17 research outputs found

    Fast Dictionary Learning for Sparse Representations of Speech Signals

    Get PDF
    © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Published version: IEEE Journal of Selected Topics in Signal Processing 5(5): 1025-1031, Sep 2011. DOI: 10.1109/JSTSP.2011.2157892

    Fast Dictionary Learning for Sparse Representations of Speech Signals

    Get PDF
    For dictionary-based decompositions of certain types, it has been observed that there might be a link between sparsity in the dictionary and sparsity in the decomposition. Sparsity in the dictionary has also been associated with the derivation of fast and efficient dictionary learning algorithms. Therefore, in this paper we present a greedy adaptive dictionary learning algorithm that sets out to find sparse atoms for speech signals. The algorithm learns the dictionary atoms on data frames taken from a speech signal. It iteratively extracts the data frame with minimum sparsity index, and adds this to the dictionary matrix. The contribution of this atom to the data frames is then removed, and the process is repeated. The algorithm is found to yield a sparse signal decomposition, supporting the hypothesis of a link between sparsity in the decomposition and dictionary. The algorithm is applied to the problem of speech representation and speech denoising, and its performance is compared to other existing methods

    Matrix of Polynomials Model based Polynomial Dictionary Learning Method for Acoustic Impulse Response Modeling

    Get PDF
    We study the problem of dictionary learning for signals that can be represented as polynomials or polynomial matrices, such as convolutive signals with time delays or acoustic impulse responses. Recently, we developed a method for polynomial dictionary learning based on the fact that a polynomial matrix can be expressed as a polynomial with matrix coefficients, where the coefficient of the polynomial at each time lag is a scalar matrix. However, a polynomial matrix can be also equally represented as a matrix with polynomial elements. In this paper, we develop an alternative method for learning a polynomial dictionary and a sparse representation method for polynomial signal reconstruction based on this model. The proposed methods can be used directly to operate on the polynomial matrix without having to access its coefficients matrices. We demonstrate the performance of the proposed method for acoustic impulse response modeling.Comment: 5 pages, 2 figure

    SPEECH ENHANCEMENT BASED ON SPARSE THEORY UNDER NOISY ENVIRONMENT

    Get PDF
    [[abstract]]Recently, the sparse algorithm for sparse enhancement is more and more popular issues. In this paper, we classify the process of the sparse theory to enhance speech signal into two parts, one is for dictionary training part and the other is signal reconstruction part. We focus on the White Gaussian Noise. Clean speech dictionary D is trained by K-SVD algorithm. The orthogonal matching pursuit(OMP) algorithm is used to obtain the sparse coefficients X of clean speech dictionary D. Denoising performance of the experiments shows that our proposed method is superior than other methods in SNR, LLR, SNRseg and PESQ.[[sponsorship]]National Taipei University[[conferencetype]]國際[[conferencedate]]20150718~20150719[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Tokyo, Japa

    Simultaneous Codeword Optimization (SimCO) for Dictionary Update and Learning

    Get PDF
    We consider the data-driven dictionary learning problem. The goal is to seek an over-complete dictionary from which every training signal can be best approximated by a linear combination of only a few codewords. This task is often achieved by iteratively executing two operations: sparse coding and dictionary update. In the literature, there are two benchmark mechanisms to update a dictionary. The first approach, such as the MOD algorithm, is characterized by searching for the optimal codewords while fixing the sparse coefficients. In the second approach, represented by the K-SVD method, one codeword and the related sparse coefficients are simultaneously updated while all other codewords and coefficients remain unchanged. We propose a novel framework that generalizes the aforementioned two methods. The unique feature of our approach is that one can update an arbitrary set of codewords and the corresponding sparse coefficients simultaneously: when sparse coefficients are fixed, the underlying optimization problem is similar to that in the MOD algorithm; when only one codeword is selected for update, it can be proved that the proposed algorithm is equivalent to the K-SVD method; and more importantly, our method allows us to update all codewords and all sparse coefficients simultaneously, hence the term simultaneous codeword optimization (SimCO). Under the proposed framework, we design two algorithms, namely, primitive and regularized SimCO. We implement these two algorithms based on a simple gradient descent mechanism. Simulations are provided to demonstrate the performance of the proposed algorithms, as compared with two baseline algorithms MOD and K-SVD. Results show that regularized SimCO is particularly appealing in terms of both learning performance and running speed.Comment: 13 page

    Sparse decomposition based on ADMM dictionary learning for fault feature extraction of rolling element bearing

    Get PDF
    Sparse decomposition is a novel method for the fault diagnosis of rolling element bearing, whether the construction of dictionary model is good or not will directly affect the results of sparse decomposition. In order to effectively extract the fault characteristics of rolling element bearing, a sparse decomposition method based on the over-complete dictionary learning of alternating direction method of multipliers (ADMM) is presented in this paper. In the process of dictionary learning, ADMM is used to update the atoms of the dictionary. Compared with the K-SVD dictionary learning and non-learning dictionary method, the learned ADMM dictionary has a better structure and faster speed in the sparse decomposition. The ADMM dictionary learning method combined with the orthogonal matching pursuit (OMP) is used to implement the sparse decomposition of the vibration signal. The envelope spectrum technique is used to analyze the results of the sparse decomposition for the fault feature extraction of the rolling element bearing. The experimental results show that the ADMM dictionary learning method can updates the dictionary atoms to better fit the original signal data than K-SVD dictionary learning, the high frequency noise in the vibration signal of the rolling bearing can be effectively suppressed, and the fault characteristic frequency can be highlighted, which is very favorable for the fault diagnosis of the rolling element bearing

    Underdetermined Separation of Speech Mixture Based on Sparse Bayesian Learning

    Get PDF
    This paper describes a novel algorithm for underdetermined speech separation problem based on compressed sensing which is an emerging technique for efficient data reconstruction. The proposed algorithm consists of two steps. The unknown mixing matrix is firstly estimated from the speech mixtures in the transform domain by using K-means clustering algorithm. In the second step, the speech sources are recovered based on an autocalibration sparse Bayesian learning algorithm for speech signal. Numerical experiments including the comparison with other sparse representation approaches are provided to show the achieved performance improvement
    corecore