic network embeddings,” in Companion Proceedings

of the The Web Conference 2018, pp. 969–976, 2018.

[6] S. Mahdavi, S. Khoshraftar, and A. An, “dynnode2vec: Scalable dynamic

network embedding,” in 2018 IEEE International Conference on Big Data

(Big Data), pp. 3762–3765, IEEE, 2018.

[7] S. Khoshraftar, S. Mahdavi, A. An, Y. Hu, and J. Liu, “Dynamic graph em-

bedding via lstm history tracking,” in 2019 IEEE International Conference on

Data Science and Advanced Analytics (DSAA), pp. 119–127, IEEE, 2019.

[8] S. Khoshraftar, A. An, and N. Babanejad, “Temporal graph representation

learning via maximal cliques,” in 2022 IEEE International Conference on Big

Data, IEEE, 2022.

[9] Z. Liu, C. Huang, Y. Yu, and J. Dong, “Motif-preserving dynamic attributed

network embedding,” in Proceedings of the Web Conference 2021, pp. 1629–

1638, 2021.

124

[10] Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, and P. Li, “Inductive representa-

tion learning in temporal networks via causal anonymous walks,” in Interna-

tional Conference on Learning Representations, 2020.

[11] S. Khoshraftar, S. Mahdavi, and A. An, “Centrality-based interpretability

measures for graph embeddings,” in 2021 IEEE 8th International Conference

on Data Science and Advanced Analytics (DSAA), pp. 1–10, IEEE, 2021.

[12] L. K. Şenel, I. Utlu, V. Yücesoy, A. Koc, and T. Cukur, “Semantic structure

and interpretability of word embeddings,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 26, no. 10, pp. 1769–1779, 2018.

[13] H. Luo, Z. Liu, H. Luan, and M. Sun, “Online learning of interpretable word

embeddings,” in Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pp. 1687–1692, 2015.

[14] R. Bamler and S. Mandt, “Dynamic word embeddings,” in International con-

ference on Machine learning, pp. 380–389, PMLR, 2017.

[15] Y. Kim, Y.-I. Chiu, K. Hanaki, D. Hegde, and S. Petrov, “Temporal analysis of

language through neural language models,” arXiv preprint arXiv:1405.3515,

2014.

[16] P. Wang, Y. Qian, F. K. Soong, L. He, and H. Zhao, “Learning distributed

word representations for bidirectional lstm recurrent neural network,” in Pro-

ceedings of the 2016 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies, pp. 527–

533, 2016.

[17] J. Li, M.-T. Luong, and D. Jurafsky, “A hierarchical neural autoencoder for

paragraphs and documents,” arXiv preprint arXiv:1506.01057, 2015.

[18] Y. Zhang, Q. Liu, and L. Song, “Sentence-state lstm for text representation,”

arXiv preprint arXiv:1805.02474, 2018.

[19] Z. Lu, J. Wahlström, and A. Nehorai, “Community detection in complex net-

works via clique conductance,” Scientific reports, vol. 8, no. 1, pp. 1–16, 2018.

[20] M. Adraoui, A. Retbi, M. K. Idrissi, and S. Bennani, “Maximal cliques based

method for detecting and evaluating learning communities in social networks,”

Future Generation Computer Systems, vol. 126, pp. 1–14, 2022.

125

[21] K. Biswas, V. Muthukkumarasamy, and E. Sithirasenan, “Maximal clique

based clustering scheme for wireless sensor networks,” in 2013 IEEE Eighth

International Conference on Intelligent Sensors, Sensor Networks and Infor-

mation Processing, pp. 237–241, IEEE, 2013.

[22] B. Zhang, B.-H. Park, T. Karpinets, and N. F. Samatova, “From pull-down

data to protein interaction networks and complexes with biological relevance,”

Bioinformatics, vol. 24, no. 7, pp. 979–986, 2008.

[23] O. Rokhlenko, Y. Wexler, and Z. Yakhini, “Similarities and differences of gene

expression in yeast stress conditions,” Bioinformatics, vol. 23, no. 2, pp. e184–

e190, 2007.

[24] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-Graber, and D. M. Blei, “Read-

ing tea leaves: How humans interpret topic models,” in Advances in neural

information processing systems, pp. 288–296, 2009.

[25] B. Murphy, P. Talukdar, and T. Mitchell, “Learning effective and interpretable

semantic models using non-negative sparse embedding,” in Proceedings of

COLING 2012, pp. 1933–1950, 2012.

[26] Q. Wu, X. Qi, E. Fuller, and C.-Q. Zhang, “follow the leader: A centrality

guided clustering and its application to social network analysis,” The Scientific

World Journal, vol. 2013, 2013.

[27] C. Tong, J. Niu, B. Dai, and Z. Xie, “A novel complex networks clustering

algorithm based on the core influence of nodes,” The Scientific World Journal,

vol. 2014, 2014.

[28] S. Ahajjam, M. El Haddad, and H. Badir, “A new scalable leader-community

detection approach for community detection in social networks,” Social Net-

works, vol. 54, pp. 41–49, 2018.

[29] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping community de-

tection using neighborhood-inflated seed expansion,” IEEE Transactions on

Knowledge and Data Engineering, vol. 28, no. 5, pp. 1272–1284, 2016.

[30] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,”

in Proceedings of the 22nd ACM SIGKDD, pp. 855–864, ACM, 2016.

[31] J. MacQueen et al., “Some methods for classification and analysis of multivari-

ate observations,” in Proceedings of the fifth Berkeley symposium on mathe-

126

matical statistics and probability, vol. 1, pp. 281–297, Oakland, CA, USA,

1967.

[32] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of so-

cial representations,” in Proceedings of the 20th ACM SIGKDD, pp. 701–710,

ACM, 2014.

[33] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J.

Smola, “Distributed large-scale natural graph factorization,” in Proceedings of

the 22nd international conference on World Wide Web, pp. 37–48, 2013.

[34] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with

global structural information,” in Proceedings of the 24th ACM international

on conference on information and knowledge management, pp. 891–900, 2015.

[35] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity pre-

serving graph embedding,” in Proceedings of the 22nd ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pp. 1105–1114,

2016.

[36] Y. Yin and Z. Wei, “Scalable graph embeddings via sparse transpose proxim-

ities,” in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pp. 1429–1437, 2019.

[37] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical representation

learning for networks,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 32, 2018.

[38] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale

information network embedding,” in Proceedings of the 24th WWW, pp. 1067–

1077, International World Wide Web Conferences Steering Committee, 2015.

[39] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in

Proceedings of the 22nd ACM SIGKDD, pp. 1225–1234, ACM, 2016.

[40] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph repre-

sentations,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 30, 2016.

[41] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint

arXiv:1611.07308, 2016.

127

[42] S. Ivanov and E. Burnaev, “Anonymous walk embeddings,” in International

conference on machine learning, pp. 2186–2195, PMLR, 2018.

[43] Y.-A. Lai, C.-C. Hsu, W. H. Chen, M.-Y. Yeh, and S.-D. Lin, “Prune: Pre-

serving proximity and global ranking for network embedding,” Advances in

neural information processing systems, vol. 30, 2017.

[44] S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. A. Alemi, “Watch your step:

Learning node embeddings via graph attention,” Advances in neural informa-

tion processing systems, vol. 31, 2018.

[45] F. Nie, W. Zhu, and X. Li, “Unsupervised large graph embedding,” in Thirty-

first AAAI conference on artificial intelligence, 2017.

[46] C. Zhou, Y. Liu, X. Liu, Z. Liu, and J. Gao, “Scalable graph embedding for

asymmetric proximity,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 31, 2017.

[47] Y. Li, C. Sha, X. Huang, and Y. Zhang, “Community detection in attributed

graphs: An embedding approach,” in Thirty-second AAAI conference on ar-

tificial intelligence, 2018.

[48] L. Du, Z. Lu, Y. Wang, G. Song, Y. Wang, and W. Chen, “Galaxy network

embedding: A hierarchical community structure preserving approach.,” in IJ-

CAI, pp. 2079–2085, 2018.

[49] X. Shen, S. Pan, W. Liu, Y.-S. Ong, and Q.-S. Sun, “Discrete network embed-

ding,” in Proceedings of the 27th International Joint Conference on Artificial

Intelligence, pp. 3549–3555, 2018.

[50] H. Gao and H. Huang, “Deep attributed network embedding,” in Twenty-

Seventh International Joint Conference on Artificial Intelligence (IJCAI)),

2018.

[51] Z. Zhang, P. Cui, H. Li, X. Wang, and W. Zhu, “Billion-scale network embed-

ding with iterative random projection,” in 2018 IEEE International Confer-

ence on Data Mining (ICDM), pp. 787–796, IEEE, 2018.

[52] H. Wang, E. Chen, Q. Liu, T. Xu, D. Du, W. Su, and X. Zhang, “A united

approach to learning sparse attributed network embedding,” in 2018 IEEE

International Conference on Data Mining (ICDM), pp. 557–566, IEEE, 2018.

128

[53] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, and C. Zhang, “Binarized

attributed network embedding,” in 2018 IEEE International Conference on

Data Mining (ICDM), pp. 1476–1481, IEEE, 2018.

[54] X. Huang, J. Li, and X. Hu, “Label informed attributed network embedding,”

in Proceedings of the tenth ACM international conference on web search and

data mining, pp. 731–739, 2017.

[55] A. Tsitsulin, D. Mottin, P. Karras, and E. Müller, “Verse: Versatile graph

embeddings from similarity measures,” in Proceedings of the 2018 world wide

web conference, pp. 539–548, 2018.

