56,303 research outputs found

    A dual framework for low-rank tensor completion

    Full text link
    One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem. We first show a novel characterization of the dual solution space with an interesting factorization of the optimal solution. Overall, the optimal solution is shown to lie on a Cartesian product of Riemannian manifolds. Furthermore, we exploit the versatile Riemannian optimization framework for proposing computationally efficient trust region algorithm. The experiments illustrate the efficacy of the proposed algorithm on several real-world datasets across applications.Comment: Aceepted to appear in Advances of Nueral Information Processing Systems (NIPS), 2018. A shorter version appeared in the NIPS workshop on Synergies in Geometric Data Analysis 201

    Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

    Full text link
    Greedy optimization methods such as Matching Pursuit (MP) and Frank-Wolfe (FW) algorithms regained popularity in recent years due to their simplicity, effectiveness and theoretical guarantees. MP and FW address optimization over the linear span and the convex hull of a set of atoms, respectively. In this paper, we consider the intermediate case of optimization over the convex cone, parametrized as the conic hull of a generic atom set, leading to the first principled definitions of non-negative MP algorithms for which we give explicit convergence rates and demonstrate excellent empirical performance. In particular, we derive sublinear (O(1/t)\mathcal{O}(1/t)) convergence on general smooth and convex objectives, and linear convergence (O(et)\mathcal{O}(e^{-t})) on strongly convex objectives, in both cases for general sets of atoms. Furthermore, we establish a clear correspondence of our algorithms to known algorithms from the MP and FW literature. Our novel algorithms and analyses target general atom sets and general objective functions, and hence are directly applicable to a large variety of learning settings.Comment: NIPS 201

    Towards Building Deep Networks with Bayesian Factor Graphs

    Full text link
    We propose a Multi-Layer Network based on the Bayesian framework of the Factor Graphs in Reduced Normal Form (FGrn) applied to a two-dimensional lattice. The Latent Variable Model (LVM) is the basic building block of a quadtree hierarchy built on top of a bottom layer of random variables that represent pixels of an image, a feature map, or more generally a collection of spatially distributed discrete variables. The multi-layer architecture implements a hierarchical data representation that, via belief propagation, can be used for learning and inference. Typical uses are pattern completion, correction and classification. The FGrn paradigm provides great flexibility and modularity and appears as a promising candidate for building deep networks: the system can be easily extended by introducing new and different (in cardinality and in type) variables. Prior knowledge, or supervised information, can be introduced at different scales. The FGrn paradigm provides a handy way for building all kinds of architectures by interconnecting only three types of units: Single Input Single Output (SISO) blocks, Sources and Replicators. The network is designed like a circuit diagram and the belief messages flow bidirectionally in the whole system. The learning algorithms operate only locally within each block. The framework is demonstrated in this paper in a three-layer structure applied to images extracted from a standard data set.Comment: Submitted for journal publicatio

    Laminar Cortical Dynamics of Visual Form and Motion Interactions During Coherent Object Motion Perception

    Full text link
    How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? A 3D FORMOTION model specifies how 3D boundary representations, which separate figures from backgrounds within cortical area V2, capture motion signals at the appropriate depths in MT; how motion signals in MT disambiguate boundaries in V2 via MT-to-Vl-to-V2 feedback; how sparse feature tracking signals are amplified; and how a spatially anisotropic motion grouping process propagates across perceptual space via MT-MST feedback to integrate feature-tracking and ambiguous motion signals to determine a global object motion percept. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.Air Force Office of Scientific Research (F49620-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (BCS-02-35398, SBE-0354378); Office of Naval Research (N00014-95-1-0409, N00014-01-1-0624
    corecore