12 research outputs found

    Two Compact Incremental Prime Sieves

    Get PDF
    A prime sieve is an algorithm that finds the primes up to a bound nn. We say that a prime sieve is incremental, if it can quickly determine if n+1n+1 is prime after having found all primes up to nn. We say a sieve is compact if it uses roughly n\sqrt{n} space or less. In this paper we present two new results: (1) We describe the rolling sieve, a practical, incremental prime sieve that takes O(nloglogn)O(n\log\log n) time and O(nlogn)O(\sqrt{n}\log n) bits of space, and (2) We show how to modify the sieve of Atkin and Bernstein (2004) to obtain a sieve that is simultaneously sublinear, compact, and incremental. The second result solves an open problem given by Paul Pritchard in 1994

    Two compact incremental prime sieves

    Get PDF

    The pseudosquares prime sieve

    Get PDF
    Abstract. We present the pseudosquares prime sieve

    Bloom Filter with a False Positive Free Zone

    Get PDF

    Fast Compact Prime Number Sieves (Among Others)

    Full text link
    NO ABSTRACT SUPPLIE

    O carácter sintético da racionalidade prática em Kant

    Get PDF
    This dissertation examines the impact of the problem of causality on Kant’s moral philosophy, more specifically the influence of Hume on Kant's view of free will. As is well known, Kant considers that Hume was responsible for awaking him from his “dogmatic slumber” (Prolegomena, A 13). In An Enquiry concerning Human Understanding, Hume seeks to examine the cognitive structure of human mind, stressing the existence of two fundamental kinds of knowledge: “matters of fact” and “relations of ideas”. While the latter consist of necessary truths, “matters of fact” correspond to contingent truths. The domain of the empirical exceeds what is merely given by our senses, involving a series of inferences that depend on the cause-effect relationship. Hume argues that we cannot know only by means of our intellectual capacities what effect an event will bring without an empirical basis. Causality thus amounts only to a habit, which has no logical foundation. And if this connection does not have legitimacy, the universal and necessary validity of the judgments that sustain science is not possible. This is the first problem raised by Hume, to which Kant devotes much of his Critique of Pure Reason. A second problem has to do with the question of freedom, particularly the dilemma posed by determinism, which consists in the apparent impossibility to know whether or not our actions are a consequence of free choices. Kant seeks to answer this second problem in his moral philosophy, notably in the Foundations of the Metaphysics of Morals and the Critique of Practical Reason. I claim that the concept of “transcendental” is in Kant the key not only for answering the theoretical problem of causality but also to tackle the practical problem of freedom. From the theoretical perspective, Kant legitimates causality by appealing to the existence of what he calls “synthetic a priori judgments” with the cause and effect relationship appearing as a category of the “pure concepts of understanding”. But causality is not the only operator that has a transcendental source. Freedom, according to Kant, possesses the same foundation. What is distinctive about Kant’s moral examination is precisely a critical analysis of reason. His moral project is part of an all-embracing critical project where theoretical and practical knowledge are intertwined

    Über die Anzahlfunktion π(x)

    Get PDF
    Bereits Euklid wusste, dass es unendlich viele Primzahlen gibt. Euler zeigte die qualitative Aussage ¼(x) x ! 0 bei x ! 1. Legendre definierte als erster die Anzahlfunktion ¼(x) als die Anzahl aller Primzahlen · x, (x 2 R) und vermutete irrtümlicherweise, dass ¼(x) = x log(x)¡B; wobei lim x!1 B(x) = 1; 083 66 : : : ist. Gauss vermutete, dass die Funktionen ¼(x) und li(x) := lim "!0 ">0 0@ u=1¡" Z u=0 du log(u) + u=x Z u=1+" du log(u)1A asymptotisch Äquivalent sind. Tschebyschew konnte die Legendresche Vermutung widerlegen; außerdem bewies er: Wenn der Grenzwert lim x!1 ¼(x) x log(x) existiert, so muss dieser gleich 1 sein. Dank wegweisender Vorarbeiten von Riemann, gelang es im Jahr 1896 unabhängig voneinander und nahezu zeitgleich Hadamard und De La Vallee Poussin, den Primzahlsatz analytisch zu beweisen. Beide verwendeten entscheidend die Tatsache, dass die Zetafunktion ³ in der Halbebene Re(s) ¸ 1 nicht verschwindet. Die Beweise waren zuerst so lang und kompliziert, dass sie heutzutage nur noch einen historischen Wert besitzen. Es dauerte weitere 84 Jahre bis der Beweis so vereinfacht werden konnte, dass er nur wenige Seiten in Anspruch nimmt. Ein wichtiger Verdienst kommt hierbei der Arbeit von Newman aus dem Jahre 1980 zu. Lange Zeit wurde es für kaum möglich gehalten, einen Beweis des Primzahlsatzes zu finden, der ohne eine gewisse Kenntnis der komplexen Nullstellen der Zetafunktion auskommt. Und doch glückte 1948 ein solcher Beweis durch Selberg und Erdös mit elementaren Mitteln. Erwähnenswert dabei, dass der Beweis noch lange nicht einfach ist. Uns schienen die analytischen Beweise durchsichtiger zu sein. Daher haben wir in dieser Arbeit auf einen elementaren Beweis verzichtet. Der analytischen Weg zum Primzahlsatz von Newman kommt einerseits mit Integration längs endlicher Wege (und der Tatsache ³(s) 6= 0 in ¾ ¸ 1) aus, umgeht also Abschätzungen bei 1; andererseits ist er frei von Sätzen der Fourier-Analysis. Beim Beweis des Primzahlsatzes von Wolke benutzt man anstelle von ³0(s) ³(s) die Funktion ³ 1 k mit großen k. Wegen des Pols bei s=1 bringt dies bei der Integration leichte Komplikationen, hat aber den Vorteil, dass außer der Nullstellen-Freiheit keine nichttriviale Abschätzung für ³ oder ³0 erforderlich ist. Dank der elementaren Äquivalenz zwischen dem Primzahlsatz und der Konvergenz von 1Pn=1 ¹(n) n brauchte Newman nur die Konvergenz von 1Pn=1 ¹(n) n zu zeigen. Dies erreichte er mit Hilfe seines Konvergenzsatzes. Die Legendresche Formel, die auf dem Sieb des Eratosthenes basiert, erlaubt die exakte Berechnung von ¼(x), wenn alle px nicht übersteigenden Primzahlen bekannt sind. Diese prinzipielle Möglichkeit zur Ermittlung von ¼(x) ist in der Praxis natürlich stark limitiert durch die mit x rasch anwachsende Anzahl der rechts in der Legendresche Formel zu berücksichtigenden Summanden. Mit verfeinerten Siebtechniken haben verschiedene Autoren zur Legendresche Formel analoge Formeln ¼(x) ersonnen, bei denen der genannte Nachteil von Legendresche Formel sukzessive reduziert wurde. Zu erwähnen sind hier vor allem Meissel, Lehmer, sowie Lagarias, Miller und Odlyzko. Aus den Graphen von R(x)¡¼(x); li(x)¡¼(x) und x log(x) ¡¼(x) für den betrachteten Bereich x · 1018 konnten wir feststellen, dass R(x); li(x) sowie x log(x) die Anzahlfunktion Pi (x) annähern, wobei R(x) die beste Approximation für Pi(x) von allen drei ist
    corecore