14,328 research outputs found

    Flexible and Robust Privacy-Preserving Implicit Authentication

    Full text link
    Implicit authentication consists of a server authenticating a user based on the user's usage profile, instead of/in addition to relying on something the user explicitly knows (passwords, private keys, etc.). While implicit authentication makes identity theft by third parties more difficult, it requires the server to learn and store the user's usage profile. Recently, the first privacy-preserving implicit authentication system was presented, in which the server does not learn the user's profile. It uses an ad hoc two-party computation protocol to compare the user's fresh sampled features against an encrypted stored user's profile. The protocol requires storing the usage profile and comparing against it using two different cryptosystems, one of them order-preserving; furthermore, features must be numerical. We present here a simpler protocol based on set intersection that has the advantages of: i) requiring only one cryptosystem; ii) not leaking the relative order of fresh feature samples; iii) being able to deal with any type of features (numerical or non-numerical). Keywords: Privacy-preserving implicit authentication, privacy-preserving set intersection, implicit authentication, active authentication, transparent authentication, risk mitigation, data brokers.Comment: IFIP SEC 2015-Intl. Information Security and Privacy Conference, May 26-28, 2015, IFIP AICT, Springer, to appea

    Time-Optimal Path Tracking via Reachability Analysis

    Full text link
    Given a geometric path, the Time-Optimal Path Tracking problem consists in finding the control strategy to traverse the path time-optimally while regulating tracking errors. A simple yet effective approach to this problem is to decompose the controller into two components: (i)~a path controller, which modulates the parameterization of the desired path in an online manner, yielding a reference trajectory; and (ii)~a tracking controller, which takes the reference trajectory and outputs joint torques for tracking. However, there is one major difficulty: the path controller might not find any feasible reference trajectory that can be tracked by the tracking controller because of torque bounds. In turn, this results in degraded tracking performances. Here, we propose a new path controller that is guaranteed to find feasible reference trajectories by accounting for possible future perturbations. The main technical tool underlying the proposed controller is Reachability Analysis, a new method for analyzing path parameterization problems. Simulations show that the proposed controller outperforms existing methods.Comment: 6 pages, 3 figures, ICRA 201

    Microscopic modeling of photoluminescence of strongly disordered semiconductors

    Full text link
    A microscopic theory for the luminescence of ordered semiconductors is modified to describe photoluminescence of strongly disordered semiconductors. The approach includes both diagonal disorder and the many-body Coulomb interaction. As a case study, the light emission of a correlated plasma is investigated numerically for a one-dimensional two-band tight-binding model. The band structure of the underlying ordered system is assumed to correspond to either a direct or an indirect semiconductor. In particular, luminescence and absorption spectra are computed for various levels of disorder and sample temperature to determine thermodynamic relations, the Stokes shift, and the radiative lifetime distribution.Comment: 35 pages, 14 figure

    Nonlinear gyrofluid computation of edge localised ideal ballooning modes

    Full text link
    Three dimensional electromagnetic gyrofluid simulations of the ideal ballooning mode blowout scenario for tokamak edge localized modes (ELMs) are presented. Special emphasis is placed on energetic diagnosis, examining changes in the growth rate in the linear, overshoot, and decay phases. The saturation process is energy transfer to self generated edge turbulence which exhibits an ion temperature gradient (ITG) mode structure. Convergence in the decay phase is found only if the spectrum reaches the ion gyroradius. The equilibrium is a self consistent background whose evolution is taken into account. Approximately two thirds of the total energy in the edge layer is liberated in the blowout. Parameter dependence with respect to plasma pressure and the ion gyroradius is studied. Despite the violent nature of the short-lived process, the transition to nonlinearity is very similar to that found in generic tokamak edge turbulence.Comment: The following article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org

    Maximally selected chi-square statistics and umbrella orderings

    Get PDF
    Binary outcomes that depend on an ordinal predictor in a non-monotonic way are common in medical data analysis. Such patterns can be addressed in terms of cutpoints: for example, one looks for two cutpoints that define an interval in the range of the ordinal predictor for which the probability of a positive outcome is particularly high (or low). A chi-square test may then be performed to compare the proportions of positive outcomes in and outside this interval. However, if the two cutpoints are chosen to maximize the chi-square statistic, referring the obtained chi-square statistic to the standard chi-square distribution is an inappropriate approach. It is then necessary to correct the p-value for multiple comparisons by considering the distribution of the maximally selected chi-square statistic instead of the nominal chi-square distribution. Here, we derive the exact distribution of the chi-square statistic obtained by the optimal two cutpoints. We suggest a combinatorial computation method and illustrate our approach by a simulation study and an application to varicella data
    corecore