[56] T. Huang, L. Zhou, L. Wang, G. Du, and K. Lü, “Attributed network embed-

ding with community preservation,” in 2020 IEEE 7th International Confer-

ence on Data Science and Advanced Analytics (DSAA), pp. 334–343, IEEE,

2020.

[57] F. Jiang, L. He, Y. Zheng, E. Zhu, J. Xu, and P. S. Yu, “On spectral graph em-

bedding: A non-backtracking perspective and graph approximation,” in Pro-

ceedings of the 2018 SIAM International Conference on Data Mining, pp. 324–

332, SIAM, 2018.

[58] X. Huang, J. Li, and X. Hu, “Accelerated attributed network embedding,”

in Proceedings of the 2017 SIAM international conference on data mining,

pp. 633–641, SIAM, 2017.

[59] W. Xiao, H. Zhao, V. W. Zheng, and Y. Song, “Vertex-reinforced random

walk for network embedding,” in Proceedings of the 2020 SIAM International

Conference on Data Mining, pp. 595–603, SIAM, 2020.

[60] H. Zhu and P. Koniusz, “Refine: Random range finder for network embed-

ding,” in Proceedings of the 30th ACM International Conference on Informa-

tion & Knowledge Management, pp. 3682–3686, 2021.

[61] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community pre-

serving network embedding,” in Thirty-first AAAI conference on artificial in-

telligence, 2017.

[62] L. Ribeiro, P. Saverese, and D. Figueiredo, “struc2vec: Learning node repre-

sentations from structural identity,” in KDD, 2017.

129

[63] T. He, L. Gao, J. Song, X. Wang, K. Huang, and Y. Li, “Sneq: semi-supervised

attributed network embedding with attention-based quantisation,” in Proceed-

ings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4091–4098,

2020.

[64] Y. Wang, G. Pan, Y. Yao, H. Tong, H. Yang, F. Xu, and J. Lu, “Bringing

order to network embedding: A relative ranking based approach,” in Proceed-

ings of the 29th ACM International Conference on Information & Knowledge

Management, pp. 1585–1594, 2020.

[65] H. Chen, S. F. Sultan, Y. Tian, M. Chen, and S. Skiena, “Fast and accurate

network embeddings via very sparse random projection,” in Proceedings of the

28th ACM international conference on information and knowledge manage-

ment, pp. 399–408, 2019.

[66] T. Lyu, Y. Zhang, and Y. Zhang, “Enhancing the network embedding quality

with structural similarity,” in Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management, pp. 147–156, 2017.

[67] S. Chanpuriya and C. Musco, “Infinitewalk: Deep network embeddings as

laplacian embeddings with a nonlinearity,” in Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 1325–1333, 2020.

[68] S. Chanpuriya, C. Musco, K. Sotiropoulos, and C. Tsourakakis, “Node em-

beddings and exact low-rank representations of complex networks,” Advances

in Neural Information Processing Systems, vol. 33, pp. 13185–13198, 2020.

[69] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding

as matrix factorization: Unifying deepwalk, line, pte, and node2vec,” in Pro-

ceedings of the eleventh ACM international conference on web search and data

mining, pp. 459–467, 2018.

[70] X. Zhang, K. Xie, S. Wang, and Z. Huang, “Learning based proximity matrix

factorization for node embedding,” in Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining, pp. 2243–2253, 2021.

[71] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu, “Arbitrary-order

proximity preserved network embedding,” in Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 2778–2786, 2018.

130

[72] J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang, “Netsmf:

Large-scale network embedding as sparse matrix factorization,” in The World

Wide Web Conference, pp. 1509–1520, 2019.

[73] A. Epasto and B. Perozzi, “Is a single embedding enough? learning node

representations that capture multiple social contexts,” in The world wide web

conference, pp. 394–404, 2019.

[74] R. Al-Rfou, B. Perozzi, and D. Zelle, “Ddgk: Learning graph representa-

tions for deep divergence graph kernels,” in The World Wide Web Conference,

pp. 37–48, 2019.

[75] R. Brochier, A. Guille, and J. Velcin, “Global vectors for node representa-

tions,” in The World Wide Web Conference, pp. 2587–2593, 2019.

[76] A. K. Bhowmick, K. Meneni, M. Danisch, J.-L. Guillaume, and B. Mitra,

“Louvainne: Hierarchical louvain method for high quality and scalable net-

work embedding,” in Proceedings of the 13th International Conference on Web

Search and Data Mining, pp. 43–51, 2020.

[77] R. A. Rossi, N. K. Ahmed, E. Koh, S. Kim, A. Rao, and Y. Abbasi-Yadkori,

“A structural graph representation learning framework,” in Proceedings of the

13th international conference on web search and data mining, pp. 483–491,

2020.

[78] Z. Meng, S. Liang, H. Bao, and X. Zhang, “Co-embedding attributed net-

works,” in Proceedings of the twelfth ACM international conference on web

search and data mining, pp. 393–401, 2019.

[79] C. Yang, M. Sun, Z. Liu, and C. Tu, “Fast network embedding enhancement

via high order proximity approximation.,” in IJCAI, vol. 17, pp. 3894–3900,

2017.

[80] Z. Huang, A. Silva, and A. Singh, “A broader picture of random-walk based

graph embedding,” in Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, pp. 685–695, 2021.

[81] X. Liu, T. Murata, K.-S. Kim, C. Kotarasu, and C. Zhuang, “A general view

for network embedding as matrix factorization,” in Proceedings of the Twelfth

ACM International Conference on Web Search and Data Mining, pp. 375–383,

2019.

131

[82] F. Heidari and M. Papagelis, “Evolving network representation learning based

on random walks,” Applied network science, vol. 5, no. 1, pp. 1–38, 2020.

[83] S. Mahdavi, S. Khoshraftar, and A. An, “Dynamic joint variational graph au-

toencoders,” in Joint European Conference on Machine Learning and Knowl-

edge Discovery in Databases, pp. 385–401, Springer, 2019.

[84] P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Capturing network

dynamics using dynamic graph representation learning,” Knowledge-Based

Systems, vol. 187, p. 104816, 2020.

[85] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding temporal net-

work via neighborhood formation,” in Proceedings of the 24th ACM SIGKDD

international conference on knowledge discovery & data mining, pp. 2857–

2866, 2018.

[86] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network em-

bedding by modeling triadic closure process,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 32, 2018.

[87] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning rep-

resentations over dynamic graphs,” in International Conference on Learning

Representations, 2019.

[88] H. Huang, Z. Fang, X. Wang, Y. Miao, and H. Jin, “Motif-preserving temporal

network embedding,” in Proceedings of the Twenty-Ninth International Joint

Conference on Artificial Intelligence, IJCAI-20, pp. 1237–1243.

[89] L. Du, Y. Wang, G. Song, Z. Lu, and J. Wang, “Dynamic network embedding:

An extended approach for skip-gram based network embedding.,” in IJCAI,

vol. 2018, pp. 2086–2092, 2018.

[90] J. Ma, Q. Zhang, J. Lou, L. Xiong, and J. C. Ho, “Temporal network embed-

ding via tensor factorization,” in Proceedings of the 30th ACM International

Conference on Information & Knowledge Management, pp. 3313–3317, 2021.

[91] Z. Qiu, W. Hu, J. Wu, W. Liu, B. Du, and X. Jia, “Temporal network em-

bedding with high-order nonlinear information,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, pp. 5436–5443, 2020.

[92] M. Beladev, L. Rokach, G. Katz, I. Guy, and K. Radinsky, “tdgraphembed:

Temporal dynamic graph-level embedding,” in Proceedings of the 29th ACM

132

International Conference on Information & Knowledge Management, pp. 55–

64, 2020.

[93] Z. Liu, C. Huang, Y. Yu, P. Song, B. Fan, and J. Dong, “Dynamic represen-

tation learning for large-scale attributed networks,” in Proceedings of the 29th

ACM International Conference on Information & Knowledge Management,

pp. 1005–1014, 2020.

[94] Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, “Timers: Error-bounded svd

restart on dynamic networks,” in Thirty-second AAAI conference on artificial

intelligence, 2018.

[95] Y. Lu, X. Wang, C. Shi, P. S. Yu, and Y. Ye, “Temporal network embedding

with micro-and macro-dynamics,” in Proceedings of the 28th ACM interna-

tional conference on information and knowledge management, pp. 469–478,

2019.

[96] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed network

embedding for learning in a dynamic environment,” in Proceedings of the 2017

ACM on Conference on Information and Knowledge Management, pp. 387–

396, 2017.

[97] U. Sharan and J. Neville, “Temporal-relational classifiers for prediction in

evolving domains,” in 2008 Eighth IEEE International Conference on Data

Mining, pp. 540–549, IEEE, 2008.

[98] U. Singer, I. Guy, and K. Radinsky, “Node embedding over temporal graphs,”

in Proceedings of the 28th International Joint Conference on Artificial Intelli-

gence, pp. 4605–4612, 2019.

[99] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang, “Net-

walk: A flexible deep embedding approach for anomaly detection in dynamic

networks,” in Proceedings of the 24th ACM SIGKDD international conference

on knowledge discovery & data mining, pp. 2672–2681, 2018.

[100] J. Zhu, Q. Xie, and E. J. Chin, “A hybrid time-series link prediction framework

for large social network,” in International Conference on Database and Expert

Systems Applications, pp. 345–359, Springer, 2012.

[101] L. Yao, L. Wang, L. Pan, and K. Yao, “Link prediction based on common-

neighbors for dynamic social network,” Procedia Computer Science, vol. 83,

pp. 82–89, 2016.

133

[102] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The

graph neural network model,” IEEE transactions on neural networks, vol. 20,

no. 1, pp. 61–80, 2008.

[103] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph sequence

neural networks,” in Proceedings of ICLR’16, 2016.

