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ABSTRACT 

 

The rapid growth of wireless systems has shown little sign of ceasing, due to increased 

consumer demand for reliable interactive services. A key component of the development has 

centered on satellite networks, which allows provision of services in scenarios where terrestrial 

systems are not viable. The Digital Video Broadcasting-Satellite Second Generation (DVB-S2) 

standard was developed for use in satellite broadcast applications, the foremost being video 

broadcasting. Inherent to DVB-S2 is a powerful forward error correction (FEC) module, present 

in both the Physical and Data Link Layer. Improving the error correcting capability of the FEC 

is a natural advent in improving the quality of service of the protocol. This is more crucial in 

real time satellite video broadcast where retransmission of data is not viable, due to high 

latency. 

The Physical Layer error correcting capability is implemented in the form of a concatenated 

BCH-LDPC code. The DVB-S2 standard does not define the decoding structure for the receiver 

system however many powerful decoding systems have been presented in the literature; the 

Belief Propagation-Chase concatenated decoder being chief amongst them. The decoder utilizes 

the concept of soft information transfer between the Chase and Belief Propagation (BP) 

decoders to provide improved error correcting capability above that of the component decoders. 

The following dissertation is motivated by the physical layer (PL) FEC scheme, focused on the 

concatenated Chase-BP decoder. The aim is to generate results based on the BP-Chase decoder 

in a satellite channel as well as improve the error correcting capability. 

The BP-Chase decoder has shown to be very powerful however the current literature provides 

performance results only in AWGN channels. The AWGN channel however is not an accurate 

representation of a land-mobile satellite (LMS) channel; it does not consider the effect of 

shadowing, which is prevalent in satellite systems. The development of Markov chain models 

have allowed for better description of the characteristics of the LMS channel. The outcome 

being the selection of a Ku band LMS channel model. The selected LMS channel model is 

composed of 3 states, each generating a different degree of shadowing. The PL system has been 

simulated using the LMS channel and BP-Chase receiver to provide a more accurate 

representation of performance of a DVB-S2 network. The effect of shadowing has shown to 

reduce coding performance by approximately 4dB, measured over several code lengths and 

decoders, when compared with AWGN performance results. 

The second body of work aims to improve the error correcting capability of the BP-Chase 

decoder, concentrating on improving the LDPC decoding module performance. The LDPC 



 

vi 
 

system is the basis for the powerful error correcting ability of the concatenated scheme. In 

attempting to improve the LDPC decoder a reciprocal improvement is expected in the overall 

decoding performance of the concatenated decoder. There have been several schemes presented 

which improve BP performance. The BP-Ordered statistics decoder (OSD) was selected 

through a process of literary review; a novel decoding structure is presented incorporating the 

BP-OSD decoder into the BP-Chase structure. The result of which is the BP-OSD-Chase 

decoder. The decoder contains two stages of concatenation; the first stage implements the BP-

OSD algorithm which decodes the LDPC code and the second stage decodes the BCH code 

using the Chase algorithm. Simulation results of the novel decoder implementation in the DVB-

S2 PL show a coding gain of 0.45dB and 0.15dB versus the BP and BP-Chase decoders 

respectively, across both the AWGN and LMS channel. 
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Chapter 1 

INTRODUCTION 

 

The proliferation of wireless networks worldwide has experienced rapid progression in the past 

decade. The increase in development and deployment of wireless networks is due mainly to its 

inherent advantages over wired networks. It allows services to be available in scenarios where 

wired infrastructure is absent.  

The Internet has also played a defining role in the adaptation to wireless networks, in its physical 

implementation and more importantly in the services it provides. The main drive in wireless 

development has been to replicate Internet services in a mobile scenario. Mobile services play an 

important role in society, whether in communication, entertainment or commerce [1], restriction 

of which would reduce the quality of life. The recent hardware innovations in the form of smart 

phones allow access to these services to a wider audience. It also increases the spectrum of 

requirements necessary to provide them.  

This has required the evolution of the wireless network from voice only first generation networks 

(1G) to the current fourth generation long term evolution networks (4G-LTE). The emphasis of 

development has been aimed at increasing the data rate, improving the spectral efficiency as well 

as providing QoS requirements for several classes of services over varying types of networks, 

cellular and WLAN [2]. This will allow for more dynamic and reliable services to be rendered. 

Satellite systems play a pivotal role in achieving these targets as they provide high data rates and 

allow wireless connectivity over a broad region. This has led to the integration of satellite 

systems into the backbone of wireless provision systems. 

Satellite systems will be expanded upon in Section 1.1, focus will then be placed on its 

application in digital video broadcasting in Section 1.2. A motivation for the research will also be 

provided together with an overview of the dissertation in Section 1.3 and 1.4 respectively, to 

conclude the chapter the original contributions derived from the research are presented. 

 

1.1 Satellite communications 
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Satellite systems form an integral component in global wireless networks. They have undergone 

significant improvement in order to increase the range of services which they can provide. They 

utilize a transponder which orbits the earth, known as a satellite [3]. Information is transmitted to 

the satellite from a terrestrial station; the satellite then retransmits the message to a single or 

multiple terrestrial stations [3]. This allows satellite systems to cover large geographical ranges, 

the area of which is called the satellite’s footprint [3]. The footprint is an important concept as it 

is proportional to the distance of the satellite from the earth. Satellites can be categorized into 4 

types, given in increasing length of orbit, low earth orbits(LEO), medium earth orbits(MEO), 

highly elliptical orbits(HEO) and geostationary orbits(GEO) [2]. The relationship is the greater 

the distance from the earth, the larger the satellite footprint. The GEO system has the largest 

footprint requiring potentially fewer satellites to cover a designated area. The issue inherent with 

being further away is that the transmission is required to propagate over larger distances. The 

transmission signal strength is reduced, increasing the amount of errors and the latency of the 

transmission [2]. The type of service required generally determines the type of orbit 

implemented, considering the conditions stated above. 

In the past satellite systems have been used mainly by national entities such as military 

organizations and scientific bodies [4], for information transfer and meteorological analysis 

respectively. This is due mainly to the high cost of launching satellites into orbit. Advancement 

in technology as well as the drive to improve consumer related services, has forced industry to 

implement and utilize satellite networks. Satellite systems are generally used as the backbone for 

communications networks both mobile and fixed. They are important in managing the handover 

between terrestrial networks, providing roaming capability, which is a key component in the 

evolution of mobile networks [2]. They are also used to provide multimedia and data transfer in 

point-to-point and broadcast applications. The most common consumer applications are satellite 

television, GPS navigation and Internet access. Satellite television plays an important role in 

disseminating information to a large audience; the principal element of a satellite television 

service is digital video broadcasting, the evolution of which will be expanded upon subsequently. 

 

1.2 Satellite digital video broadcasting 

 

Digital video broadcasting is the process of transmitting digital video from a single transmitter to 

more than one receiver. This can be achieved using terrestrial means for which several protocols 

have been developed such as Digital Video Broadcasting-Cable(DVB-C) and Digital Video 
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Broadcasting-Terrestrial(DVB-T) [5]. This dissertation however will consider digital video 

broadcasting only from a satellite perspective. 

There are several significant problems to consider when implementing a digital video 

broadcasting system; the first is the high cost of satellite infrastructure. There are also several 

issues inherent in satellite communication which must be addressed. Long propagation delays, 

which are dependent on the satellites orbit, affect the quality of the video transmission as it is 

sensitive to time delay. A second concern is atmospheric effects and channel losses both of 

which degrade the quality of the signal [2], increasing the possibility of bit errors in the 

transmission. 

There have been several mechanisms put forward in order to rectify these issues. These have 

been accepted and standardized by the relevant technical bodies. The protocols define a set of 

rules for transmission and reception of data which aid in counteracting the issues discussed 

above. This allows for the provision of a predetermined level of performance. The standards 

effectively define the technology required at both the transmitter and receiver in order to provide 

a reliable service. 

There have been many digital video broadcasting standards presented, such as Satellite Digital 

Multimedia Broadcasting(S-DMB) and Integrated Services Digital Broadcasting Satellite(ISDB-

S) standardized and implemented in South Korea and South America respectively [6] [7]. The 

standard developed by the digital video broadcasting (DVB) workgroup has become the most 

popular. The DVB workgroup is an industry led association consisting of satellite broadcasters 

and regulatory bodies [8]. They have defined two protocols dealing with satellite broadcasting, 

digital video broadcasting satellite (DVB-S) and DVB-S2. The protocols define the physical 

layer transmission systems required for satellite communication. The receiver structure is not 

strictly described to allow for a flexible definition as per the requirements of the application. In 

terms of industry viability it is important to select a transmitter structure for which a suitably 

complex receiver can be constructed. This is considered in the process of defining the protocol. 

The protocols have both been standardized by the European Telecommunications Standards 

Institute (ETSI), and are discussed in greater detail below. 

1.2.1 DVB-S 

 

DVB-S is a protocol developed by the DVB workgroup and standardized in 1994. The protocol 

aims to provide a variety of services, the core function being the provision of digital multi-

program television both standard (SDTV) and high definition (HDTV) in both Fixed Satellite 
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(FSS) and Broadcast Satellite service bands (BSS). It is also suitable for providing Direct-To-

Home (DTH) services. [9].  

The main objective of the protocol is to achieve resistance to noise and atmospheric affects hence 

two mechanisms are specified, the first is the addition of QPSK modulation; which was selected 

as a compromise between power and spectrum efficiency. The second was a concatenated Reed-

Solomon (RS) and convolutional channel code, which uses redundancy to detect and correct 

errors in the transmission. The channel code is defined with enough flexibility to cater for a 

range of transponders [9]. The functional block diagram of DVB-S is given in Figure 1.1, where 

the system is shown to be compatible with only the Moving Pictures Experts Group-2(MPEG-2) 

audio visual format. 

