6 research outputs found

    A Low Complexity Block Turbo Decoder Architecture

    No full text
    International audienceWe present a low-complexity architecture designed for the decoding of block turbo codes. In particular we simplify the implementation of Pyndiah's algorithm by not memorizing any of the concurrent codewords generated by the Chase search

    Estimation de l'erreur de phase d'une modulation QAM conjointement au décodage itératif d'un code bloc

    Get PDF
    Ce papier présente une nouvelle technique de synchronisation de systèmes exploitant des turbo-codes blocs. L'estimation de la phase repose sur l'exploitation de la valeur extrinsèque en sortie du décodeur pour estimer cet écart en phase conjointement au décodage itératif des symboles. Nous présentons plusieurs résultats montrant que l'algorithme proposé permet de poursuivre des décalages en fréquence, qu'il fonctionne pour des modulations QAM et qu'il fonctionne à faible rapport signal à bruit (RSB). Une comparaison de la variance de cet estimateur à la borne de Cramer-Rao vraie (CRB) et modifiée (MCRB) est également effectuée

    Distributed Turbo Product Coding Techniques Over Cooperative Communication Systems

    Get PDF
    In this dissertation, we propose a coded cooperative communications framework based on Distributed Turbo Product Code (DTPC). The system uses linear block Extended Bose-Chaudhuri-Hochquenghem (EBCH) codes as component codes. The source broadcasts the EBCH coded frames to the destination and nearby relays. Each relay constructs a product code by arranging the corrected bit sequences in rows and re-encoding them vertically using EBCH as component codes to obtain an Incremental Redundancy (IR) for source\u27s data. Under this frame, we have investigated a number of interesting and important issues. First, to obtain, independent vertical parities from each relay in the same code space, we propose circular interleaving of the decoded EBCH rows before reencoding vertically. We propose and derive a novel soft information relay for the DTPC over cooperative network based on EBCH component codes. The relay generates Log-Likelihood Ratio (LLR) values for the decoded rows are used to construct a product code by re-encoding the matrix along the columns using a novel soft block encoding technique to obtain soft parity bits with different reliabilities that can be used as soft IR for source\u27s data which is forwarded to the destination. To minimize the overall decoding errors, we propose a power allocation method for the distributed encoded system when the channel attenuations for the direct and relay channels are known. We compare the performance of our proposed power allocation method with the fixed power assignments for DTPC system. We also develop a power optimization algorithm to check the validity of our proposed power allocation algorithm. Results for the power allocation and the power optimization prove on the potency of our proposed power allocation criterion and show the maximum possible attainable performance from the DTPC cooperative system. Finally, we propose new joint distributed Space-Time Block Code (STBC)-DTPC by generating the vertical parity on the relay and transmitting it to the destination using STBC on the source and relay. We tested our proposed system in a fast fading environment on the three channels connecting the three nodes in the cooperative network

    Physical layer forward error correcetion in DVB-S2 networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.The rapid growth of wireless systems has shown little sign of ceasing, due to increased consumer demand for reliable interactive services. A key component of the development has centered on satellite networks, which allows provision of services in scenarios where terrestrial systems are not viable. The Digital Video Broadcasting-Satellite Second Generation (DVB-S2) standard was developed for use in satellite broadcast applications, the foremost being video broadcasting. Inherent to DVB-S2 is a powerful forward error correction (FEC) module, present in both the Physical and Data Link Layer. Improving the error correcting capability of the FEC is a natural advent in improving the quality of service of the protocol. This is more crucial in real time satellite video broadcast where retransmission of data is not viable, due to high latency. The Physical Layer error correcting capability is implemented in the form of a concatenated BCH-LDPC code. The DVB-S2 standard does not define the decoding structure for the receiver system however many powerful decoding systems have been presented in the literature; the Belief Propagation-Chase concatenated decoder being chief amongst them. The decoder utilizes the concept of soft information transfer between the Chase and Belief Propagation (BP) decoders to provide improved error correcting capability above that of the component decoders. The following dissertation is motivated by the physical layer (PL) FEC scheme, focused on the concatenated Chase-BP decoder. The aim is to generate results based on the BP-Chase decoder in a satellite channel as well as improve the error correcting capability. The BP-Chase decoder has shown to be very powerful however the current literature provides performance results only in AWGN channels. The AWGN channel however is not an accurate representation of a land-mobile satellite (LMS) channel; it does not consider the effect of shadowing, which is prevalent in satellite systems. The development of Markov chain models have allowed for better description of the characteristics of the LMS channel. The outcome being the selection of a Ku band LMS channel model. The selected LMS channel model is composed of 3 states, each generating a different degree of shadowing. The PL system has been simulated using the LMS channel and BP-Chase receiver to provide a more accurate representation of performance of a DVB-S2 network. The effect of shadowing has shown to reduce coding performance by approximately 4dB, measured over several code lengths and decoders, when compared with AWGN performance results. The second body of work aims to improve the error correcting capability of the BP-Chase decoder, concentrating on improving the LDPC decoding module performance. The LDPC system is the basis for the powerful error correcting ability of the concatenated scheme. In attempting to improve the LDPC decoder a reciprocal improvement is expected in the overall decoding performance of the concatenated decoder. There have been several schemes presented which improve BP performance. The BP-Ordered statistics decoder (OSD) was selected through a process of literary review; a novel decoding structure is presented incorporating the BP-OSD decoder into the BP-Chase structure. The result of which is the BP-OSD-Chase decoder. The decoder contains two stages of concatenation; the first stage implements the BPOSD algorithm which decodes the LDPC code and the second stage decodes the BCH code using the Chase algorithm. Simulation results of the novel decoder implementation in the DVBS2 PL show a coding gain of 0.45dB and 0.15dB versus the BP and BP-Chase decoders respectively, across both the AWGN and LMS channel

    Fast Chase algorithm with an application in turbo decoding.

    No full text
    Turbo product codes (TPCs) provide an attractive alternative to recursive systematic convolutional (RSC)-based turbo systems. Rather than employ trellis-based decoders, an algebraic decoder may be repeatedly employed in a low-complexity, soft-input/soft-output errors-and-erasures decoder such as the Chase algorithm. Taking motivation from efficient forced erasure decoders, this implementation re-orders the Chase algorithm's repeated decodings such that the inherent computational redundancy is greatly reduced without degrading performance. The result is a highly efficient fast Chase implementation. The algorithm presented here is principally applicable to single error-correcting codes although consideration is also given to the more general case. The new decoder's value in practical turbo schemes is demonstrated via application to decoding of the (64,57,4) extended Hamming TP
    corecore