[104] F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui, “Implicit graph

neural networks,” Advances in Neural Information Processing Systems, vol. 33,

pp. 11984–11995, 2020.

[105] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and

deep locally connected networks on graphs,” in 2nd International Conference

on Learning Representations, ICLR 2014, 2014.

[106] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-

lutional networks,” ICLR, 2017.

[107] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning

on large graphs,” Advances in neural information processing systems, vol. 30,

2017.

[108] D. Beaini, S. Passaro, V. Létourneau, W. Hamilton, G. Corso, and P. Liò, “Di-

rectional graph networks,” in International Conference on Machine Learning,

pp. 748–758, PMLR, 2021.

[109] X. Liu, W. Jin, Y. Ma, Y. Li, H. Liu, Y. Wang, M. Yan, and J. Tang, “Elastic

graph neural networks,” in International Conference on Machine Learning,

pp. 6837–6849, PMLR, 2021.

[110] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simpli-

fying graph convolutional networks,” in International conference on machine

learning, pp. 6861–6871, PMLR, 2019.

[111] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,

“Graph attention networks,” in International Conference on Learning Repre-

sentations, 2018.

[112] G. Wang, R. Ying, J. Huang, and J. Leskovec, “Multi-hop attention graph

neural networks,” in IJCAI, 2021.

[113] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neu-

ral message passing for quantum chemistry,” in International Conference on

Machine Learning, pp. 1263–1272, PMLR, 2017.

134

[114] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,

M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Re-

lational inductive biases, deep learning, and graph networks,” arXiv preprint

arXiv:1806.01261, 2018.

[115] M. Brockschmidt, “Gnn-film: Graph neural networks with feature-wise linear

modulation,” in International Conference on Machine Learning, pp. 1144–

1152, PMLR, 2020.

[116] D. Zambon, C. Alippi, and L. Livi, “Graph random neural features for

distance-preserving graph representations,” in International Conference on

Machine Learning, pp. 10968–10977, PMLR, 2020.

[117] V. G. Satorras, E. Hoogeboom, and M. Welling, “E (n) equivariant graph

neural networks,” in International Conference on Machine Learning, pp. 9323–

9332, PMLR, 2021.

[118] H. Zhu, F. Feng, X. He, X. Wang, Y. Li, K. Zheng, and Y. Zhang, “Bilin-

ear graph neural network with neighbor interactions,” in Proceedings of the

Twenty-Ninth International Conference on International Joint Conferences on

Artificial Intelligence, pp. 1452–1458, 2021.

[119] K. Zhou, Q. Song, X. Huang, D. Zha, N. Zou, and X. Hu, “Multi-channel graph

neural networks,” in Proceedings of the Twenty-Ninth International Confer-

ence on International Joint Conferences on Artificial Intelligence, pp. 1352–

1358, 2021.

[120] B. Yan, C. Wang, G. Guo, and Y. Lou, “Tinygnn: Learning efficient graph

neural networks,” in Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp. 1848–1856, 2020.

[121] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural

networks?,” in International Conference on Learning Representations, 2018.

[122] R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Relational pooling for

graph representations,” in International Conference on Machine Learning,

pp. 4663–4673, PMLR, 2019.

[123] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,

and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph neural

networks,” in Proceedings of the AAAI conference on artificial intelligence,

vol. 33, pp. 4602–4609, 2019.

135

[124] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman, “Provably powerful

graph networks,” Advances in neural information processing systems, vol. 32,

2019.

[125] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between graph

isomorphism testing and function approximation with gnns,” Advances in neu-

ral information processing systems, vol. 32, 2019.

[126] W. Azizian et al., “Expressive power of invariant and equivariant graph neural

networks,” in International Conference on Learning Representations, 2020.

[127] P. Li, Y. Wang, H. Wang, and J. Leskovec, “Distance encoding: Design

provably more powerful neural networks for graph representation learning,”

Advances in Neural Information Processing Systems, vol. 33, pp. 4465–4478,

2020.

[128] M. Balcilar, P. Héroux, B. Gauzere, P. Vasseur, S. Adam, and P. Honeine,

“Breaking the limits of message passing graph neural networks,” in Interna-

tional Conference on Machine Learning, pp. 599–608, PMLR, 2021.

[129] R. Sato, M. Yamada, and H. Kashima, “Random features strengthen graph

neural networks,” in Proceedings of the 2021 SIAM International Conference

on Data Mining (SDM), pp. 333–341, SIAM, 2021.

[130] P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer, “Dropgnn: random

dropouts increase the expressiveness of graph neural networks,” Advances in

Neural Information Processing Systems, vol. 34, 2021.

[131] H. Wang, H. Yin, M. Zhang, and P. Li, “Equivariant and stable positional en-

coding for more powerful graph neural networks,” in International Conference

on Learning Representations, 2021.

[132] A. Wijesinghe and Q. Wang, “A new perspective on” how graph neural net-

works go beyond weisfeiler-lehman?”,” in International Conference on Learn-

ing Representations, 2021.

[133] M. Zhang and P. Li, “Nested graph neural networks,” Advances in Neural

Information Processing Systems, vol. 34, 2021.

[134] J. You, J. M. Gomes-Selman, R. Ying, and J. Leskovec, “Identity-aware graph

neural networks,” in Proceedings of the AAAI Conference on Artificial Intel-

ligence, vol. 35, pp. 10737–10745, 2021.

136

[135] G. Dasoulas, L. D. Santos, K. Scaman, and A. Virmaux, “Coloring graph

neural networks for node disambiguation,” in Proceedings of the Twenty-Ninth

International Conference on International Joint Conferences on Artificial In-

telligence, pp. 2126–2132, 2021.

[136] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:

Graph neural networks meet personalized pagerank,” in International Con-

ference on Learning Representations, 2018.

[137] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Rep-

resentation learning on graphs with jumping knowledge networks,” in Inter-

national Conference on Machine Learning, pp. 5453–5462, PMLR, 2018.

[138] L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns,” in In-

ternational Conference on Learning Representations, 2019.

[139] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph

convolutional networks on node classification,” in International Conference on

Learning Representations, 2019.

[140] K. Zhou, X. Huang, Y. Li, D. Zha, R. Chen, and X. Hu, “Towards deeper

graph neural networks with differentiable group normalization,” Advances in

Neural Information Processing Systems, vol. 33, pp. 4917–4928, 2020.

[141] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov,

and J. Tang, “Graph random neural networks for semi-supervised learn-

ing on graphs,” Advances in neural information processing systems, vol. 33,

pp. 22092–22103, 2020.

[142] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph

convolutional networks,” in International Conference on Machine Learning,

pp. 1725–1735, PMLR, 2020.

[143] A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou, N. Duffield,

K. Narayanan, and X. Qian, “Bayesian graph neural networks with adap-

tive connection sampling,” in International conference on machine learning,

pp. 4094–4104, PMLR, 2020.

[144] M. Eliasof, E. Haber, and E. Treister, “Pde-gcn: Novel architectures for graph

neural networks motivated by partial differential equations,” Advances in Neu-

ral Information Processing Systems, vol. 34, 2021.

137

[145] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan,

V. Prasanna, L. Jin, and R. Chen, “Decoupling the depth and scope of graph

neural networks,” Advances in Neural Information Processing Systems, vol. 34,

2021.

[146] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-

gcn: An efficient algorithm for training deep and large graph convolutional

networks,” in Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pp. 257–266, 2019.

[147] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph convolutional

networks via importance sampling,” in International Conference on Learning

Representations, 2018.

[148] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent im-

portance sampling for training deep and large graph convolutional networks,”

Advances in neural information processing systems, vol. 32, 2019.

[149] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graphsaint:

Graph sampling based inductive learning method,” in International Confer-

ence on Learning Representations, 2019.

[150] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional

networks with variance reduction,” in International Conference on Machine

Learning, pp. 942–950, PMLR, 2018.

[151] M. Chen, Z. Wei, B. Ding, Y. Li, Y. Yuan, X. Du, and J.-R. Wen, “Scal-

able graph neural networks via bidirectional propagation,” Advances in neural

information processing systems, vol. 33, pp. 14556–14566, 2020.

[152] G. Li, M. Müller, B. Ghanem, and V. Koltun, “Training graph neural networks

with 1000 layers,” in International conference on machine learning, pp. 6437–

6449, PMLR, 2021.

[153] M. Ding, K. Kong, J. Li, C. Zhu, J. Dickerson, F. Huang, and T. Gold-

stein, “Vq-gnn: A universal framework to scale up graph neural networks

using vector quantization,” Advances in Neural Information Processing Sys-

tems, vol. 34, 2021.

[154] K.-L. Yao and W.-J. Li, “Blocking-based neighbor sampling for large-scale

graph neural networks,” in International Joint Conference on Artificial Intel-

ligence, 2021.

138

[155] T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang, “A unified lottery ticket hy-

pothesis for graph neural networks,” in International Conference on Machine

Learning, pp. 1695–1706, PMLR, 2021.

[156] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra, “Beyond ho-

mophily in graph neural networks: Current limitations and effective designs,”

Advances in Neural Information Processing Systems, vol. 33, pp. 7793–7804,

2020.

[157] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal general-

ized pagerank graph neural network,” in International Conference on Learning

Representations, 2020.

[158] S. Suresh, V. Budde, J. Neville, P. Li, and J. Ma, “Breaking the limit of

graph neural networks by improving the assortativity of graphs with local

mixing patterns,” in Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, pp. 1541–1551, 2021.

[159] L. Yang, M. Li, L. Liu, C. Wang, X. Cao, Y. Guo, et al., “Diverse message

passing for attribute with heterophily,” Advances in Neural Information Pro-

cessing Systems, vol. 34, 2021.