 

 

Figure 0.1-DVB-S Functional block diagram [9] 

 

In 1997 DVB introduced DVB-Data Services and News Gathering (DVB-DSNG) protocol 

building on the success of DVB-S, in order to incorporate the news gathering into its services. 

The only significant change was the addition of the 8PSK and 16QAM modulation schemes to 

improve the spectral efficiency of transmission [10] 

The need for further development of the DVB-S protocol became apparent as more powerful 

coding schemes were discovered. DVB-S2 was developed to take advantage of the improved 

coding as well as provide a wider variety of services. 

1.2.2 DVB-S2 

 

The Digital Video Broadcasting-Satellite Second Generation (DVB-S2) was defined in 2003 and 

standardized by ETSI in 2005 [11], it is the successor to DVB-S and DVB-DSNG .The push for 
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the second generation protocol was based on calls by consumers for improved services and 

greater capacity. 

DVB-S2 was defined with a great degree of adaptability in order to provide a variety of satellite 

services. The fundamental service mentioned previously is digital broadcasting both SDTV and 

HDTV in FSS and BSS bands. Additionally it can be used to provide interactive services such as 

satellite Internet access. The protocol is a successor to DSNG and thus can also be used for news 

gathering. Point-to- point and multicast applications are also catered for [11]. 

In the process of development the DVB group focused on three targets, achieving the best 

transmission performance while maintaining flexibility and reasonable receiver complexity. In 

order to achieve this DVB-S2 was designed as a toolkit, where the appropriate modules can be 

selected according to the application requirements. The resultant standard has achieved a gain in 

capacity and performance while catering for a wide range of applications. 

This was achieved by making several additions to the DVB-S system, the first being an input 

stream adapter which is capable of handling single and multiple input streams. The adaptor is 

also compatible with a range of formats, unlike DVB-S which could only handle the MPEG-2 

format. The main reason for the gain in capacity is due to the revision of the forward error 

correction (FEC) structure. The main addition is a concatenated Bose-Chaudhuri-Hocquenhem 

(BCH)-Low Density Parity Check (LDPC) channel code. LDPC codes offer the minimum 

distance to the Shannon limit when operating on large block lengths, the standard defines frames 

of large length, producing improved transmission performance [12]. The system was also 

developed to handle a greater number of code rates, increasing the range of spectrum efficiency.  

The second notable improvement was the addition of adaptive coding and modulation 

(ACM).This allows optimization of the transmission parameters to suit individual channels, in 

the case of multicasting on a frame by frame basis. The ACM selects the mode appropriate to the 

current channel condition; each mode has a different combination of code rate and modulation 

type.  
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Figure 0.2-DVB-S2 system model [11] 

 

Each of the modules defined in Figure 1.2 above have been specialized to handle transmission 

over a satellite medium. The large scale adoption of DVB-2 by broadcasters is testament to the 

improvements made by the DVB group. The standard allows both DVB-S2 transmitters and 

receivers to be incorporated into existing systems, achieving the goal of flexibility while still 

allowing it to operate in environments of high distortion. 

 

1.3 Motivation for research 

 

The DVB-S2 standard, mentioned above, aims to provide best possible transmission 

performance; in order to achieve this a BCH-LDPC concatenated channel code is defined in the 

FEC module. Transmission performance is generally measured by the number of errors 

experienced during transmission, the lower the number of errors the better the quality of the 

service. 

An aspect of the DVB protocols touched on previously is the open receiver structure. It allows 

for flexibility in the design of decoders based on their application environment. There have been 

many decoding structures proposed and implemented in industry for use in DVB-S2 applications. 

These however are constrained by the cost versus complexity tradeoff. In general increasing the 

complexity of the receiver structure increases the cost of the implementation. High complexity 
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receivers can be impractical in terms of developing units for general sale. The issue of 

complexity however will not be the focus of the dissertation. The main aim is to develop and 

implement a receiver structure in order to improve the transmission performance of the DVB-S2 

physical layer (PL).  

There have been several decoding structures presented in the literature such as belief propagation 

and Chase decoding [13] in order to individually decode the components of the concatenated 

BCH-LDPC code. The basis for improving the system is an iterative concatenated BP-Chase soft 

decision decoder presented in [13]. The iterative decoder produces better performance than the 

constituent algorithms used to independently decode the BCH and LDPC, as seen in Figure 1.3. 

 

 

Figure 0.3-Iterative concatenated decoder model 

 

The iterative concatenated decoder uses the Chase and Belief Propagation (BP) algorithms to 

decode the BCH and LDPC code respectively. The implementation makes use of the transfer of 

soft information between the Chase and BP decoders in order to provide coding gain. The 

performance results of the BP-Chase decoder have been provided using an additive white 

Gaussian noise (AWGN) channel in [13], under the assumption that AWGN is a suitable 

representation for satellite communications. 

Focus 

In recent years there have been advancements in the production of a more accurate representation 

of the land-mobile satellite (LMS) channel; based on Markov representations. The initial aim of 

the dissertation is to produce more accurate performance results of the DVB-S2 PL system using 

the LMS channel and BP-Chase decoder in order to expand upon the literature. 

The BP-Chase decoder discussed previously implements the Chase and BP soft decision 

algorithms to decode BCH and LDPC codes respectively. A logical step in targeting an 

improvement in the error correcting performance is to improve the performance of the 

constituent decoders. The Chase decoder operating on the BCH component of the FEC performs 
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an integral role in the decoding system by controlling the error floor problem inherent with BP 

[13]. The main decoding power of the FEC system however is provided by the LDPC code. 

There have been several soft decision LDPC decoding algorithms presented in the literature. 

These focus on reducing the complexity of BP decoding while maintaining a similar standard of 

decoding performance. The concatenated BP-OSD iterative decoder, given in [14] differs it 

provides coding gain over the traditional BP algorithm. It will be examined and implemented as a 

part of the BP-Chase structure given in Figure 1.3, in order to achieve the aim of improving the 

error correcting performance of the PL system. 

 

1.4 Dissertation overview 

 

The dissertation is made up of five chapters. In Chapter 1 a brief overview of digital video 

satellite broadcasting and its importance in providing wireless communication services are 

discussed. The motivation for the research undertaken and a list of the original contributions are 

also produced. 

Chapter 2 presents the DVB-S2 transmission system as well as undertaking a review of the 

literature of DVB-S2 FEC decoding systems. The focus is to select an algorithm suitable for 

decoding the concatenated BCH-LDPC channel code. 

In Chapter 3 the PL system model is constructed and implemented. The focus is placed on the 

definition and implementation of the transmission system, channel model and the receiver 

system. A more accurate model of the LMS channel is selected and implemented after a process 

of literary review. The BP and Chase decoders constituting the concatenated decoder are defined 

independently as well as in their concatenated form. The simulation results for which are 

presented for both the AWGN and LMS channel. 

Chapter 4 discusses possible improvements to the BP-Chase decoder described in Chapter 3.The 

concatenated OSD decoder is presented as an improvement to the BP decoding module. A novel 

BP-OSD-Chase algorithm is presented. Simulation results of the novel decoder incorporated into 

the PL system is provided for both the AWGN and the LMS channel. 

Chapter 5 provides the conclusions that can be derived from the research presented in this 

dissertation as well as future research work. 
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1.5 Original contributions 

 

The original contributions derived from this research are as follows: 

1) The BP-Chase decoder and LMS channel model are implemented in a DVB-S2 PL system. 

The simulation of the implemented system will generate an original set of results which will 

provide a more accurate representation of DVB-S2 decoding performance. 

2) Improve the decoding performance achieved by the PL system by constructing a novel 

decoding structure, called the BP-OSD-Chase decoder. The BP-OSD-Chase decoder together 

with the performance results are presented in both an AWGN and LMS channel. 

 



 

10 
 

 

Chapter 2 

2 LITERATURE SURVEY OF DVB-S2 FEC 

 

2.1 Introduction 

 

This chapter is a literature review of the DVB-S2 protocol with emphasis placed on the FEC 

encoding and decoding structure. The DVB-S2 protocol, briefly examined in Chapter 1, has 

experienced widespread adoption, due mainly to the flexibility and enhanced transmission 

performance of the protocol over its predecessors; which is in the main due to improvements 

made to the FEC module. The aim of the chapter is to firstly gain familiarisation with the inner 

workings of the transmission protocol, in order to grasp the requirements for selecting an 

appropriate receiver structure from those presented in the literature. The outcome of which will 

be the selection of an algorithm to be used as the basis for the decoding module which is a key 

component of the dissertation. 

In Section 2.2 the DVB-S2 transmission model is defined with regard to the standard. The focus 

is then placed on the FEC module, firstly the FEC encoding algorithms are detailed in Section 

2.3 and 2.4, after which the literature is reviewed with respect to LDPC, BCH and concatenated 

decoders in Section 2.5. Finally a summary of the outcomes of the chapter is given in Section 

2.6. 

 

2.2 DVB-S2 transmission model 

 

The DVB-S2 protocol defines the PL transmission characteristics as presented in [11] and 

reviewed in [12], the modules comprising the transmission system are depicted in Figure 2.1. 

The DVB-S2 physical layer communication model is made up of a transmission and reception 

system, the transmission system for the standard is provided in detail by the DVB group. The 

receiver structure of the protocol however is not specified in order to maintain flexibility. The 

following section details the transmission layer modules which constitute the standard. 
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Figure 2.1-DVB-S2 physical layer transmission system [12] 

 

The DVB-S2 protocol is made up of the following modules: 

 Mode and Stream Adaptation 
 FEC Encoding 
 Mapping 
 PL Framing 
 Modulation 

 

Each of which will be discussed subsequently. 

