6 research outputs found

    Detection of Denial of Service (DoS) Attacks in Local Area Networks Based on Outgoing Packets

    Get PDF
    Denial of Service (DoS) is a security threat which compromises the confidentiality of information stored in Local Area Networks (LANs) due to unauthorized access by spoofed IP addresses. DoS is harmful to LANs as the flooding of packets may delay other users from accessing the server and in severe cases, the server may need to be shut down, wasting valuable resources, especially in critical real-time services such as in e-commerce and the medical field. The objective of this project is to propose a new DoS detection system to protect organizations from unauthenticated access to important information which may jeopardize the confidentiality, privacy and integrity of information in Local Area Networks. The new DoS detection system monitors the traffic flow of packets and filters the packets based on their IP addresses to determine whether they are genuine requests for network services or DoS attacks. Results obtained demonstrate that the detection accuracy of the new DoS detection system was in good agreement with the detection accuracy from the network protocol analyzer, Wireshark. For high-rate DoS attacks, the accuracy was 100% whereas for low-rate DoS attacks, the accuracy was 67%

    Behavioral Study of Software-Defined Network Parameters Using Exploratory Data Analysis and Regression-Based Sensitivity Analysis

    Get PDF
    To provide a low-cost methodical way for inference-driven insight into the assessment of SDN operations, a behavioral study of key network parameters that predicate the proper functioning and performance of software-defined networks (SDNs) is presented to characterize their alterations or variations, given various emulated SDN scenarios. It is standard practice to use simulation environments to investigate the performance characteristics of SDNs, quantitatively and qualitatively; hence, the use of emulated scenarios to typify the investigated SDN in this paper. The key parameters studied analytically are the jitter, response time and throughput of the SDN. These network parameters provide the most vital metrics in SDN operations according to literature, and they have been behaviorally studied in the following popular SDN states: normal operating condition without any incidents on the SDN, hypertext transfer protocol (HTTP) flooding, transmission control protocol (TCP) flooding, and user datagram protocol (UDP) flooding, when the SDN is subjected to a distributed denial-of-service (DDoS) attack. The behavioral study is implemented primarily via univariate and multivariate exploratory data analysis (EDA) to characterize and visualize the variations of the SDN parameters for each of the emulated scenarios, and linear regression-based analysis to draw inferences on the sensitivity of the SDN parameters to the emulated scenarios. Experimental results indicate that the SDN performance metrics (i.e., jitter, latency and throughput) vary as the SDN scenario changes given a DDoS attack on the SDN, and they are all sensitive to the respective attack scenarios with some level of interactions between them

    A Distributed Architecture for Spam Mitigation on 4G Mobile Networks

    Get PDF
    The 4G of mobile networks is considered a technology-opportunistic and user-centric system combining the economical and technological advantages of various transmission technologies. Part of its new architecture dubbed as the System Architecture Evolution, 4G mobile networks will implement an evolved packet core. Although this will provide various critical advantages, it will however expose telecom networks to serious IP-based attacks. One often adopted solution by the industry to mitigate such attacks is based on a centralized security architecture. This centralized approach nonetheless, requires large processing resources to handle huge amount of traffic, which results in a significant over dimensioning problem in the centralized nodes causing this approach to fail from achieving its security task.\\ In this thesis, we primarily contribute by highlighting on two Spam flooding attacks, namely RTP VoIP SPIT and SMTP SPAM and demonstrating, through simulations and comparisons, their feasibility and DoS impact on 4G mobile networks and subsequent effects on mobile network operators. We further contribute by proposing a distributed architecture on the mobile architecture that is secure by mitigating those attacks, efficient by solving the over dimensioning problem and cost-effective by utilizing `off the shelf' low-cost hardware in the distributed nodes. Through additional simulation and analysis, we reveal the viability and effectiveness of our approach

    A hybrid and cross-protocol architecture with semantics and syntax awareness to improve intrusion detection efficiency in Voice over IP environments

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 134-140).Voice and data have been traditionally carried on different types of networks based on different technologies, namely, circuit switching and packet switching respectively. Convergence in networks enables carrying voice, video, and other data on the same packet-switched infrastructure, and provides various services related to these kinds of data in a unified way. Voice over Internet Protocol (VoIP) stands out as the standard that benefits from convergence by carrying voice calls over the packet-switched infrastructure of the Internet. Although sharing the same physical infrastructure with data networks makes convergence attractive in terms of cost and management, it also makes VoIP environments inherit all the security weaknesses of Internet Protocol (IP). In addition, VoIP networks come with their own set of security concerns. Voice traffic on converged networks is packet-switched and vulnerable to interception with the same techniques used to sniff other traffic on a Local Area Network (LAN) or Wide Area Network (WAN). Denial of Service attacks (DoS) are among the most critical threats to VoIP due to the disruption of service and loss of revenue they cause. VoIP systems are supposed to provide the same level of security provided by traditional Public Switched Telephone Networks (PSTNs), although more functionality and intelligence are distributed to the endpoints, and more protocols are involved to provide better service. A new design taking into consideration all the above factors with better techniques in Intrusion Detection are therefore needed. This thesis describes the design and implementation of a host-based Intrusion Detection System (IDS) that targets VoIP environments. Our intrusion detection system combines two types of modules for better detection capabilities, namely, a specification-based and a signaturebased module. Our specification-based module takes the specifications of VoIP applications and protocols as the detection baseline. Any deviation from the protocol’s proper behavior described by its specifications is considered anomaly. The Communicating Extended Finite State Machines model (CEFSMs) is used to trace the behavior of the protocols involved in VoIP, and to help exchange detection results among protocols in a stateful and cross-protocol manner. The signature-based module is built in part upon State Transition Analysis Techniques which are used to model and detect computer penetrations. Both detection modules allow for protocol-syntax and protocol-semantics awareness. Our intrusion detection uses the aforementioned techniques to cover the threats propagated via low-level protocols such as IP, ICMP, UDP, and TCP
    corecore