[160] J. Zhu, R. A. Rossi, A. Rao, T. Mai, N. Lipka, N. K. Ahmed, and D. Koutra,

“Graph neural networks with heterophily,” in Proceedings of the AAAI Con-

ference on Artificial Intelligence, vol. 35, pp. 11168–11176, 2021.

[161] D. Jin, Z. Yu, C. Huo, R. Wang, X. Wang, D. He, and J. Han, “Universal

graph convolutional networks,” Advances in Neural Information Processing

Systems, vol. 34, 2021.

[162] M. Liu, Z. Wang, and S. Ji, “Non-local graph neural networks,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 2021.

[163] T. Yang, Y. Wang, Z. Yue, Y. Yang, Y. Tong, and J. Bai, “Graph pointer neu-

ral networks,” Proceedings of the AAAI Conference on Artificial Intelligence,

2022.

[164] T. Wang, R. Wang, D. Jin, D. He, and Y. Huang, “Powerful graph con-

volutioal networks with adaptive propagation mechanism for homophily and

heterophily,” Proceedings of the AAAI Conference on Artificial Intelligence,

2022.

139

[165] Z. Fang, L. Xu, G. Song, Q. Long, and Y. Zhang, “Polarized graph neural

networks,” in Proceedings of the ACM Web Conference 2022, pp. 1404–1413,

2022.

[166] L. Du, X. Shi, Q. Fu, X. Ma, H. Liu, S. Han, and D. Zhang, “Gbk-gnn:

Gated bi-kernel graph neural networks for modeling both homophily and het-

erophily,” in Proceedings of the ACM Web Conference 2022, pp. 1550–1558,

2022.

[167] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-gcn: Geomet-

ric graph convolutional networks,” in International Conference on Learning

Representations, 2019.

[168] G. Bouritsas, F. Frasca, S. P. Zafeiriou, and M. Bronstein, “Improving graph

neural network expressivity via subgraph isomorphism counting,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 2022.

[169] C. Bodnar, F. Frasca, Y. Wang, N. Otter, G. F. Montufar, P. Lio, and M. Bron-

stein, “Weisfeiler and lehman go topological: Message passing simplicial net-

works,” in International Conference on Machine Learning, pp. 1026–1037,

PMLR, 2021.

[170] Q. Long, Y. Jin, G. Song, Y. Li, and W. Lin, “Graph structural-topic neural

network,” in Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pp. 1065–1073, 2020.

[171] Z. Chen, L. Chen, S. Villar, and J. Bruna, “Can graph neural networks count

substructures?,” Advances in neural information processing systems, vol. 33,

pp. 10383–10395, 2020.

[172] Q. Long, Y. Jin, Y. Wu, and G. Song, “Theoretically improving graph neu-

ral networks via anonymous walk graph kernels,” in Proceedings of the Web

Conference 2021, pp. 1204–1214, 2021.

[173] E. Alsentzer, S. Finlayson, M. Li, and M. Zitnik, “Subgraph neural networks,”

Advances in Neural Information Processing Systems, vol. 33, pp. 8017–8029,

2020.

[174] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierar-

chical graph representation learning with differentiable pooling,” Advances in

neural information processing systems, vol. 31, 2018.

140

[175] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural net-

works for graphs,” in International conference on machine learning, pp. 2014–

2023, PMLR, 2016.

[176] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”

Advances in neural information processing systems, vol. 31, 2018.

[177] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning

architecture for graph classification,” in Thirty-second AAAI conference on

artificial intelligence, 2018.

[178] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional neural

networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 32, 2018.

[179] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-based

semi-supervised classification,” in Proceedings of the 2018 World Wide Web

Conference, pp. 499–508, 2018.

[180] G. Pan, Y. Yao, H. Tong, F. Xu, and J. Lu, “Unsupervised attributed network

embedding via cross fusion,” in Proceedings of the 14th ACM International

Conference on Web Search and Data Mining, pp. 797–805, 2021.

[181] Y. Dong, K. Ding, B. Jalaian, S. Ji, and J. Li, “Adagnn: Graph neural net-

works with adaptive frequency response filter,” in Proceedings of the 30th ACM

International Conference on Information & Knowledge Management, pp. 392–

401, 2021.

[182] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and A. Rao, “Graph con-

volutional networks with motif-based attention,” in Proceedings of the 28th

ACM international conference on information and knowledge management,

pp. 499–508, 2019.

[183] Q. Li, X. Zhang, H. Liu, Q. Dai, and X.-M. Wu, “Dimensionwise separable 2-d

graph convolution for unsupervised and semi-supervised learning on graphs,”

in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery

& Data Mining, pp. 953–963, 2021.

[184] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured se-

quence modeling with graph convolutional recurrent networks,” in Interna-

tional Conference on Neural Information Processing, pp. 362–373, Springer,

2018.

141

[185] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep

spatial-temporal graph modeling.,” in IJCAI, 2019.

[186] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for traffic

flow forecasting,” in Proceedings of the AAAI Conference on Artificial Intelli-

gence, vol. 35, pp. 4189–4196, 2021.

[187] J. Ye, L. Sun, B. Du, Y. Fu, X. Tong, and H. Xiong, “Co-prediction of multi-

ple transportation demands based on deep spatio-temporal neural network,”

in Proceedings of the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, pp. 305–313, 2019.

[188] W. Ouyang, X. Zhang, L. Li, H. Zou, X. Xing, Z. Liu, and Y. Du, “Deep spatio-

temporal neural networks for click-through rate prediction,” in Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pp. 2078–2086, 2019.

[189] Y.-a. Geng, Q. Li, T. Lin, L. Jiang, L. Xu, D. Zheng, W. Yao, W. Lyu,

and Y. Zhang, “Lightnet: A dual spatiotemporal encoder network model for

lightning prediction,” in Proceedings of the 25th ACM SIGKDD international

conference on knowledge discovery & data mining, pp. 2439–2447, 2019.

[190] H. Lin, R. Bai, W. Jia, X. Yang, and Y. You, “Preserving dynamic attention

for long-term spatial-temporal prediction,” in Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 36–46, 2020.

[191] R. Dai, S. Xu, Q. Gu, C. Ji, and K. Liu, “Hybrid spatio-temporal graph

convolutional network: Improving traffic prediction with navigation data,” in

Proceedings of the 26th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, pp. 3074–3082, 2020.

[192] L. Han, B. Du, L. Sun, Y. Fu, Y. Lv, and H. Xiong, “Dynamic and multi-

faceted spatio-temporal deep learning for traffic speed forecasting,” in Pro-

ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining, pp. 547–555, 2021.

[193] Y. Wang, M. Long, J. Wang, Z. Gao, and P. S. Yu, “Predrnn: Recurrent

neural networks for predictive learning using spatiotemporal lstms,” Advances

in neural information processing systems, vol. 30, 2017.

142

[194] J. Su, W. Byeon, J. Kossaifi, F. Huang, J. Kautz, and A. Anandkumar, “Con-

volutional tensor-train lstm for spatio-temporal learning,” Advances in Neural

Information Processing Systems, vol. 33, pp. 13714–13726, 2020.

[195] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks for

citywide crowd flows prediction,” in Thirty-first AAAI conference on artificial

intelligence, 2017.

[196] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-temporal

similarity: A deep learning framework for traffic prediction,” in Proceedings of

the AAAI conference on artificial intelligence, vol. 33, pp. 5668–5675, 2019.

[197] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-

temporal graph convolutional networks for traffic flow forecasting,” in Pro-

ceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 922–929,

2019.

[198] Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic spatial-

temporal graph convolutional neural networks for traffic forecasting,” in Pro-

ceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 890–897,

2019.

[199] F. Wu and L. Wu, “Deepeta: a spatial-temporal sequential neural network

model for estimating time of arrival in package delivery system,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 774–781, 2019.

[200] Z. Lin, M. Li, Z. Zheng, Y. Cheng, and C. Yuan, “Self-attention convlstm

for spatiotemporal prediction,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 34, pp. 11531–11538, 2020.

[201] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous graph

convolutional networks: A new framework for spatial-temporal network data

forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, pp. 914–921, 2020.

[202] B. N. Oreshkin, A. Amini, L. Coyle, and M. J. Coates, “Fc-gaga: Fully con-

nected gated graph architecture for spatio-temporal traffic forecasting,” in

Proc. AAAI Conf. Artificial Intell, 2021.

[203] X. Zhang, C. Huang, Y. Xu, L. Xia, P. Dai, L. Bo, J. Zhang, and Y. Zheng,

“Traffic flow forecasting with spatial-temporal graph diffusion network,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,

pp. 15008–15015, 2021.

143

[204] D. Kong and F. Wu, “Hst-lstm: A hierarchical spatial-temporal long-short

term memory network for location prediction.,” in IJCAI, vol. 18, pp. 2341–

2347, 2018.

[205] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks:

a deep learning framework for traffic forecasting,” in Proceedings of the 27th

International Joint Conference on Artificial Intelligence, pp. 3634–3640, 2018.

[206] G. Yang, Y. Cai, and C. K. Reddy, “Spatio-temporal check-in time prediction

with recurrent neural network based survival analysis,” in Proceedings of the

27th International Joint Conference on Artificial Intelligence, pp. 2976–2983,

2018.

[207] S. Fang, Q. Zhang, G. Meng, S. Xiang, and C. Pan, “Gstnet: Global spatial-

temporal network for traffic flow prediction.,” in IJCAI, pp. 2286–2293, 2019.

[208] D. Xu, W. Cheng, D. Luo, X. Liu, and X. Zhang, “Spatio-temporal attentive

rnn for node classification in temporal attributed graphs.,” in IJCAI, pp. 3947–

3953, 2019.