2.2.1 Mode and Stream Adaptation 

 

The mode and stream adaptation module pictured in Figure 2.2 below acts as the interface 

between the link and physical layers. The purpose of the module is to provide a generic output 

given a variety of inputs into the DVB-S2 transmitter. The module was developed in accordance 

with the DVB group design goal of improving flexibility. DVB-S2 is thus compatible with 

several forms of input such as MPEG-4 and IP packets [11], in both single and multiple streams. 

 

 
Figure 2.2-Mode & Stream Adaptation module [12] 
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The block contains several sub-modules such as Input Stream Synchronization, CRC-8 Encoder, 

Merger Slicer and baseband (BB) Signaling .The Merger Slicer module slices the input from one 

of several input streams into fixed segments, known as DATA FIELD’s, which are merged to 

form a single stream. The BB signaling added to the stream is used to inform the receiver of the 

correct manner of stream reconstruction. The Stream Adaptation module is further responsible 

for ensuring that the BBFRAME, which is the output of the module, is adequately padded to a 

specified length given by     . The length is determined by the input ACM signal to the module 

which selects the transmission mode to be utilized. The ACM signal selects a row of Table 2.1 

which is defines the lengths of the transmission frames. In Figure 2.3 the BBFRAME is shown to 

contain the BBHEADER, the BB signaling, the stream input in the form of the DATA FIELD 

and any additional padding required to achieve a length of     . 

 

 

Figure 2.3-Structure of a BBFRAME [11] 

 

2.2.2 FEC Encoding 

 

The FEC encoding module is the chief reason for the gains in capacity achieved by DVB-S2 over 

its predecessors. Forward error correction also known as channel coding is a method of error 

correction and control over noisy channels, achieved by adding redundancy to the information 

stream in a given way. This allows the receiver to detect and correct a fixed amount of errors 

[15]. 
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Figure 2.4- FEC module [12] 

 

The FEC module consists of two types of error correcting codes; a BCH code (outer) and a 

LDPC code (inner) which are serially concatenated. The input BBFRAME’s are initially encoded 

with the BCH encoder module, which adds a header to the end of the BBFRAME containing the 

BCH parity bit information. The LDPC encoder then proceeds to encode both the BBFRAME 

and BCH parity bit information such that the output FECFRAME has the structure given in 

Figure 2.5. The FEC encoder module can operate at various code rates as can be seen in Figure 

2.4 above. The code rates are selected by the rate adaptive module and are chosen in accordance 

with channel conditions. Each code rate is assigned different values of      and      varying the 

amount of redundant bits comprising the FECFRAME.  

 

 

Figure 2.5-FECFrame structure [11] 

2.2.3 Mapping 
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Figure 2.6- Mapping module [12] 

 

The mapping module is responsible for mapping the FECFRAME into the appropriate 

modulation symbols required for transmission over a wireless channel. There are four different 

modulation schemes, quadrature and 8 phase shift keying (PSK) as well as 16 and 32 amplitude 

PSK (APSK), which can be selected by the adaptive modulation component; the schemes are 

also linked to a range of code rates. The input into the module is a FECFRAME and the output is 

a complex FECFRAME  (XFECFRAME). The XFECFRAME is made up of 64800/     

symbols where      is the modulation efficiency. An example of bits mapped to the 16APSK 

modulation is depicted in Figure 2.7. 

 

 

Figure 2.7-16APSK symbol mapping [11] 

 

2.2.4 PL Framing 

 

The PL Framing module is responsible for creating the physical layer frame (PLFRAME).The 

module receives the XFECFRAME as input however if no frame is available a dummy frame is 

inserted. The PL Signaling block is responsible for handling the administration of the 

PLFRAME, such that the receiver is capable of reconstructing the PLFRAME.  
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Figure 2.8- PL framing module [12] 

 

This includes slicing the XFECFRAME into smaller blocks, adding a PLHEADER for receiver 

configuration and adding Pilot symbols which aid with receiver synchronization. The last 

function of the module is to scramble the frame in order to disperse the bit energy. It is 

implemented using a randomizing sequence added to the PLHEADER.  

2.2.5 Modulation 

 

 

Figure 2.9- Modulation module [12] 

 

The final block in the physical layer transmission system is the modulation subsystem. The 

output of the block is a modulated signal which is sent over the channel to the receiver. The 

process of modulation involves filtering the input signal which then undergoes quadrature 

modulation. 

The modules discussed above make up the DVB-S2 physical layer transmission model, the focus 

of this dissertation is the FEC component of the protocol, which has been briefly mentioned 
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above. The contents of the FEC module, the BCH and LDPC channel codes will be discussed in 

greater detail as follows together with the presentation of their encoding algorithms. 

 

2.3 BCH Codes 

 

The following section discusses the characteristics and role of the BCH code in the physical layer 

FEC system as well as describing the encoding algorithm specified in the DVB-S2 standard. The 

BCH code was originally developed in 1959 by Hochquenghem and later expanded upon by 

Chaudhuri and Bose in 1960 [16], whose initials give name to the code.  

A BCH code is a cyclic block code and is a generalization of Hamming codes [16] [17] which 

appends redundant data to the information allowing it to correct multiple bit errors. This has been 

observed in FEC module where the BCH encoder appends the BCHFEC header to the input data 

see Figure 2.5. BCH codes have gained popularity in communications due to the low level of 

hardware complexity required to implement the encoding and decoding modules [18]. The DVB-

S2 standard employs a BCH code concatenated with a LDPC code to form the FEC mechanism 

at the physical layer. The concatenation negates the error floor problem experienced when using 

a message passing decoder to decode a LDPC code. 

There are several different algorithms presented in the literature for the process of encoding BCH 

codes such as the look up table (LUT) based algorithms in [16] and [19]. The algorithms use 

LUTs to promote parallelization in the generation of the redundancy, improving the encoding 

efficiency. These algorithms however are variations of the polynomial division algorithm 

presented in the standard [16]. 

The algorithm uses polynomial representation to denote the codeword, input data and generator. 

The encoder utilizes polynomial division in order to generate the redundancy required to form 

the BCH codeword. The algorithm defined by the standard is as follows. 

Parameters 

    - The message polynomial of length defined by     . 

    - The generator polynomial 

    -The remainder polynomial with defined length     -      

    -The codeword of length defined by       
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BCH Encoder Algorithm [20] 

1. Multiply      by            
2. Divide                   by     , where the remainder is defined by     . 
3. Set the codeword polynomial                          . 

 

The three step process uses polynomial expression to describe the message, generator, remainder 

and codeword. The message polynomial is input into the module as a binary string of length bchk , 

where bchk   together with several other bit length parameters are not statically defined due to the 

adaptive nature of the protocol. The variables in the above algorithm are defined for different 

transmission rates or modes given in Table 2.1. There are ten operational modes; each mode 

defines different lengths of data and redundancy. The DVB-S2 standard employs large block 

lengths however the standard also defines a set of operational modes which operate on lower 

block lengths to maintain flexibility in terms of application scenario [20]. The second aspect to 

consider is the number of errors which can be corrected; there are three modes of error correcting 

capability 8, 10 or 12 corrections.  

Table 2.1-Table of DVB-S2 modes  [11] 

LDPC 

Code 

BCH Uncoded 

Block      

BCH coded block      

LDPC Uncoded Block       

BCH 

 -error correction 

LDPC Coded Block 

      

1/4 16 008 16 200 12 64 800 

1/3 21 408 21 600 12 64 800 

2/5 25 728 25 920 12 64 800 

1/2 32 208 32 400 12 64 800 

3/5 38 688 38 880 12 64 800 

2/3 43 040 43 200 12 64 800 

3/4 48 408 48 600 12 64 800 

4/5 51 648 51 840 12 64 800 

5/6 53 840 54 000 10 64 800 

8/9 57 472 57 600 8 64 800 

9/10 58 192 58 320 8 64 800 

 

The three modes require unique BCH generators; hence a table of generators is defined in Table 

2.2. If 8 error corrections are required the first 8 generator polynomials are multiplied together, 

the pattern is maintained for both 10 and 12 error correction generators. An equivalent table of 

BCH generators is defined in [20] to be utilized in short length operational scenario. 
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Table 2.2-Generator polynomials  [11] 
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2.4 LDPC Codes 

 

Low-density parity check codes are a class of linear block codes which were originally 

discovered by Robert Gallagher in 1960 [21], as the name implies the characteristic feature of 

LDPC codes are their sparse parity check matrices. The following section discusses the 

characteristics of LDPC codes as well as their role in the DVB-S2 FEC; finally the LDPC 

encoding algorithm is presented. 

The main benefit of LDPC codes is that it has shown both in theory and simulation to perform 

near the Shannon capacity in AWGN assuming large block lengths [13].This property benefits 

the DVB-S2 standard which defines relatively large block lengths for transmission. LDPC codes 

also maintain a structure which lends itself to parallelism, which is beneficial for hardware 

implementation [22]. They are generally represented in the form of a sparse bipartite or Tanner 

graphs seen in Figure 2.10. The nodes on the left of Figure 2.10 represent the bits which form the 

parity check matrix, known as variable nodes. The nodes on the right represent the check nodes 

an edge between a variable and check node represents a binary ‘1’ in the position given by the 

variable node in the parity check matrix. An important property which affects the performance of 

an LDPC code is the row and column weights given by    and    respectively. The weight 

determines the performance of the code as it defines the structure of the bipartite graph which 

plays an important role in the decoding process. 
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The LDPC Encoder presented in the DVB-S2 FEC is responsible for forming an LDPC 

codeword, of length       which fixed at 64800 bits not considering the short length scenario, 

from the input BCH codeword of length ldpck .  

