54,363 research outputs found

    Accelerating the CM method

    Full text link
    Given a prime q and a negative discriminant D, the CM method constructs an elliptic curve E/\Fq by obtaining a root of the Hilbert class polynomial H_D(X) modulo q. We consider an approach based on a decomposition of the ring class field defined by H_D, which we adapt to a CRT setting. This yields two algorithms, each of which obtains a root of H_D mod q without necessarily computing any of its coefficients. Heuristically, our approach uses asymptotically less time and space than the standard CM method for almost all D. Under the GRH, and reasonable assumptions about the size of log q relative to |D|, we achieve a space complexity of O((m+n)log q) bits, where mn=h(D), which may be as small as O(|D|^(1/4)log q). The practical efficiency of the algorithms is demonstrated using |D| > 10^16 and q ~ 2^256, and also |D| > 10^15 and q ~ 2^33220. These examples are both an order of magnitude larger than the best previous results obtained with the CM method.Comment: 36 pages, minor edits, to appear in the LMS Journal of Computation and Mathematic

    Computing Hilbert class polynomials with the Chinese Remainder Theorem

    Get PDF
    We present a space-efficient algorithm to compute the Hilbert class polynomial H_D(X) modulo a positive integer P, based on an explicit form of the Chinese Remainder Theorem. Under the Generalized Riemann Hypothesis, the algorithm uses O(|D|^(1/2+o(1))log P) space and has an expected running time of O(|D|^(1+o(1)). We describe practical optimizations that allow us to handle larger discriminants than other methods, with |D| as large as 10^13 and h(D) up to 10^6. We apply these results to construct pairing-friendly elliptic curves of prime order, using the CM method.Comment: 37 pages, corrected a typo that misstated the heuristic complexit

    Sub-Wavelength Plasmonic Crystals: Dispersion Relations and Effective Properties

    Get PDF
    We obtain a convergent power series expansion for the first branch of the dispersion relation for subwavelength plasmonic crystals consisting of plasmonic rods with frequency-dependent dielectric permittivity embedded in a host medium with unit permittivity. The expansion parameter is η=kd=2πd/λ\eta=kd=2\pi d/\lambda, where kk is the norm of a fixed wavevector, dd is the period of the crystal and λ\lambda is the wavelength, and the plasma frequency scales inversely to dd, making the dielectric permittivity in the rods large and negative. The expressions for the series coefficients (a.k.a., dynamic correctors) and the radius of convergence in η\eta are explicitly related to the solutions of higher-order cell problems and the geometry of the rods. Within the radius of convergence, we are able to compute the dispersion relation and the fields and define dynamic effective properties in a mathematically rigorous manner. Explicit error estimates show that a good approximation to the true dispersion relation is obtained using only a few terms of the expansion. The convergence proof requires the use of properties of the Catalan numbers to show that the series coefficients are exponentially bounded in the H1H^1 Sobolev norm

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance

    Full text link
    The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The primary 720s observables were released in mid 2010, including Stokes polarization parameters measured at six wavelengths as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180 degree azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.Comment: 42 pages, 19 figures, accepted to Solar Physic
    • …
    corecore