[209] H. Liu, H. Wu, W. Sun, and I. Lee, “Spatio-temporal gru for trajectory clas-

sification,” in 2019 IEEE International Conference on Data Mining (ICDM),

pp. 1228–1233, IEEE, 2019.

[210] X. Chen, Y. Zhang, L. Du, Z. Fang, Y. Ren, K. Bian, and K. Xie, “Tssrgcn:

Temporal spectral spatial retrieval graph convolutional network for traffic flow

forecasting,” in 2020 IEEE International Conference on Data Mining (ICDM),

pp. 954–959, IEEE, 2020.

[211] M. A. Ali, S. Venkatesan, V. Liang, and H. Kruppa, “Test-gcn: Topologi-

cally enhanced spatial-temporal graph convolutional networks for traffic fore-

casting,” in 2021 IEEE International Conference on Data Mining (ICDM),

pp. 982–987, IEEE, 2021.

[212] M. Zhang, Y. Li, F. Sun, D. Guo, and P. Hui, “Adaptive spatio-temporal con-

volutional network for traffic prediction,” in 2021 IEEE International Confer-

ence on Data Mining (ICDM), pp. 1475–1480, IEEE, 2021.

[213] N. Lim, B. Hooi, S.-K. Ng, X. Wang, Y. L. Goh, R. Weng, and J. Varadara-

jan, “Stp-udgat: spatial-temporal-preference user dimensional graph attention

network for next poi recommendation,” in Proceedings of the 29th ACM Inter-

national Conference on Information & Knowledge Management, pp. 845–854,

2020.

144

[214] B. Lu, X. Gan, H. Jin, L. Fu, and H. Zhang, “Spatiotemporal adaptive gated

graph convolution network for urban traffic flow forecasting,” in Proceedings

of the 29th ACM International Conference on Information & Knowledge Man-

agement, pp. 1025–1034, 2020.

[215] C. Park, C. Lee, H. Bahng, Y. Tae, S. Jin, K. Kim, S. Ko, and J. Choo,

“St-grat: A novel spatio-temporal graph attention networks for accurately

forecasting dynamically changing road speed,” in Proceedings of the 29th ACM

International conference on information & knowledge management, pp. 1215–

1224, 2020.

[216] X. Zhang, C. Huang, Y. Xu, and L. Xia, “Spatial-temporal convolutional

graph attention networks for citywide traffic flow forecasting,” in Proceedings

of the 29th ACM International Conference on Information & Knowledge Man-

agement, pp. 1853–1862, 2020.

[217] Z. Wang, R. Jiang, Z. Cai, Z. Fan, X. Liu, K.-S. Kim, X. Song, and

R. Shibasaki, “Spatio-temporal-categorical graph neural networks for fine-

grained multi-incident co-prediction,” in Proceedings of the 30th ACM Interna-

tional Conference on Information & Knowledge Management, pp. 2060–2069,

2021.

[218] X. Liang, G. Wang, M. R. Min, Y. Qi, and Z. Han, “A deep spatio-temporal

fuzzy neural network for passenger demand prediction,” in Proceedings of the

2019 SIAM international conference on data mining, pp. 100–108, SIAM, 2019.

[219] P. Yi, F. Huang, and J. Peng, “A fine-grained graph-based spatiotemporal

network for bike flow prediction in bike-sharing systems,” in Proceedings of

the 2021 SIAM International Conference on Data Mining (SDM), pp. 513–

521, SIAM, 2021.

[220] C. Miao, J. Fu, J. Wang, H. Yu, B. Yao, A. Zhong, J. Chen, and Z. He,

“Predicting crowd flows via pyramid dilated deeper spatial-temporal network,”

in Proceedings of the 14th ACM International Conference on Web Search and

Data Mining, pp. 806–814, 2021.

[221] Y. Luo, Q. Liu, and Z. Liu, “Stan: Spatio-temporal attention network for

next location recommendation,” in Proceedings of the Web Conference 2021,

pp. 2177–2185, 2021.

145

[222] Z. Jia, Y. Lin, J. Wang, R. Zhou, X. Ning, Y. He, and Y. Zhao, “Graphsleep-

net: Adaptive spatial-temporal graph convolutional networks for sleep stage

classification.,” in IJCAI, pp. 1324–1330, 2020.

[223] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neu-

ral network: Data-driven traffic forecasting,” in International Conference on

Learning Representations, 2018.

[224] L. Wang, A. Adiga, J. Chen, A. Sadilek, S. Venkatramanan, and M. Marathe,

“Causalgnn: Causal-based graph neural networks for spatio-temporal epi-

demic forecasting,” Proceedings of the AAAI conference on artificial intelli-

gence, 2022.

[225] Q. Zhang, J. Chang, G. Meng, S. Xiang, and C. Pan, “Spatio-temporal graph

structure learning for traffic forecasting,” in Proceedings of the AAAI Confer-

ence on Artificial Intelligence, vol. 34, pp. 1177–1185, 2020.

[226] C. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng, “Gated

residual recurrent graph neural networks for traffic prediction,” in Proceedings

of the AAAI conference on artificial intelligence, vol. 33, pp. 485–492, 2019.

[227] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu, “Traf-

fic flow prediction via spatial temporal graph neural network,” in Proceedings

of The Web Conference 2020, pp. 1082–1092, 2020.

[228] Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin, “Streaming graph neural net-

works,” in Proceedings of the 43rd International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 719–728, 2020.

[229] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,

T. Kaler, T. Schardl, and C. Leiserson, “Evolvegcn: Evolving graph convolu-

tional networks for dynamic graphs,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 34, pp. 5363–5370, 2020.

[230] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive repre-

sentation learning on temporal graphs,” ICLR, 2020.

[231] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural

representation learning on dynamic graphs via self-attention networks,” in

Proceedings of the 13th International Conference on Web Search and Data

Mining, pp. 519–527, 2020.

146

[232] S. Huang, Z. Bao, G. Li, Y. Zhou, and J. S. Culpepper, “Temporal network

representation learning via historical neighborhoods aggregation,” in 2020

IEEE 36th International Conference on Data Engineering (ICDE), pp. 1117–

1128, IEEE, 2020.

[233] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-

stein, “Temporal graph networks for deep learning on dynamic graphs,” arXiv

preprint arXiv:2006.10637, 2020.

[234] D. Fu and J. He, “Sdg: A simplified and dynamic graph neural network,”

in Proceedings of the 44th International ACM SIGIR Conference on Research

and Development in Information Retrieval, pp. 2273–2277, 2021.

[235] E. Hajiramezanali, A. Hasanzadeh, K. Narayanan, N. Duffield, M. Zhou, and

X. Qian, “Variational graph recurrent neural networks,” Advances in neural

information processing systems, vol. 32, 2019.

[236] M. Liu and Y. Liu, “Inductive representation learning in temporal networks

via mining neighborhood and community influences,” in Proceedings of the

44th International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 2202–2206, 2021.

[237] M. Yang, Z. Meng, and I. King, “Featurenorm: L2 feature normalization for

dynamic graph embedding,” in 2020 IEEE International Conference on Data

Mining (ICDM), pp. 731–740, IEEE, 2020.

[238] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and

performance: A survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018.

[239] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs:

Methods and applications,” arXiv preprint arXiv:1709.05584, 2017.

[240] L. Katz, “A new status index derived from sociometric analysis,” Psychome-

trika, vol. 18, no. 1, pp. 39–43, 1953.

[241] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu, “Scalable proximity

estimation and link prediction in online social networks,” in Proceedings of

the 9th ACM SIGCOMM conference on Internet measurement, pp. 322–335,

2009.

[242] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

147

[243] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for

embedding and clustering.,” in Nips, vol. 14, pp. 585–591, 2001.

[244] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” stat,

vol. 1050, p. 1, 2014.

[245] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and

P. Poupart, “Representation learning for dynamic graphs: A survey.,” Journal

of Machine Learning Research, vol. 21, no. 70, pp. 1–73, 2020.

[246] C. D. Barros, M. R. Mendonça, A. B. Vieira, and A. Ziviani, “A survey on

embedding dynamic graphs,” ACM Computing Surveys (CSUR), vol. 55, no. 1,

pp. 1–37, 2021.

[247] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social

networks,” Journal of the American society for information science and tech-

nology, vol. 58, no. 7, pp. 1019–1031, 2007.

[248] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using

matrix and tensor factorizations,” ACM Transactions on Knowledge Discovery

from Data (TKDD), vol. 5, no. 2, pp. 1–27, 2011.

[249] P. R. da Silva Soares and R. B. C. Prudêncio, “Time series based link predic-

tion,” in The 2012 international joint conference on neural networks (IJCNN),

pp. 1–7, IEEE, 2012.

[250] C. Chen and H. Tong, “Fast eigen-functions tracking on dynamic graphs,”

in Proceedings of the 2015 SIAM international conference on data mining,

pp. 559–567, SIAM, 2015.

[251] E. Luzhnica, B. Day, and P. Lio, “Clique pooling for graph classification,”

arXiv preprint arXiv:1904.00374, 2019.

[252] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Ar-

tificial Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

[253] A. Leman and B. Weisfeiler, “A reduction of a graph to a canonical form and an

algebra arising during this reduction,” Nauchno-Technicheskaya Informatsiya,

vol. 2, no. 9, pp. 12–16, 1968.

[254] L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai, “Implicit deep learn-

ing,” SIAM Journal on Mathematics of Data Science, vol. 3, no. 3, pp. 930–

958, 2021.

148

[255] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and

M. Sun, “Graph neural networks: A review of methods and applications,” AI

Open, vol. 1, pp. 57–81, 2020.