The concatenation of the LDPC and BCH headers together with the input data forms the 

FECFRAME, see Figure 2.5. The advantage of which as has been previously mentioned is to 

solve the error floor problem inherent with LDPC decoding. The depiction of the performance 

results of iterative decoding algorithms are known as “waterfall” curves due to the shape of the 

curve. The bottom of the waterfall or the tapering off effect is known as the error floor region 

[23]. In LDPC codes the error floors are generally more prominent in high weight codes; the 

source of the problem are sets of variable nodes called stopping or trapping sets. These contribute 

to undetermined variable nodes during iterative decoding. Stopping sets dominate the 

performance of the code in the error floor region and the composition of the sets are determined 

by the method of construction of the LDPC code [23] 

A LDPC code defines a sparse parity check matrix  , from which the associated generator 

matrix   can be derived. In order to generate an LDPC codeword the general technique 

multiplies the information   and the generator to produce the resultant codeword  ,       . 

This algorithm is a basic encoding technique which can be applied to all linear block codes; it is 

simple however is computationally inefficient. Given that the parity check matrix   is sparse by 

nature, the generator matrix   is thus dense [24]. The process of multiplying   by   can be 

computationally costly if the length of   is large, which is the case in the DVB-S2 system.  

In order to improve the efficiency of encoding there have been two general approaches taken in 

the literature. The first being to improve the structure of LDPC codes, LDPC codes can be 

formed through random generation of bits making up the   matrix, the variable node in parity 

check matrix. This approach leads to a high level of encoding/decoding complexity, dense 

generator matrices. In [24] it has been shown that an informed selection of bits making up   can 

Figure 2.10-Bipartite graph  
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reduce the complexity of both encoding and decoding. In [24] four methods for generating well-

structured LDPC codes are presented, which describe algorithms defining the placement of 

binary ‘1’s in either the matrix   or the arrangement of nodes in a bipartite graph. The second 

approach to improving encoder efficiency is to transform the encoding algorithm by use of the 

specialized structures developed in  [24]. The sum-product encoder algorithm given in [25] is a 

highly efficient technique however it requires a   matrix where all the parity bits are found in the 

upper triangle, requiring several matrix permutations. Another method described in  [25] is 

iterative matrix inversion which operates based on the Jacobi principle. The combination of 

approaches has produced algorithms which outperform traditional matrix multiplication in terms 

of efficiency. 

The LDPC encoder presented in the standard is based on some of the principles discussed above 

however given the large and sparse nature of the   matrix in the DVB-S2 system, a specialized 

algorithm is developed in the standard. It utilizes the indices of the ‘1’ bits in   rather than 

forming the complete   matrix .The purpose of the encoding algorithm is to generate the 

ldpcldpc kn   parity bits to be added to the message. The standard provides a system for 

calculating the position and value of the parity bits using LUTs directly from the information 

bits. The DVB-S2 system is rate adaptive hence the amount of parity bits generated varies 

according to the transmission mode currently selected. The standard thus defines 10 unique 

LUTs to match the10 modes, for both the large and short length scenarios, which can be selected.  

Parameters 

  -Represents the parity bit array of length            . 

  -Represents the information bit array of length      , the output of the BCH Encoder. 

   -The look up table corresponding to the given code rate 

 -Constant value defined in the standard 

LDPC Encoder Algorithm [20] 

 

1. Initialize the parity bit array p to ‘0’. 
2. For j = 0 to ldpck -1 
3.  if (j is a multiple of 360 ) 
4.  then 
5.   for m = 0 to (number of values in the line of the    ) 
6.    b =value from    (m) 
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7.    jbb ipp   
8.   end 
9.    Change to next line in     
10.  end 
11.  else 
12.   for m = 0 to (number of values in the line of the    ) 
13.    b =value from     (m) 
14.    )mod()360mod( ldpcldpc knqjbz   

15.    jzz ipp   
16.    end 
17.   end 
18. end 
19. for c = 1 to 1)(  ldpcldpc kn  

20.  1 ccc ppp  
21. end 
22. Append p  to i  forming the LDPC codeword. 
 

The LDPC encoder module in a similar manner to the BCH module requires information from 

the adaptive module in order to define the value of ldpck as well as select the appropriate     and 

value of constant q , see Table 2.3, used during the encoding process. 

 

 

The parity bit array represented by   must be initialized to ‘0’. Once the process of initialization 

has been completed, the next step involves traversing the information array i .The information is 

bit accumulated using two different techniques dependent on whether the current bit index of i  is 

a multiple of 360. The process of accumulation is a method of generating values for the parity 

array stored in p . If the index is divisible by 360, the accumulation process targets specific bits 

identified by their index. These indices are stored in the     associated to the indicated given 

mode. Assuming the current code rate was given as ¼ and the current bit index is 0. The module 

Table 2.3-Table of values of q [6] 
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will scroll along the first line of the    , and accumulate 0i with every parity bit given by the 

indices in the    . Using the     given by Table 2-4, the first 3 accumulators for 0i  are given 

in (2.1). 

 

 
011401140 ipp   

02360623606 ipp   

 
 

(2.1) 

 

The module traverses the entire length of the     line before returning to algorithm line 3.If the 

current bit is not a multiple of 360 the following process is implemented. The bits which are not 

multiple of 360 do not have their accumulation indices found in the    . The required indices 

must be calculated from those given in the    . The line in the     is traversed and each value 

is stored in the variable b .  

The value is used as follows given equation (2.2) [11]. 

 

 )mod()360mod( ldpcldpc knqjbz   (2.2) 

 

Where   is the desired index, the accumulation at index   then proceeds. The value of j  

represents the global loop index while q is a constant defined in Table 2.3 dependent on the 

transmission mode. After all of the information bits have been traversed, the next step in is a 

sequential accumulation of all the parity bits, which involves adding adjacent parity bits together. 

Finally the parity bit array p is appended to i  forming the completed FECFRAME. 

03609836098 ipp 
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Table 2.4-Look up table for code rate ¼ copied from [11] 

 

 

2.5 Literature survey of FEC decoders 

 

The DVB-S2 FEC encoder structure and algorithms have been presented in great detail in the 

preceding sections, continuing with the description of the DVB-S2 physical layer model, the 

definition of a receiver structure is required. The DVB workgroup defines only the transmission 

system at the physical layer. This has led to several different receiver structures being developed 

and presented in the literature.  

The aim of the literature survey is firstly to gain an understanding of the decoding approaches 

and algorithms available in the literature for BCH and LDPC code in order to select an 

appropriate decoding structure for the DVB-S2 FEC. The requirements for a suitable structure 

are: compatibility with decoding the concatenated BCH-LDPC code, the decoder must provide 

best possible error correcting performance, referred to as performance in the section, compared 

with those presented and finally the decoder must be of realizable complexity. The complexity of 

the decoder must be considered as the goal is to produce a realistically implementable decoding 

system. The second reason is that the processing power available to implement the decoder in 

software, is limited. These metrics will be considered when examining the decoding options 

presented as follows. 

The literature survey will be divided into three sections BCH, LDPC and concatenated decoders. 

The motivation of the decomposition is to gain a complete understanding of the possible 

solutions available for the BCH and LDPC module independently before considering solutions 

specialized to decode the concatenated code.  
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A second broad differentiation made in the process of the review is the separation of algorithms 

into hard and soft decision variants. Hard decision decoding implements an algorithm which at 

its basis selects the decoded codeword out of the set of all possible codewords based on 

Hamming distance, where the minimum value is selected. Soft decision decoding utilizes soft 

information, generated during the process of decoding; this is used to calculate the Euclidean 

distance of the potential codewords. The minimum codeword is then selected as the decoded 

codeword. The subsequent sections form a review of decoding techniques available for 

application to the DVB-S2 FEC, for LDPC and BCH codes. 

2.5.1 LDPC decoding 

 

LDPC codes were originally presented by Gallager in his doctoral thesis [26] in 1963. In the 

succeeding years there have been a broad range of approaches set forth to decode and improve 

the performance of LDPC decoding. 

Gallager presented two algorithms for LDPC decoding, which take different decoding 

approaches. The first is a hard decision algorithm, assuming transmission over a binary 

symmetric channel (BSC), the algorithm uses the parity check equations given by the LDPC   

matrix to determine whether to flip the values of the bits in the received sequence. The algorithm 

flips the value of the bits until all the parity check equations are satisfied; it is thus known as the 

bit flipping (BF) algorithm. 

There have been many variations made to the BF technique including weighted BF (WBF) [27] 

and modified weighted BF(MWBF)in [27] and [28], where the improvement is based on flipping 

the appropriate bits only once a given threshold is achieved. The performance of the decoders are 

dependent on the threshold value if the value is to high the incorrect bits are not flipped, if they 

are too low the correct bits may be incorrectly flipped. These decoders are shown to better 

performance, in scenarios where the threshold is suitably defined, beyond that of the BF 

algorithm. Reliability ratio-based-weighted BF (RRWBF) [29] builds on the MWBF technique 

by using all the bit node information to calculate the metric which determines whether the bit 

should be flipped. The algorithm determines a reliability ratio using the input value of the bit 

nodes. It has shown to produce a coding gain of 1dB over the traditional BF algorithm. The 

computational cost required to determine the bit flipping metric increases the complexity of the 

RRWBF decoder thus a implementation efficient RRWBF (IERRWBF) is provided in [30]. The 

IERRWBF maintains the error correcting performance while reducing the complexity using 

parallelization and reducing the number of computations using LUTs.  
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In [31] the candidate based BF (CBBF) decoder is discussed; the approach is based on the 

correlation between the columns of  . The correlation is used together with the parity check 

equations to determine the correct bits to flip. The BF technique has previously only been 

presented in hard decision form however in [32] both a hard and soft iterative decoders are 

presented. The hard decision decoder differs from Gallager’s BF technique on the basis that only 

a single bit is flipped every iteration. The metric determining whether the bit is flipped is based 

on the syndrome weight of vectors which contain more than two errors. The soft decision 

algorithm is a slightly modified version of the hard decision as it takes into account channel 

reliability information when calculating the bit flipping metric. An issue with flipping a bit in an 

iterative manner is that the decoder may be caught in a loop, where the same bit is flipped and 

then flipped back in subsequent iterations. To counteract this, a loop detection technique is 

applied to both algorithms to break any cycles. The hard and soft decision algorithms together 

with the CBBF are shown to provide better performance than BF, however the soft decision 

decoder and CBBF come at the cost of greater complexity. 

