8,895 research outputs found

    Network Density of States

    Full text link
    Spectral analysis connects graph structure to the eigenvalues and eigenvectors of associated matrices. Much of spectral graph theory descends directly from spectral geometry, the study of differentiable manifolds through the spectra of associated differential operators. But the translation from spectral geometry to spectral graph theory has largely focused on results involving only a few extreme eigenvalues and their associated eigenvalues. Unlike in geometry, the study of graphs through the overall distribution of eigenvalues - the spectral density - is largely limited to simple random graph models. The interior of the spectrum of real-world graphs remains largely unexplored, difficult to compute and to interpret. In this paper, we delve into the heart of spectral densities of real-world graphs. We borrow tools developed in condensed matter physics, and add novel adaptations to handle the spectral signatures of common graph motifs. The resulting methods are highly efficient, as we illustrate by computing spectral densities for graphs with over a billion edges on a single compute node. Beyond providing visually compelling fingerprints of graphs, we show how the estimation of spectral densities facilitates the computation of many common centrality measures, and use spectral densities to estimate meaningful information about graph structure that cannot be inferred from the extremal eigenpairs alone.Comment: 10 pages, 7 figure

    A new integral representation for quasiperiodic fields and its application to two-dimensional band structure calculations

    Full text link
    In this paper, we consider band-structure calculations governed by the Helmholtz or Maxwell equations in piecewise homogeneous periodic materials. Methods based on boundary integral equations are natural in this context, since they discretize the interface alone and can achieve high order accuracy in complicated geometries. In order to handle the quasi-periodic conditions which are imposed on the unit cell, the free-space Green's function is typically replaced by its quasi-periodic cousin. Unfortunately, the quasi-periodic Green's function diverges for families of parameter values that correspond to resonances of the empty unit cell. Here, we bypass this problem by means of a new integral representation that relies on the free-space Green's function alone, adding auxiliary layer potentials on the boundary of the unit cell itself. An important aspect of our method is that by carefully including a few neighboring images, the densities may be kept smooth and convergence rapid. This framework results in an integral equation of the second kind, avoids spurious resonances, and achieves spectral accuracy. Because of our image structure, inclusions which intersect the unit cell walls may be handled easily and automatically. Our approach is compatible with fast-multipole acceleration, generalizes easily to three dimensions, and avoids the complication of divergent lattice sums.Comment: 25 pages, 6 figures, submitted to J. Comput. Phy

    Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach

    Full text link
    The long-term distributions of trajectories of a flow are described by invariant densities, i.e. fixed points of an associated transfer operator. In addition, global slowly mixing structures, such as almost-invariant sets, which partition phase space into regions that are almost dynamically disconnected, can also be identified by certain eigenfunctions of this operator. Indeed, these structures are often hard to obtain by brute-force trajectory-based analyses. In a wide variety of applications, transfer operators have proven to be very efficient tools for an analysis of the global behavior of a dynamical system. The computationally most expensive step in the construction of an approximate transfer operator is the numerical integration of many short term trajectories. In this paper, we propose to directly work with the infinitesimal generator instead of the operator, completely avoiding trajectory integration. We propose two different discretization schemes; a cell based discretization and a spectral collocation approach. Convergence can be shown in certain circumstances. We demonstrate numerically that our approach is much more efficient than the operator approach, sometimes by several orders of magnitude

    Data-driven model reduction and transfer operator approximation

    Get PDF
    In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis (TICA), dynamic mode decomposition (DMD), and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods
    • …
    corecore