[256] D. S. Grebenkov and B.-T. Nguyen, “Geometrical structure of laplacian eigen-

functions,” siam REVIEW, vol. 55, no. 4, pp. 601–667, 2013.

[257] Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah, “A unified view on

graph neural networks as graph signal denoising,” in Proceedings of the 30th

ACM International Conference on Information & Knowledge Management,

pp. 1202–1211, 2021.

[258] Y.-X. Wang, J. Sharpnack, A. Smola, and R. Tibshirani, “Trend filtering on

graphs,” in Artificial Intelligence and Statistics, pp. 1042–1050, PMLR, 2015.

[259] X. Zheng, B. Zhou, J. Gao, Y. Wang, P. Lió, M. Li, and G. Montufar, “How

framelets enhance graph neural networks,” in International Conference on

Machine Learning, pp. 12761–12771, PMLR, 2021.

[260] X. Zheng, B. Zhou, Y. G. Wang, and X. Zhuang, “Decimated framelet sys-

tem on graphs and fast g-framelet transforms,” Journal of Machine Learning

Research, vol. 23, no. 18, pp. 1–68, 2022.

[261] X. Miao, N. M. Gürel, W. Zhang, Z. Han, B. Li, W. Min, S. X. Rao, H. Ren,

Y. Shan, Y. Shao, et al., “Degnn: Improving graph neural networks with

graph decomposition,” in Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining, pp. 1223–1233, 2021.

[262] Z. Ma, J. Xuan, Y. G. Wang, M. Li, and P. Liò, “Path integral based convolu-

tion and pooling for graph neural networks,” Advances in Neural Information

Processing Systems, vol. 33, pp. 16421–16433, 2020.

[263] J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves graph

learning,” in Proceedings of the 33rd International Conference on Neural In-

formation Processing Systems, pp. 13366–13378, 2019.

[264] J. Zhao, Y. Dong, M. Ding, E. Kharlamov, and J. Tang, “Adaptive diffusion in

graph neural networks,” Advances in Neural Information Processing Systems,

vol. 34, 2021.

[265] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural

information processing systems, vol. 30, 2017.

149

[266] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film: Vi-

sual reasoning with a general conditioning layer,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 32, 2018.

[267] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld, “Quantum

chemistry structures and properties of 134 kilo molecules,” Scientific data,

vol. 1, no. 1, pp. 1–7, 2014.

[268] X. He and T.-S. Chua, “Neural factorization machines for sparse predictive

analytics,” in Proceedings of the 40th International ACM SIGIR conference

on Research and Development in Information Retrieval, pp. 355–364, 2017.

[269] S. Zhang and L. Xie, “Improving attention mechanism in graph neural net-

works via cardinality preservation,” in IJCAI: proceedings of the conference,

vol. 2020, p. 1395, NIH Public Access, 2020.

[270] K.-H. Lai, D. Zha, K. Zhou, and X. Hu, “Policy-gnn: Aggregation optimiza-

tion for graph neural networks,” in Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 461–

471, 2020.

[271] D. Zha, K.-H. Lai, K. Zhou, and X. Hu, “Experience replay optimization,” in

IJCAI, 2019.

[272] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” stat, vol. 1050, p. 9, 2015.

[273] Z. Liu, T.-K. Nguyen, and Y. Fang, “Tail-gnn: Tail-node graph neural net-

works,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, pp. 1109–1119, 2021.

[274] C. Vignac, A. Loukas, and P. Frossard, “Building powerful and equivariant

graph neural networks with structural message-passing,” Advances in Neural

Information Processing Systems, vol. 33, pp. 14143–14155, 2020.

[275] Z. Zhang, F. Wu, and W. S. Lee, “Factor graph neural networks,” Advances

in Neural Information Processing Systems, vol. 33, pp. 8577–8587, 2020.

[276] G. Nikolentzos and M. Vazirgiannis, “Random walk graph neural networks,”

Advances in Neural Information Processing Systems, vol. 33, pp. 16211–16222,

2020.

150

[277] F. Xu, Q. Yao, P. Hui, and Y. Li, “Automorphic equivalence-aware graph

neural network,” Advances in Neural Information Processing Systems, vol. 34,

2021.

[278] T. He, Y. S. Ong, and L. Bai, “Learning conjoint attentions for graph neural

nets,” Advances in Neural Information Processing Systems, vol. 34, pp. 2641–

2653, 2021.

[279] S. Yun, S. Kim, J. Lee, J. Kang, and H. J. Kim, “Neo-gnns: Neighborhood

overlap-aware graph neural networks for link prediction,” Advances in Neural

Information Processing Systems, vol. 34, 2021.

[280] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural networks,” in

International Conference on Machine Learning, pp. 7134–7143, PMLR, 2019.

[281] Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang, “Neural bellman-ford net-

works: A general graph neural network framework for link prediction,” Ad-

vances in Neural Information Processing Systems, vol. 34, 2021.

[282] Z. Ding, R. Zhao, J. Zhang, T. Gao, R. Xiong, Z. Yu, and T. Huang, “Spatio-

temporal recurrent networks for event-based optical flow estimation,” Proceed-

ings of the AAAI conference on artificial intelligence, 2022.

[283] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-

tions,” arXiv preprint arXiv:1511.07122, 2015.

[284] J. Wang, G. Song, Y. Wu, and L. Wang, “Streaming graph neural networks via

continual learning,” in Proceedings of the 29th ACM International Conference

on Information & Knowledge Management, pp. 1515–1524, 2020.

[285] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient graphlet

counting for large networks,” in 2015 IEEE International Conference on Data

Mining, pp. 1–10, IEEE, 2015.

[286] J. Lin, C. Gan, and S. Han, “Tsm: Temporal shift module for efficient video

understanding,” in Proceedings of the IEEE/CVF International Conference

on Computer Vision, pp. 7083–7093, 2019.

[287] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez,

M. Nunkesser, S. Lee, X. Guo, B. Wiltshire, et al., “Eta prediction with graph

neural networks in google maps,” in Proceedings of the 30th ACM Interna-

tional Conference on Information & Knowledge Management, pp. 3767–3776,

2021.

151

[288] Z. Liu, B. Ma, Q. Liu, J. Xu, and B. Zheng, “Heterogeneous graph neural

networks for large-scale bid keyword matching,” in Proceedings of the 30th

ACM International Conference on Information & Knowledge Management,

pp. 3976–3985, 2021.

[289] X. Qu, Z. Li, J. Wang, Z. Zhang, P. Zou, J. Jiang, J. Huang, R. Xiao, J. Zhang,

and J. Gao, “Category-aware graph neural networks for improving e-commerce

review helpfulness prediction,” in Proceedings of the 29th ACM International

Conference on Information & Knowledge Management, pp. 2693–2700, 2020.

[290] Q. Liu, R. Xie, L. Chen, S. Liu, K. Tu, P. Cui, B. Zhang, and L. Lin, “Graph

neural network for tag ranking in tag-enhanced video recommendation,” in

Proceedings of the 29th ACM International Conference on Information &

Knowledge Management, pp. 2613–2620, 2020.

[291] Y. Liu, Y. Gu, Z. Ding, J. Gao, Z. Guo, Y. Bao, and W. Yan, “Decoupled graph

convolution network for inferring substitutable and complementary items,”

in Proceedings of the 29th ACM International Conference on Information &

Knowledge Management, pp. 2621–2628, 2020.

[292] X. Niu, B. Li, C. Li, R. Xiao, H. Sun, H. Deng, and Z. Chen, “A dual het-

erogeneous graph attention network to improve long-tail performance for shop

search in e-commerce,” in Proceedings of the 26th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining, pp. 3405–3415,

2020.

[293] W. Luo, H. Zhang, X. Yang, L. Bo, X. Yang, Z. Li, X. Qie, and J. Ye, “Dy-

namic heterogeneous graph neural network for real-time event prediction,” in

Proceedings of the 26th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, pp. 3213–3223, 2020.

[294] X. Fang, J. Huang, F. Wang, L. Zeng, H. Liang, and H. Wang, “Constgat:

Contextual spatial-temporal graph attention network for travel time estima-

tion at baidu maps,” in Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp. 2697–2705, 2020.

[295] J. Huang, H. Wang, Y. Sun, M. Fan, Z. Huang, C. Yuan, and Y. Li, “Hgamn:

Heterogeneous graph attention matching network for multilingual poi retrieval

at baidu maps,” in Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, pp. 3032–3040, 2021.

152

[296] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,

“Graph convolutional neural networks for web-scale recommender systems,”

in Proceedings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, pp. 974–983, 2018.

[297] J. Xu, Z. Zhu, J. Zhao, X. Liu, M. Shan, and J. Guo, “Gemini: a novel

and universal heterogeneous graph information fusing framework for online

recommendations,” in Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp. 3356–3365, 2020.

[298] M. Wang, Y. Lin, G. Lin, K. Yang, and X.-m. Wu, “M2grl: A multi-task multi-

view graph representation learning framework for web-scale recommender sys-

tems,” in Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pp. 2349–2358, 2020.

[299] P. Barceló, F. Geerts, J. Reutter, and M. Ryschkov, “Graph neural networks

with local graph parameters,” Advances in Neural Information Processing Sys-

tems, vol. 34, 2021.

[300] Z. Huang, Y. Wang, C. Li, and H. He, “Going deeper into permutation-

sensitive graph neural networks,” ICML, 2022.

[301] A. Wijesinghe and Q. Wang, “A new perspective on ”how graph neural net-

works go beyond weisfeiler-lehman?”,” ICML, 2022.

[302] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional net-

works for semi-supervised learning,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 32, 2018.