There have been several other hard decision algorithms presented for LDPC decoding such as the 

majority logic (MLG) decoder given in [33] [34] which uses a majority voting technique to 

determine the value of a selected bit. The concept behind MLG is based on the parity check 

relationships in a similar manner to BF. The majority voting technique is advanced in [35] using 

reliability or channel values and an iterative structure to improve the decision of the majority 

vote, which shows significant improvement in performance over traditional MLG. 

 As is the case with most hard decision algorithms it provides a lower degree of complexity 

easing the process of implementation, however they suffer in terms of performance relative to 

their soft decision counterparts. The second algorithm presented by Gallager was a probabilistic 

iterative decoder; initialized using the channel transition probabilities. The scheme uses the 

check and variable node structure, to calculate the probability of a bit being ‘0’ or ‘1’ .The 

algorithm is called Belief Propagation ,also known as the sum product algorithm(SPA) [27] [36] 

[37] [38] [39] and is a form of message passing decoding. The name comes from the term 

“beliefs” which is the term given to the probabilities of the given bit being a ‘0’ or ‘1’ based on 

values of the bits which are related to it described by the Tanner graph. The concept of 

propagation is based on the manner in which the “beliefs” are updated; the process is iterative 

and propagates as a “belief” is based on the “belief” of other related nodes. The algorithm has 

shown to reach near ML decoding performance as well as approach the Shannon limit. 

The BP algorithm was presented by Gallager in 1963 however it was only popularized when 

LDPC codes were rediscovered 30 years later, the main issue with their lack of popularity at the 

time of conception was due to a lack of technology required for efficient implementation of the 
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decoder. BP decoding has since become the basis for majority of the decoding algorithms 

presented in the literature. There have been several variations made to BP such as the message 

passing schedules technique given in [40]. The Tanner graphs of specific LDPC codes are 

analyzed and improved message passing schedules are derived; when applied to BP the improved 

schedules provide better performance and in given cases at a lower complexity when compared 

to BP. Another variation given in [41] focuses on reducing the complexity for short LDPC codes, 

containing a large degree of short cycles by modifying the reliability of the messages passed 

however providing a lower error correcting performance. 

The modifications given above focus on reducing the complexity of the decoding algorithm 

while maintaining similar levels of error correcting performance relative to BP. The approach is 

taken in the development of the uniformly most powerful (UMP) BP based algorithm given in 

[42] [43] [44] which simplifies processing at the check nodes. This degrades the performance of 

the decoder however in [45] a normalization approach is presented. The normalization approach 

improves the performance of UMP based schemes, however still below that of the BP decoding. 

The min-sum (MS) algorithm [46] like UMP is another algorithm which looks to balance 

complexity and performance. The MS algorithm makes an approximation in the process of 

updating the check nodes. This reduces the complexity of decoding by decreasing the number of 

multiplications required to calculate the probability associated with each bit. The MS algorithm 

is modified in [47] where a predetermined offset, known as offset MS (OMS), is added to the 

check node update calculation, improving the decoding of the MS algorithm. The offset adjusts 

the error of the approximation and is calculated by analysis of the iterative information produced 

by the decoder. The decrease in error of approximation leads to a reduction in the number of 

errors produced. The concept is extended in [48] where the calculation of the offset is determined 

in an iterative manner dependent on the soft information produced in previous iterations. This is 

shown to improve performance at the cost of greater complexity than MS and OMS. 

The forced convergence (FC) method [49] is another modification of BP which differs from the 

approach taken by MS. The approximation is made with regards to individual nodes; the 

assumption is that most variable nodes will converge to the correct value within several iterations 

of decoding. The update of the converged variable nodes will thus be halted reducing the number 

of calculation required to decode. The properties in identifying the converged variable nodes is 

key and determines the performance of the system, which is in the best case similar to BP, these 

are defined together with several improvements in [50].  

The structure of the LDPC code is important in determining the decoding performance. A large 

portion of the decoding algorithms are iterative and operate on the transfer of information 

between bit and check nodes. The structure of the bit and check nodes can thus be arranged to 
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improve decoding. The main detriment to iterative decoding is the formation of cycles in the 

Tanner graph as it is shown to skew the shared soft information reducing the effectiveness of 

message passing decoding. The problem has been considered in [24] [51] [52] [53] which 

provide various algorithms for improving the structure of LDPC   matrices, by reducing the 

number of short cycles in the Tanner graph of  . The decoding of the improved construction 

parity check matrices outperform similarly generated matrices using traditional techniques.  

There has also been other approaches taken to solve the problem of short cycles in   matrices, 

rather than removing short cycles at construction, a cyclic lifting technique is presented in [54]. 

Cyclic lifting is the process of “lifting” short cycles from the LDPC Tanner graph while 

maintaining the basic code properties such as degree distribution. The effect of short cycles is 

also shown to play a significant role in producing the error floor problem hence the removal of 

cycles improves the performance in the error floor region. The short cycles in LDPC codes can 

be identified by simulation using a message passing decoder, for a specific  . The algorithm 

presented in [55] proceeds to identify the short cycles, termed trapping sets, using a sampling 

simulation technique. Knowledge of dominant short cycles, short cycles which are prominent in 

error events, allow the decoder to switch to a default scenario when the decoder is trapped in a 

cycle. The process reduces the effect of short cycles on performance however at the cost of high 

complexity as it requires a large amount of storage and preprocessing. In [56] the method of 

identifying error sets is taken to next level, where the concept focuses on the early identification 

of non-decodable blocks, reducing the decoding power wasted on non-decodable blocks, 

effectively reducing the complexity of the system. 

The concept of short cycles as has been discussed is shown to reduce decoding performance 

however instead of removing them, an algorithm is developed in [57] which modifies BP to take 

advantage of short cycles. The algorithm is shown to improve the performance with regard to the 

algorithms mentioned which remove or identify short cycles. The assumption is that it requires a 

great number of short cycles to outperform the other algorithms, which is not the case given 

traditional LDPC decoding. 

The transfer of soft information has been discussed as being the key component in providing BP 

performance. Two techniques have been presented which attempt to analyze the soft information 

transferred in the BP decoder, density evolution (DE) [58] and extrinsic information transfer 

(EXIT) charts [59] [60]. DE and EXIT chart analysis are used in the literature to analyze the 

extrinsic information produced by message passing decoders. The information has shown to be a 

valuable tool in improving the performance of decoding systems. In [61] DE is applied to the MS 

and BP decoding structures, illustrating the differences in information produced by both systems. 

This allowed for an offset value to be determined which reduces the information difference 
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between MS and BP, allowing MS closer to BP error performance. A similar approach is given 

in [62] which scales the transferred soft information, based on DE information, in the case of MS 

decoding, a maximum scaling factor is calculated which provides maximum coding gain for a 

given code. In [47]  scaling factors are produced for offset based BP and normalized BP which 

are reduced complexity variations of BP in the same vein as MS decoding. 

The EXIT chart technique measures similar information to DE however where DE is numerical 

EXIT charts are graphical. The curve fitting approach to improving performance are provided in 

[63] and [64], where the approach is based on reducing the gap between the bit node and check 

node information curves, achieved by varying the code parameters. The performance of the 

analyzed codes is shown to improve using the curve fitting approach. 

The final approach to be applied to LDPC decoding systems are the hybrid decision decoding 

schemes as presented in [65] [66] [67]. The characteristic algorithm in this field is the two-stage 

algorithm, which is a combination of two iterative decoding algorithms. The first stage is a soft 

decision decoder followed by a hard decision decoder. If the soft decision decoder fails the 

decoding is transferred to the hard decision decoder and vice versa until the codeword is 

correctly decoded. In [68] an algorithm is presented which makes use of BP as the first stage 

with a small number of iterations, after all of the iterations have completed a hard decision is 

made based on the LLR ratios, resulting in a binary codeword. The results of which is passed to 

the second stage being an IERRWBF decoder, schemes for reducing the complexity of the hard 

decision stage are also presented. There are also variations such as those given in [67] which 

reverse the stages where the first stage consists of the hard decoder and the second stage consists 

of the soft decoder. This scheme has shown to produce similar performance to BP with a much 

reduced complexity, for a similar number of iterations.  

A similar algorithm is presented in [69] by Fossorier, combining reliability based decoding 

specifically OSD, as the second stage, with BP. The Fossorier decoder outperforms BP in terms 

of performance for given code lengths, however at the cost of much greater complexity per 

iteration. The OSD algorithm is also combined with adaptive BP (ABP) in [70]. ABP is a 

variation of BP which adapts the   matrix of the code based on reliability information. The aim 

is to reduce the effect of unreliable bits on the decoding. The combination to form ABP-OSD in 

[71] has shown to outperform reliability based decoders of similar length. The reliability based 

OSD algorithm is presented again in concatenation with a BF mechanism in [72], to form the 

BF-OSD decoder. The BF can be one of a number of variants [27] [28] [29] [30] mentioned 

earlier in the section, the BF techniques are generally hard decision and are of low complexity. 

The combined decoder is thus of lower complexity than the preceding concatenated schemes. 
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The BF scheme sums the BF metric values which act as input into the OSD module. The scheme 

provides comparable performance to BP with a much reduced complexity. 

