2 research outputs found

    A debugging model for functional logic programs

    Get PDF
    This paper presents a box-oriented debugging model for the functional logic language ALF. Due to the sophisticated operational semantics of ALF which is based on innermost basic narrowing with simplification, the debugger must reflect the application of the different computation rules during program execution. Hence our debugging model includes not only one box type as in Byrd's debugging model for logic programs but several different kinds of boxes corresponding to the various computation rules of the functional logic language (narrowing, simplification etc.). Moreover, additional box types are introduced in order to allow skips over (sometimes) uninteresting program parts like proofs of the condition in a conditional equation. Since ALF is a genuine amalgamation of functional and logic languages, our debugging model subsumes operational aspects of both kinds of languages. As a consequence, it can be also used for pure logic languages, pure functional languages with eager evaluation, or functional logic languages with a less sophisticated operational semantics like SLOG or eager BABEL

    A Symmetric Approach to Compilation and Decompilation

    Get PDF
    Just as specializing a source interpreter can achieve compilation from a source language to a target language, we observe that specializing a target interpreter can achieve compilation from the target language to the source language. In both cases, the key issue is the choice of whether to perform an evaluation or to emit code that represents this evaluation. We substantiate this observation by specializing two source interpreters and two target interpreters. We first consider a source language of arithmetic expressions and a target language for a stack machine, and then the lambda-calculus and the SECD-machine language. In each case, we prove that the target-to-source compiler is a left inverse of the source-to-target compiler, i.e., it is a decompiler. In the context of partial evaluation, compilation by source-interpreter specialization is classically referred to as a Futamura projection. By symmetry, it seems logical to refer to decompilation by target-interpreter specialization as a Futamura embedding
    corecore