[303] K. Oono and T. Suzuki, “Graph neural networks exponentially lose expres-

sive power for node classification,” in International Conference on Learning

Representations, 2019.

[304] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raf-

fel, “Mixmatch: A holistic approach to semi-supervised learning,” Advances

in Neural Information Processing Systems, vol. 32, 2019.

[305] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in Pro-

ceedings of the 26th ACM SIGKDD international conference on knowledge

discovery & data mining, pp. 338–348, 2020.

153

[306] B. Chamberlain, J. Rowbottom, M. I. Gorinova, M. Bronstein, S. Webb, and

E. Rossi, “Grand: Graph neural diffusion,” in International Conference on

Machine Learning, pp. 1407–1418, PMLR, 2021.

[307] D. He, R. Guo, X. Wang, D. Jin, Y. Huang, and W. Wang, “Inflation improves

graph neural networks,” in Proceedings of the ACM Web Conference 2022,

pp. 1466–1474, 2022.

[308] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible residual

network: Backpropagation without storing activations,” Advances in neural

information processing systems, vol. 30, 2017.

[309] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken, “Redundancy-

free computation for graph neural networks,” in Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 997–1005, 2020.

[310] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki,

M. Lukasik, and S. Günnemann, “Scaling graph neural networks with ap-

proximate pagerank,” in Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp. 2464–2473, 2020.

[311] Z. Huang, S. Zhang, C. Xi, T. Liu, and M. Zhou, “Scaling up graph neural

networks via graph coarsening,” in Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining, pp. 675–684, 2021.

[312] M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec, “GNNAutoScale: Scalable

and expressive graph neural networks via historical embeddings,” in Interna-

tional Conferences on Machine Learning (ICML), 2021.

[313] M. Yoon, T. Gervet, B. Shi, S. Niu, Q. He, and J. Yang, “Performance-

adaptive sampling strategy towards fast and accurate graph neural networks,”

in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery

& Data Mining, pp. 2046–2056, 2021.

[314] J. Peng, Y. Shen, and L. Chen, “Graphangel: Adaptive and structure-aware

sampling on graph neural networks,” in 2021 IEEE International Conference

on Data Mining (ICDM), pp. 479–488, IEEE, 2021.

[315] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards

fast graph representation learning,” Advances in neural information processing

systems, vol. 31, 2018.

154

[316] Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Stoica, “Rep-

resenting long-range context for graph neural networks with global attention,”

Advances in Neural Information Processing Systems, vol. 34, pp. 13266–13279,

2021.

[317] J. Liu, K. Kawaguchi, B. Hooi, Y. Wang, and X. Xiao, “Eignn: Efficient

infinite-depth graph neural networks,” Advances in Neural Information Pro-

cessing Systems, vol. 34, 2021.

[318] D. Lukovnikov and A. Fischer, “Improving breadth-wise backpropagation in

graph neural networks helps learning long-range dependencies.,” in Interna-

tional Conference on Machine Learning, pp. 7180–7191, PMLR, 2021.

[319] H. Liu, Y. Yang, and X. Wang, “Overcoming catastrophic forgetting in graph

neural networks,” in Proceedings of the AAAI Conference on Artificial Intel-

ligence, vol. 35, pp. 8653–8661, 2021.

[320] F. Zhou and C. Cao, “Overcoming catastrophic forgetting in graph neural

networks with experience replay,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 35, pp. 4714–4722, 2021.

[321] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Ho-

mophily in social networks,” Annual review of sociology, vol. 27, no. 1, pp. 415–

444, 2001.

[322] X. Li, R. Zhu, Y. Cheng, C. Shan, S. Luo, D. Li, and W. Qian, “Finding global

homophily in graph neural networks when meeting heterophily,” ICML, 2022.

[323] V. Nanda, “Computational algebraic topology lecture notes,” 2021.

[324] E. Thiede, W. Zhou, and R. Kondor, “Autobahn: Automorphism-based graph

neural nets,” Advances in Neural Information Processing Systems, vol. 34,

2021.

[325] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and its

practical implications,” in International Conference on Learning Representa-

tions, 2020.

[326] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein,

“Understanding over-squashing and bottlenecks on graphs via curvature,” In-

ternational Conference on Learning Representations, 2022.

155

[327] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graph neural architecture

search.,” in IJCAI, vol. 20, pp. 1403–1409, 2020.

[328] J. You, Z. Ying, and J. Leskovec, “Design space for graph neural networks,”

Advances in Neural Information Processing Systems, vol. 33, pp. 17009–17021,

2020.

[329] Z. Wang, S. Di, and L. Chen, “Autogel: An automated graph neural network

with explicit link information,” Advances in Neural Information Processing

Systems, vol. 34, 2021.

[330] Z. Huan, Y. Quanming, and T. Weiwei, “Search to aggregate neighborhood

for graph neural network,” in 2021 IEEE 37th International Conference on

Data Engineering (ICDE), pp. 552–563, IEEE, 2021.

[331] A. Dalmia and M. Gupta, “Towards interpretation of node embeddings,” in

Companion Proceedings of the The Web Conference 2018, pp. 945–952, 2018.

[332] A. Gogoglou, C. B. Bruss, and K. E. Hines, “On the interpretability and

evaluation of graph representation learning,” arXiv preprint arXiv:1910.03081,

2019.

[333] S. Park, J. Bak, and A. Oh, “Rotated word vector representations and their

interpretability,” in Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pp. 401–411, 2017.

[334] Y. Adi, E. Kermany, Y. Belinkov, O. Lavi, and Y. Goldberg, “Fine-grained

analysis of sentence embeddings using auxiliary prediction tasks,” in ICLR,

2017.

[335] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S. Huang,

“Heterogeneous network embedding via deep architectures,” in Proceedings of

the 21th ACM SIGKDD international conference on knowledge discovery and

data mining, pp. 119–128, 2015.

[336] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of

machine learning research, vol. 9, no. 11, 2008.

[337] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in social

networks,” in Social network data analytics, pp. 115–148, Springer, 2011.

[338] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and

J. Han, “Personalized entity recommendation: A heterogeneous information

156

network approach,” in Proceedings of the 7th ACM international conference

on Web search and data mining, pp. 283–292, 2014.

[339] N. Kaji and H. Kobayashi, “Incremental skip-gram model with negative sam-

pling,” arXiv preprint arXiv:1704.03956, 2017.

[340] C. May, K. Duh, B. Van Durme, and A. Lall, “Streaming word embeddings

with the space-saving algorithm,” arXiv preprint arXiv:1704.07463, 2017.

[341] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding method

for dynamic graphs,” arXiv preprint arXiv:1805.11273, 2018.

[342] J. Leskovec and A. Krevl, “{SNAP Datasets}:{Stanford} large network

dataset collection,” 2015.

[343] “http://konect.uni-koblenz.de/networks/,”

[344] “http://snap.stanford.edu/data/sx-mathoverflow.html,”

[345] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: extraction

and mining of academic social networks,” in Proceedings of the 14th ACM

SIGKDD, pp. 990–998, ACM, 2008.

[346] R. Lippman, R. Cunningham, D. Fried, I. Graf, K. Kendall, S. Webster, and

M. Zissman, “Results of the darpa 1998 offline intrusion detection evaluation,”

in Slides presented at RAID 1999 Conference, 1999.

[347] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction

and data representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396,

2003.

[348] L. Tang and H. Liu, “Leveraging social media networks for classification,”

Data Mining and Knowledge Discovery, vol. 23, no. 3, pp. 447–478, 2011.

[349] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemo-

metrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[350] R. Trivedi, M. Farajtbar, P. Biswal, and H. Zha, “Representation learning

over dynamic graphs,” arXiv preprint arXiv:1803.04051, 2018.

[351] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Advances in neural information processing systems,

pp. 3104–3112, 2014.

157

[352] X. Du and C. Cardie, “Identifying where to focus in reading comprehension

for neural question generation,” in Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pp. 2067–2073, 2017.

[353] G. Chen, J. Yang, C. Hauff, and G.-J. Houben, “Learningq: a large-scale

dataset for educational question generation,” in Twelfth International AAAI

Conference on Web and Social Media, 2018.

[354] Z. Wang, A. S. Lan, W. Nie, A. E. Waters, P. J. Grimaldi, and R. G. Baraniuk,

“Qg-net: a data-driven question generation model for educational content,” in

Proceedings of the Fifth Annual ACM Conference on Learning at Scale, p. 7,

ACM, 2018.

[355] Y. Zhao, X. Ni, Y. Ding, and Q. Ke, “Paragraph-level neural question gener-

ation with maxout pointer and gated self-attention networks,” in Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing,

pp. 3901–3910, 2018.

[356] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,

B. Cowan, W. Shen, C. Moran, R. Zens, et al., “Moses: Open source toolkit

for statistical machine translation,” in Proceedings of the 45th annual meeting

of the association for computational linguistics companion volume proceedings

of the demo and poster sessions, pp. 177–180, 2007.

[357] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[358] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Sam-

atova, “Anomaly detection in dynamic networks: a survey,” Wiley Interdisci-

plinary Reviews: Computational Statistics, vol. 7, no. 3, pp. 223–247, 2015.

[359] Q. Ding, N. Katenka, P. Barford, E. Kolaczyk, and M. Crovella, “Intrusion as

(anti) social communication: characterization and detection,” in Proceedings

of the 18th ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 886–894, ACM, 2012.

[360] J. Xu and C. R. Shelton, “Intrusion detection using continuous time bayesian

networks,” Journal of Artificial Intelligence Research, vol. 39, pp. 745–774,

2010.

[361] A. Ghoting, M. E. Otey, and S. Parthasarathy, “Loaded: Link-based outlier

and anomaly detection in evolving data sets,” in Fourth IEEE International

Conference on Data Mining (ICDM’04), pp. 387–390, IEEE, 2004.