The LDPC decoding mechanisms presented range over a broad spectrum of approaches. The DE 

and EXIT chart approaches mentioned in the course of the review cannot be considered as they 

improve decoding performance however do not define a specific decoder structure. They are 

techniques which can be applied to any message passing soft decoder. The same reasoning can 

be applied to the   construction and modification algorithms which can be applied to improve 

performance once a decoding structure has been defined. The BF technique presented by 

Gallagher has shown to provide adequate LDPC decoding performance with low complexity. 

The modifications to BF such as RRWBF are shown to make significant coding gains making it 

attractive for selection. The performance however of the BF variants are limited when compared 

to the soft decision BP decoder. This has a much greater complexity due to the calculations 

required to determine the “beliefs”. The general trend in the soft decision decoders examined in 

the review has aimed at reducing the complexity of the BP decoder while attempting to maintain 

the decoding performance. This has been achieved to varying levels of success by MS, UMP, 

ABP and FC together with their alternatives. The dual soft decision concatenated structures such 

as the Fossorier and ABP-OSD decoders are shown to improve the coding gain above that of BP, 

with an increase in complexity. The soft-hard decoder concatenations provide BP like 

performance at lower complexity. Taking into account the metrics considered for a suitable 

decoding structure it is apparent that selected LDPC decoder will be based on BP, as it provides 

the best available performance whilst the complexity is still manageable in terms of software and 

hardware implementation. 

2.5.2 BCH decoding 

 

The BCH error correcting code has gained great popularity in communications in recent years, 

the justification being the availability of simple algebraic techniques for BCH decoding. This has 

allowed development of low cost and complexity receivers which maintain reasonable decoding 

performance; several of these structures will be examined as a suitable implementation for the 

DVB-S2 FEC decoder. 

The conventional BCH decoding algorithm consists of three steps [73], syndrome calculation, 

derivation of the error locator polynomial and finally identification of the errors in the codeword 

using the error locator polynomial. An implementation of which is depicted in Figure 2.11. 
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Figure 2.11-BCH decoding process [52] 

 

The input into the BCH decoder given Figure 2.11 is     , which is the binary input into the 

BCH decoder. The first stage in BCH decoding is syndrome calculation, the purpose being to 

form the syndrome polynomial given in (2.3). 
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Given that   denotes the error correcting capability of the BCH code. Where    is determined as 

per the relationship given in (2.4) where         . 
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  is the primitive element of the BCH code, the number of errors present in the codeword      

is given by  . The error locator terms are given by    
 where    is the  th error location. The 

calculation of which can be facilitated using a process of division using the primitive elements. 

The syndrome polynomial      is required in order to develop the error locator polynomial      

given in (2.5), which makes up second stage of the decoding process. The Key Equation solver is 

responsible for determining the relationship between the syndrome and error locator polynomial.  

 

The complexity of determining      is due to the system of equations defined by the syndromes 

being under constrained. There is thus a range of possible solutions, ideally in decoding the aim 

is to determine the solution which contains the minimum amount of errors .There have been 

several presentations in the literature which aid in the computation of the     . 
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The Berlekamp Massey algorithm (BMA) [74], is the combined work of Berlekamp and Massey. 

It is the most popular technique implemented in industry and forms the      in an iterative 

manner. A concern with the BMA is the throughput of the decoder, the iterative nature of the 

algorithm creates a bottleneck when implemented [75]. There have been several enhancements 

constructed in order to resolve the issue. An approach being to transform the BMA in order to 

reduce the complexity such as inversion-less BMA (RiBMA) given in [76] and the further 

simplified inversion less BMA (SiBMA) [77]. These are BMA schemes which have been 

parallelized and simplified for VLSI implementation. The reduced complexity implementations 

shows improved throughput in comparison to traditional BMA. The complexity of the BMA has 

also been reduced using fast Fourier transforms (FFT) in [78] an issue with this system is that the 

reduction occurs in terms of computational complexity. The use of FFT however has led to an 

increase in storage complexity due to the storage of the associated LUTs. 

The modified Euclidean algorithm [79] [80] is an alternative technique for determining the key 

equation. The algorithm applies a series of mathematical techniques in order to develop the series 

of polynomials required to find the key equation; at a complexity similar to BMA.  

The third stage in the process of BCH decoding is a Chien search which determines the roots of 

    . The roots are the locations of the errors in the codeword; the final task involves flipping 

the bits of the positions in error, implemented in Figure 2.11 in the form of the XOR gate.  

As with the LDPC decoders previously surveyed and with most practical decoding structures in 

general, the soft decision algorithms provide improved levels of error performance over the hard 

counterparts [81]. There have been several soft decision algorithms presented for application in 

BCH decoders such as the generalized minimum distance (GMD) algorithm [82] [83] developed 

by Forney. The premise is the generation of a set of candidate codewords using algebraic 

methods. GMD decoders select the least reliable bits of the received codeword, which are sent to 

a candidate codeword generator. The generator creates a series of test patterns dependent on the 

input bits, the test patterns are added to      to form variations of the binary received codeword 

    . The candidate codewords are then decoded using a hard decision BCH decoding 

algorithm. The result of which is a refined set of codewords, these codewords undergo a process 

of selection in the decision making unit such that the most likely codeword is selected. The 

process is depicted in Figure 2.12.  
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Figure 2.12-GMD decoder structure [84] 

 

The drawback of such a soft decision system is the multiplicative increase in the amount of 

hardware required. There are several other soft decision algorithms which produce a set of 

candidate codewords such as those produced by Chase in [85], Chase provided three algorithms 

for determining the selection of bits to be used in constructing the set of test patterns. This plays 

an important role in determining the set of candidate codewords. The Chase schemes vary in 

their approach of determining the number of least reliable bits to select, thus varying the amount 

of test patterns generated [86]. 

There have been many adaptations made to the Chase algorithms mostly aimed at reducing the 

amount of test patterns produced while maintaining the decoding performance, such as the 

dynamic scheme presented in [87]. The scheme divides the original set of candidate codewords 

into two subsets and selects one of the subsets to progress with during decoding. The basis for 

the selection is based on the reliability information from the channel. The scheme given in [88] 

defines a threshold which is used to reduce the number of test patterns generated by the Chase 

algorithm. The threshold is based on reliability information; the assumption is that the number of 

unreliable bits selected is fixed by the algorithm. There are cases where the reliability value of a 

selected least reliable bit may be low relative to the other bits in the codeword but in general can 

be termed reliable. The threshold excludes those bits, where any bit above the threshold is not 

considered unreliable, thus reducing the number of test patterns generated by the Chase 

algorithm. 

The sliding encoding window (SEW) [89] algorithm is a technique which focuses on the cyclic 

properties of the BCH code to generate candidate codewords. The purpose is to improve 

codeword diversity. It has shown to be most effective when combined with the Chase algorithm 

or BMA such as that presented in [90] which provides improved decoding performance when 

compared to regular Chase decoding. 
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In [91] [92] the Koetter-Vardy (KV) approach is adapted for Chase decoding; the KV algorithm 

is a soft decision algorithm originally developed for decoding Reed-Solomon codes. The 

algorithm converts the input channel reliability information, into a matrix of reliability values 

associated to each codeword bit. The KV algorithm is made up of three stages: matrix formation, 

polynomial interpolation and factorization. The algorithm is computationally complex due to the 

matrix permutations and is increased with the addition of Chase decoding. The Chase decoder 

generates a set of TPs which are permuted into their associated matrices using the KV approach, 

after which the process of interpolation and factorization is undertaken. The result of which is 

improved decoding performance relative to the traditional Chase and KV algorithms. 

In [93] a variation to the soft decision decoders mentioned above is presented which improves 

decoding performance while reducing the complexity. The decoder compensates for an 

additional error beyond that given by the least reliable set improving the decoding performance. 

The reduction on complexity is achieved by removing the Chien search from the algebraic 

decoder, the module is replaced with a lower complexity module capable of finding the errors 

using the least reliable values called the compensation error magnitude solver. 

All of the above mentioned techniques utilize soft information in the generation of the sets of test 

patterns and candidate codewords; however there have been presentations which make use of 

soft information in the probability propagation phase to improve decoding. A suboptimum MAP 

decoder with a SISO Hamming decoder has been presented in [94], there have also been 

applications of BP like algorithms to BCH decoding such as SPA implemented in [95] and ABP 

in [96]. The propagation comes at great cost in complexity but with much improved error 

correcting performance. In order to reduce the complexity due to soft decision propagation 

several decoders have chosen to focus only on a portion of the codeword. In [97] an algorithm is 

presented which  examines the use of error magnitudes in selecting least reliable bits, the use of 

the error magnitudes produces a much lower complexity system than selected hard decision 

decoders. The soft decoder operates only when the errors occur in a designated range of 

locations; it is thus highly dependent on the reliability information input into the decoder, which 

is channel dependent. 

The algorithm presented in [98] analyses soft decision decoders but focuses on improving the 

structure of the code using the method known as extended parity check matrix(EPCM) into 

which the original parity check matrix is permuted. The utilization of the EPCM is shown to 

produce improved performance in low rate system. 

There have been several approaches discussed above which can be selected to decode the BCH 

codewords. The hard decision algebraic decoders such as BMA are shown to be low complexity 

and provide reasonable decoding performance. The performance is extended when it is combined 
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with a reliability based decoder such as the GMD or the Chase algorithm. The system requires 

greater complexity however the trend in the presented work has been to modify the Chase 

algorithm in order to reduce said complexity. The soft decision reliability based schemes are 

prime candidates for the selection as they provide suitable decoding performance at a reasonable 

complexity. 

2.5.3 Concatenated decoding 

 

In the preceding sections a literature survey of BCH and LDPC decoding structures has been 

conducted on an individual basis, the target being the selection of algorithms in the design of a 

DVB-S2 FEC decoder. There are however several systems available which provide a complete 

scheme for decoding the DVB-S2 FEC, decoding both the BCH and LDPC codes. These have 

been presented in both literature and industry. In general the decoders developed by industry 

focus on low complexity implementations and are concatenations of the popular decoding 

techniques developed above. 