158

[362] T. Zhang, X. Zhuang, S. Pande, and W. Lee, “Anomalous path detection

with hardware support,” in Proceedings of the 2005 international conference

on Compilers, architectures and synthesis for embedded systems, pp. 43–54,

ACM, 2005.

[363] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and

description: a survey,” Data mining and knowledge discovery, vol. 29, no. 3,

pp. 626–688, 2015.

[364] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive

graph analytics and visualization,” in Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, 2015.

[365] J. Tang, J. Zhang, L. Yao, and J. Li, “Extraction and mining of an academic

social network,” in Proceedings of the 17th WWW, pp. 1193–1194, ACM, 2008.

[366] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehen-

sive survey on graph neural networks,” IEEE transactions on neural networks

and learning systems, 2020.

[367] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,

“Graph attention networks,” in International Conference on Learning Repre-

sentations, 2018.

[368] Z. He, C.-Y. Chow, and J.-D. Zhang, “Stcnn: A spatio-temporal convolutional

neural network for long-term traffic prediction,” in 2019 20th IEEE Interna-

tional Conference on Mobile Data Management (MDM), pp. 226–233, IEEE,

2019.

[369] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “Spatiotemporal recurrent con-

volutional networks for traffic prediction in transportation networks,” Sensors,

vol. 17, no. 7, p. 1501, 2017.

[370] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn: A so-

cial spatio-temporal graph convolutional neural network for human trajectory

prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 14424–14432, 2020.

[371] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Mining maximal cliques from

an uncertain graph,” in 2015 IEEE 31st International Conference on Data

Engineering, pp. 243–254, IEEE, 2015.

159

[372] G. Goel and J. Gustedt, “Bounded arboricity to determine the local structure

of sparse graphs,” in International Workshop on Graph-Theoretic Concepts in

Computer Science, pp. 159–167, Springer, 2006.

[373] D. Eppstein and D. Strash, “Listing all maximal cliques in large sparse

real-world graphs,” in International Symposium on Experimental Algorithms,

pp. 364–375, Springer, 2011.

[374] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques in

large sparse real-world graphs,” Journal of Experimental Algorithmics (JEA),

vol. 18, pp. 3–1, 2013.

[375] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time complexity for

generating all maximal cliques and computational experiments,” Theoretical

computer science, vol. 363, no. 1, pp. 28–42, 2006.

[376] D. R. Lick and A. T. White, “k-degenerate graphs,” Canadian Journal of

Mathematics, vol. 22, no. 5, pp. 1082–1096, 1970.

[377] S. J. Prince, Computer vision: models, learning, and inference. Cambridge

University Press, 2012.

[378] A. Farasat, A. Nikolaev, S. N. Srihari, and R. H. Blair, “Probabilistic graph-

ical models in modern social network analysis,” Social Network Analysis and

Mining, vol. 5, no. 1, pp. 1–18, 2015.

[379] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[380] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding tra-

jectory in temporal interaction networks,” in Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 1269–1278, 2019.

[381] www.https://github.com/snap stanford/CAW

[382] X. Yan, X. Fan, P. Yang, Z. Wu, S. Pan, L. Chen, Y. Zang, and C. Wang,

“Contig: Continuous representation learning on temporal interaction graphs,”

arXiv preprint arXiv:2110.06088, 2021.

[383] S. Tian, T. Xiong, and L. Shi, “Streaming dynamic graph neural networks

for continuous-time temporal graph modeling,” in 2021 IEEE International

Conference on Data Mining (ICDM), pp. 1361–1366, IEEE, 2021.

160

[384] F. Bloch, M. O. Jackson, and P. Tebaldi, “Centrality measures in networks,”

Available at SSRN 2749124, 2019.

[385] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-gcn: Geometric

graph convolutional networks,” arXiv preprint arXiv:2002.05287, 2020.

[386] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node em-

bedding,” arXiv preprint arXiv:1909.13021, 2019.

[387] W. R. Knight, “A computer method for calculating kendall’s tau with un-

grouped data,” Journal of the American Statistical Association, vol. 61,

no. 314, pp. 436–439, 1966.

[388] K. Xu, M. Zhang, S. Jegelka, and K. Kawaguchi, “Optimization of graph

neural networks: Implicit acceleration by skip connections and more depth,”

in International Conference on Machine Learning, pp. 11592–11602, PMLR,

2021.

[389] G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and H. Maron, “From local

structures to size generalization in graph neural networks,” in International

Conference on Machine Learning, pp. 11975–11986, PMLR, 2021.

[390] J. Brandstetter, D. E. Worrall, and M. Welling, “Message passing neural pde

solvers,” in International Conference on Learning Representations, 2022.

[391] T. Dash, S. Chitlangia, A. Ahuja, and A. Srinivasan, “A review of some tech-

niques for inclusion of domain-knowledge into deep neural networks,” Scientific

Reports, vol. 12, no. 1, pp. 1–15, 2022.

[392] T. Dash, A. Srinivasan, and A. Baskar, “Inclusion of domain-knowledge into

gnns using mode-directed inverse entailment,” Machine Learning, vol. 111,

no. 2, pp. 575–623, 2022.

[393] T. Dash, A. Srinivasan, and L. Vig, “Incorporating symbolic domain knowl-

edge into graph neural networks,” Machine Learning, vol. 110, no. 7, pp. 1609–

1636, 2021.

[394] M. Ringsquandl, H. Sellami, M. Hildebrandt, D. Beyer, S. Henselmeyer, S. We-

ber, and M. Joblin, “Power to the relational inductive bias: Graph neural net-

works in electrical power grids,” in Proceedings of the 30th ACM International

Conference on Information & Knowledge Management, pp. 1538–1547, 2021.

161

[395] J. Zhang, A.-T. Kuo, J. Zhao, Q. Wen, E. Winstanley, C. Zhang, and Y. Ye,

“Rxnet: Rx-refill graph neural network for overprescribing detection,” in Pro-

ceedings of the 30th ACM International Conference on Information & Knowl-

edge Management, pp. 2537–2546, 2021.

[396] R. Guan, Y. Liu, X. Feng, and X. Li, “Vpalg: Paper-publication prediction

with graph neural networks,” in Proceedings of the 30th ACM International

Conference on Information & Knowledge Management, pp. 617–626, 2021.

162

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Publications and the Statement of Co-authorships
	1.4 Dissertation Organization

	2 Literature Review
	2.1 Graphs
	2.1.1 Graph Embedding
	2.1.2 Graph Embedding Applications

	2.2 Traditional Graph Embedding
	2.2.1 Traditional Static Graph Embedding
	2.2.2 Traditional Dynamic Graph Embedding

	2.3 GNN based graph embedding
	2.3.1 Introduction to GNNs
	2.3.2 Static Graph Neural Nets
	2.3.3 Spatial-Temporal Graph Neural Net (STGNN)
	2.3.4 Dynamic Graph Neural Net (DGNN)
	2.3.5 GNN-based method's real-world applications
	2.3.6 The limitation of GNNs and the proposed solutions

	2.4 Interpretability of node embeddings

	3 Dynnode2vec: Scalable Dynamic Network Embedding
	3.1 Introduction
	3.2 Dynnode2vec: Scalable dynamic network embedding
	3.2.1 Description of dynnode2vec steps

	3.3 Experiments
	3.3.1 Datasets
	3.3.2 Baselines
	3.3.3 Link Prediction
	3.3.4 Node Classification
	3.3.5 Anomaly Detection
	3.3.6 Effects of evolving walk generation

	3.4 Summary

	4 Dynamic Graph Embedding via LSTM History Tracking
	4.1 Introduction
	4.2 Problem Statement
	4.3 Dynamic Network Embedding Method
	4.3.1 Overview of LSTM-Node2vec
	4.3.2 Temporal neighbor walk generation.
	4.3.3 LSTM Autoencoder
	4.3.4 Node2vec

	4.4 Experiments
	4.4.1 Baselines
	4.4.2 Experiment settings
	4.4.3 Anomaly Detection
	4.4.4 Node Classification
	4.4.5 Link Prediction
	4.4.6 Effect of length of history parameter L
	4.4.7 Effects of changes in model structure
	4.4.8 Time Analysis

	4.5 Summary

	5 Temporal Graph Representation Learning via Maximal Cliques
	5.1 Introduction
	5.2 Preliminaries
	5.3 Problem definition
	5.4 Proposed Method
	5.4.1 Method overview
	5.4.2 Temporal walk generation
	5.4.3 Model
	5.4.4 Training
	5.4.5 Inference
	5.4.6 Justification of using maximal cliques

	5.5 Experiments
	5.5.1 Baselines
	5.5.2 Settings
	5.5.3 Link prediction
	5.5.4 Node classification
	5.5.5 Ablation study
	5.5.6 Parameter sensitivity
	5.5.7 Time analysis

	5.6 Comparison with our other methods proposed in Chapters 3 and 4
	5.7 Summary

	6 Interpretability measures for Graph Embeddings
	6.1 Introduction
	6.2 Preliminaries
	6.3 Problem definition
	6.4 Method
	6.4.1 Approach overview
	6.4.2 The definition of interpretability scores
	6.4.3 Example

	6.5 Experiments
	6.5.1 Datasets
	6.5.2 Node embedding methods
	6.5.3 Quantitative measuring of interpretability of graph embedding methods
	6.5.4 Validation
	6.5.5 Interpreting embedding dimensions with visualization
	6.5.6 Downstream tasks
	6.5.7 Parameter sensitivity

	6.6 Summary

	7 Conclusions and Future Directions
	7.1 Summary of Contributions
	7.2 Future Directions

	Bibliography