In [99] a BCH encoder/decoder structure is implemented which utilizes BMA decoding, together 

with a BP decoder implemented in [100] to decode LDPC codes, forming a BMA-BP decoding 

structure. There are many other such combinations of FPGAs available on the market designed to 

handle the specific constraints of the DVB-S2 system. Instead of BMA, RiBMA or SiBMA 

systems are implemented in a similar vein BP is generally replaced with MS or ABP. It is 

important to note that regardless of the variations to BMA BCH decoding or BP LDPC [101] 

[102] [103] [104] decoding, the concatenated decoders operate independently of each other. 

There have been several presentations in the literature such as that given in [105] which presents 

a compromise between decoding performance and complexity. The scheme implements a BMA 

decoder together with a fixed offset MS (FOMS) algorithm, which is a variation of the MS 

algorithm. FOMS introduces a constant offset; reducing the errors induced by the MS 

approximation. In [106] a similar scheme is presented which implements a low complexity BP 

decoder similar to MS, the BCH decoding is implemented using a BMA algorithm however the 

Chien search circuitry is reformed in a manner that improves the efficiency of the system.  

A concatenated iterative decoding scheme is presented in [13] which facilitates the transfer of 

soft information between the BCH and LDPC decoder’s in order to improve the resultant error 

correcting performance. The decoding system consists of a Chase and BP decoder for BCH and 

LDPC codes respectively. The concatenated system benefits from the sharing of soft information 

between the BP and Chase decoder which is shown to improve the decoding performance over 

similar independently operational decoders. The algorithm is iterative in nature and implements 
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BP decoding for a fixed number of iterations before switching to a single pass Chase decoder. 

The soft information derived from the BP decoding is transferred to aid in the BCH decoding. If 

decoding is still unsuccessful the conditioned soft information is transferred back to the BP 

decoder, until either a codeword is successfully decoded or a fixed number of iterations are 

achieved. The performance of the BP-Chase decoder outperforms the constituent decoders the 

coding gain can be attributed to the soft information transfer however at higher complexity. 

The literature review undertaken above has presented several alternative decoding structures 

which can be selected for decoding the DVB-S2 FEC. In order to select a viable solution the 

decoder structure considered must be able to decode the concatenated BCH-LDPC code. The 

metrics used to measure potential options are moderate complexity and best possible 

performance. In the review of the LDPC decoder it was shown that the BP decoder which is an 

iterative message passing algorithm met the requirements above. In the case of the BCH 

codeword the BMA algorithm was combined with reliability based decoders systems to provide 

coding gain. The concatenated systems presented in the review focused on low complexity 

implementations however a concatenated BP-Chase decoder was examined. The BP-Chase is a 

concatenation of the decoders which meet the selection criteria. The algorithm presented in [13] 

is shown to produce error correcting performance over and above BP and Chase decoders. The 

BP-Chase system will thus be selected as the receiver system to be used in the course of the 

dissertation. The system meets the metrics for selection as well as has potential for 

improvements; which will aid in producing a novel decoding algorithm. 

 

2.6 Conclusion 

 

In the preceding sections the DVB-S2 FEC structure has been discussed and detailed with 

consummate detail. The components that make up the DVB-S2 protocol are analyzed in brief, 

whilst highlighting there relevance to the FEC structure. The FEC structure is then decomposed 

into the BCH and LDPC encoding systems each of which is examined. A literary review of the 

DVB-S2 structure is then undertaken the result of which is the selection of the concatenated 

iterative BP-Chase decoder given in [13]. The concatenated iterative decoder will act as the base 

for the FEC receiver the implementation of which will be discussed in greater detail in the 

subsequent chapter. 
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Chapter 3 

3 PHYSICAL LAYER IMPLEMENTATION 

 

3.1 Introduction 

 

This chapter aims to construct and implement a DVB-S2 physical layer (PL) system model in 

order to generate error correction based performance results in both an AWGN and satellite 

channel. In order to fulfill one of the original aims of the dissertations as well as building a 

platform from which the system can be extended. In the process of examining the DVB-S2 

protocol so far the PL has been outlined in Chapter 1 and detailed in Chapter 2. The next stage 

involves adapting the models previously presented in order to create a complete system which 

can be realized in order to achieve the above mentioned aim, which is the basis for the work in 

this chapter. 

A complete PL system model requires a transmission and reception system as well as a channel 

through which the transmitted signals can propagate; the basic model of which is depicted in 

Figure 3.1 below. The PL transmission system has been fixed in the DVB-S2 protocol and the 

implementation details and algorithms of which are presented in Chapter 2, depicted in Figure 

1.2 and Figure 2.1. The DVB-S2 PL model discussed previously is made up of several functional 

blocks which allow the protocol to be used for a variety of applications. They however do not all 

play a role in providing error correction control, they do not add to the performance of the 

protocol. The construction of the model to be used in the chapter focuses on the decoding 

performance and hence the transmission model is condensed in Section 3.1, in order to simplify 

the analysis of the error control coding. The only module considered is the FEC (BCH and 

LDPC) as it is the major contributor in provision of error control. The link layer system modules 

are not considered as the encapsulated data does not affect the error correcting performance at the 

PL, which is the focus of the dissertation. The same can said of the Mode & Stream Adaptation 

module which is responsible only for administrating input into the PL. 

The PL model defined thus far includes a defined transmission model however a channel is 

required through which the signal can propagate. The literature available regarding DVB-S2 PL 

models provide results mainly in AWGN channels [12] [13] [20] [107]. In recent years there 

have been several campaigns undertaken which aimed to model the satellite channel. In order to 

determine the model which will be implemented, Section 3.2 presents a survey of the literature to 
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develop the concept of satellite channel modeling as well as examining the models which have 

been developed. A model will then be selected and discussed in regard to its implementation in 

the PL model. 

The reception system of the PL model is not specified by the DVB-S2 protocol, to select an 

appropriate model a literary survey was undertaken in Chapter 2. The result of which was the 

selection of the Chase-BP decoder developed in [13], due to its improved error performance. The 

Chase-BP decoder will be presented in detail in Section 3.3, focusing on providing the 

constituent and concatenated decoding algorithms as well as the details for the integration of the 

decoder in the PL model. In Section 3.5 the results of the implementation of the PL system 

model are provided and discussed, finally a conclusion highlighting the outcomes of the chapter 

is given in Section 3.6. 

 

 

3.2 Transmission model 

 

The focus of this section is the provision of the integration and implementation details of the 

transmission model in the PL system model. The simplified transmission model as depicted in 

Figure 3.1 is made up of the DVB-S2 FEC module which forms the main contributor of the error 

correcting capability of the system. 

The FEC module presented in Chapter 2 consists of the BCH and LDPC encoders, the algorithms 

for which have been presented in detail in Section 2.3 and 2.4 respectively. The purpose of the 

transmission model is to apply the FEC encoding algorithms to the input data in order to detect 

and correct a given number of errors at the receiver, essentially providing a defense against 

corruption over a channel. The transmission scheme achieves this by applying channel coding 

Figure 3.1-FEC system model 
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(BCH and LDPC) to the input information. The input information into the transmission model is 

in the form of binary data. The transmission model then proceeds to encode binary information 

blocks of length      to a BCH codeword of length      using the BCH encoding algorithm. The 

BCH codeword represented by      in Figure 3.2 is then concatenated with the LDPC scheme. 

     of length       is encoded using the LDPC encoding algorithm to a LDPC codeword of 

length      . The output of the transmission model is a binary LDPC codeword, which 

encompasses the BCH codeword; the last operation of the LDPC Encoder is to map the binary 

codeword to    for transmission across the channel. 

 

 

Figure 3.2-Transmission model 

 

The transmission model has been described in detail in the above section with reference to 

algorithms given by the DVB-S2 standard, presented in previous chapters. The subsequent stage 

of constructing the PL model requires the selection and analysis of the channel model as follows. 

 

3.3 Channel model 

 

The aim of this section is to select and define a channel model, which will act as a more accurate 

analog for a satellite system, in the PL model. In the literature the AWGN channel has been used 

as a model for satellite channels however in recent years there have been several projects 

initiated mainly by the European Space Agency (ESA) [108] through various intellectual bodies, 

for the measurement and modeling of  satellite channel models, concentrating mainly on the 

Land-Mobile satellite(LMS) channel. 

The drive for research into satellite channel modeling can be attributed to several reasons. One of 

those being infrastructure reuse, such as fixed television satellites reaching their end-of-life 

which renders them incapable of providing their original function in a fixed receiver scenario. 

Mobile devices are not restricted in this manner as they are capable of tracking and acquisition 

[109] and are thus capable of reusing the satellite infrastructure. The growth and distribution of 
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mobile systems worldwide has spurred the development of a variety of mobile centric 

applications and environments [110] hence the drive to model the LMS channel is to provide 

better prediction of the performance of mobile services rendered in a satellite medium. 

To improve the understanding of satellite channels a brief description of the terms and modeling 

techniques are provided. A literature survey is then undertaken to allow for the selection of a 

channel model which will be implemented. The selected channel will then be developed, 

concentrating on its integration into the PL model. The implications of the link budget in a 

satellite system are also produced. 

3.3.1 Satellite channel modeling 

 

A satellite channel model is a representation of the environment through which signals propagate 

in a satellite system; an accurate channel model takes into account the variety of disturbances 

experienced by a transmitted signal such as shadowing and reflection. 

The generation of satellite channel models can be understood as the formation of the channel 

characteristics in terms of the statistical distributions and state diagrams. The modeling is based 

on experimentation and measurement campaigns which measure the characteristics of a received 

signal. The measurement campaign focuses in general on the signal from a single satellite and 

measures results in a range of environments and elevation angles. 

The LMS channel will be the focus of the dissertation in this section. The selection of the LMS 

channel is appropriate in terms of the DVB-S2 protocol as there are several applications in DVB-

S2 such as DSNG lend themself to a mobile scenario [111]. In general DVB-S2 operates with 

stationary receivers however the disturbance measured in high density environments, such as 

urban areas, are similar to those experienced by both mobile and stationary receivers [111]. The 

LMS channel model effectively describes the propagation of signals between a mobile terrestrial 

transmitter/receiver and a satellite. The LMS channel has been assigned several bands in the 

microwave spectrum such as L and S range, models have also been generated in Ku and Ka the 

traditional satellite bands, in order to reuse existing satellite infrastructure as well as to avoid 

problems due to the saturation of the L and S band [112]. 

A signal propagating through the LMS channel experiences three different types of effects based 

on the propagation of the signal through the different layers of the atmosphere [2], these are 

ionospheric, tropospheric and regional or local. The ionospheric and tropospheric effects are 

caused by the disturbances experienced by the signal in the Ionosphere and Troposhere 

respectively such as geomagnetic storms or lightning [113], the effects of which are generally not 
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considered in modeling as they are negligible below 25GHz. These do not affect the S, L and Ku 

bands [114] as they fall beneath 25GHz. Local effects are those caused by buildings or 

interacting radio waves within the region of the receiver. 

The local effects are the main focus of modeling as they play a dynamic role in affecting the 

received signal [110]. It is important to note that the variation of the environment and elevation 

angle of the mobile receiver becomes paramount in determining the characteristics of the 

received signal as it varies the nature of the local effects. In an urban environment for instance 

there is a greater degree of blockages due to passing objects and buildings then in the rural 

equivalent, directly affecting the nature of the channel. 

The LMS channel received signal can be generally modeled by three components, the line of 

sight(LOS) component, the diffuse wave or shadowed components comprising the multipath 

signal and the component due to specular reflection. Shadowing is a form of fading which is 

caused by obstacles in the path of the receiver and is common in terms of mobile scenarios, 

especially in high density environments. In terms of the literature the shadowed component is 

assumed to have the greatest influence [109] [110] [115] [116] upon the received signal and the 

channel models aim to accurately define the depth and duration of this effect. 

The LMS channel is generally represented as a sequence of states, each of which describes a 

different level of interference or disturbance upon the received signal; which is generally 

represented by a Markov chain [109] [110] [115] [117] [118]. A Markov chain is a discrete time 

random process where the system exists in a single state at any given time and switches between 

states randomly. The changes between the states or transitions are defined to be random but are 

conditioned by statistical probabilities known as transitional probabilities [119]. The transitional 

properties   given in Figure 3.3 represent the probability of transitioning to a particular state, In 

Figure 3.3 two states are defined the “Good” and “Bad” state, when the system is in the “Good” 

state there are two possible choices upon transition, the system will either stay in the “Good” 

state defined by the probability     or switch to the “Bad” state, the probability of which is given 

by    . The states comprising the Markov chain are used to describe the state of the channel or 

the state of shadowing in the channel. This creates a method for efficient shifting between the 

states as would be experienced by a mobile receiver. 
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Figure 3.3-Two state Markov chain 

 

In the process of modeling the shadowing in a LMS channel, a statistical distribution such as the 

Rayleigh, Rice or Suzuki distribution is selected. The statistical distribution is then adjusted, by 

defining specific parameters of the distribution, in order to obtain the closest fit to the level of 

shadowing indicated during the measurement campaign. The states forming the Markov chain 

are each linked to a unique set of parameters, the statistical distribution are functions of these 

parameters allowing different levels of shadowing to be produced in each state. The basic 

concept of the LMS channel models have been considered; the next stage analyses the models 

presented in the literature in order to select one to be implemented in the PL model. 

3.3.2 Literature survey of LMS channel models 

 

The narrowband LMS channel has been analyzed and modeled in great detail due to the growth 

of the mobile sector in communications, the results of the modeling will be considered in the 

following literature review. The modeling of the LMS channel is generally represented in the 

form of a Markov chain; in the literature these can be divided broadly into either two state or 

three state models.  

The two state Markov channel presented in [120] and depicted in Figure 3.3 above, consists of a 

“Good” and “Bad” state, where the “Good” state refers to LOS conditions or an interval during 

which there is high received signal power and the “Bad” state is the converse, state in which 

shadowing occurs. In [120] the multipath component, effect of reflection, in both the “Good” and 

“Bad” states is represented in the form of a Rayleigh distribution. In the LOS state or “Good” 

state, the directly received signal adds a constant amplitude to the output, transforming the 

Rayleigh distribution into a Rician process       given by (3.1), where   represents the ratio 

between the direct signal and the multipath power,    is the modified Bessel function of order 

zero and   is the instantaneous received power. 
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                            (3.1) 

 

In the “Bad” state it is assumed that no LOS signal occurs hence the effect is a pure Rayleigh 

distribution (     ) with a mean power    in (3.2). 

 

 
       |    

 

  
            (3.2) 

 

The nature of    is time varying and is given by log normal distribution in (3.3), where   is the 

mean power level decrease and    is the variance due to shadowing. The values of which are 

given in [120] for varying environments and elevation angles. The model is called the Lutz 

model and provides a fairly accurate method for determining the local effects on the signal. 
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] (3.3) 

 

The computation of the transitional probabilities   given in Figure 3.2 is another important 

aspect to consider; in the Lutz model [120].The Lutz distribution given by    is determined by 

the duration of existing in a single state, calculated using the receivers transmission rate( ) and 

velocity(   ,determined during measurement, using (3.4). 

 

 
   

 

   
 

 

 
      (3.4) 

 

The duration in bits is given by    and    for the good and bad states respectively and   is the 

distance in meters. 

The two state model has been further developed in [115] and [116]. In [115] the Lutz model is 

applied to a measurement campaign undertaken more recently, which considers several more 

environments and elevation angles. In [116] the concept of the two states is advanced to the point 

where each state can take on more than one set of parameters in a given environment and 

elevation angle using a threshold factor to select which parameters to utilize. The level of 
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shadowing in each state is given by the Loo model, which is a combination of a Rice distribution 

given in (3.1) and log normal distribution given in (3.3). The Loo model [121] assumes the 

received signal varies as per the Rician model over shorter shadowing periods and like a log 

normal distribution over longer periods. 

 

Figure 3.4-Three state channel model 

 

The three state Markov model as seen in Figure 3.4 consists of LOS, Light Shadowing and 

Heavy Shadowing states, the improved number of states allows for a more realistic interpretation 

of the channel. Presented in [108] and [110] the three state model measures S and L band 

characteristics respectively, implementing a Loo model in a similar manner as that discussed in 

[116] above. Similarly in [118] the 3 state approach is undertaken across the L,S and Ka bands, 

the campaign unlike those previously discussed presents a wideband LMS channel, employing a 

combination of Loo, Rician, Rayleigh and log normal distributions to provide the level of 

shadowing in each state. 

There have also been variations to the 3 state model given in Figure 3.4, instead of differentiating 

between the level of shadowing in [109] and [115] a model for the Ku band is presented 

consisting of LOS, Shadowed and Blocked. In [115] the LOS state is modeled using a Rice 

distribution see (3.1), while the shadowed state is given by a combination of log normal and 

Rayleigh distribution (3.2) and (3.3); the Blocked state is described as being approximately -

20dB below the LOS and is not modeled. In [109] all three states are characterized by the Rice 

distribution given in (3.1). 

The transition probabilities in the three state model are determined using the equations given in 

(3.5) and (3.6). The state probability    is given by the ratio of the number of samples in state 

 (  ) given environment   (     to the total number of samples (    taken in environment  . 
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 (3.5) 

 

 
           

    

  
 (3.6) 

 

The transitional probabilities are determined in a similar manner, where      are the number of 

transitions experienced between state   and   in a given environment and    is the total number 

of state frames corresponding to state  ,essentially the number of frames transmitted when in that 

particular state. 

It is important to understand that three state models are considered to be more accurate 

representations of the satellite systems as they allow for a greater degree of flexibility in terms of 

the level of shadowing produced. In many case the choice between the formation of a two or 

three state model is based on the application scenario of the model, the level of shadowing may 

not always be paramount, and on the accuracy and quantity of measurement results obtained. A 

second aspect to consider when identifying a suitable system for the PL system model is the 

availability of the complete set of parameters required to generate the shadowing in each state, in 

several presentations the entire range of measurements are not always available due to 

implementation issues. The complexity of the method of implementing the channel must also be 

considered due to hardware implementation restrictions. Considering these factors the channel 

presented in [109] was selected. The measurement campaign provided a complete set of result 

and was carried more recently then the other systems discussed. The method for generating the 

shadowing is also simple to implement, the details of which will be provided as follows. 

3.3.3 Implementation 

 

The LMS channel model selected [109] was supported by the ESA and the measurements were 

obtained in the Ku band in South Germany. The implementation details of the channel model 

will be discussed in terms of incorporation into the physical layer model. 
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Figure 3.5-Ku band LMS channel model [109] 

 

The channel model is made up of three states LOS, Shadowed and Blocked; each of which is 

modeled using a Rician distribution given in (3.7).  

 

 
      

 

  
 

  
     

    
   

   

  
  (3.7) 

 

The values of the parameters required to generate the Rician random variable    are provided in 

Table 3.1 below. 

Table 3.1 Ka band LMS channel parameters [109] 

Environment State Transition Matrix S 
Rice 

sigma 
Rice z 

Rice 

Factor 
Mean 

Highway 
0.9862  0.0138  0.0000 

0.1499  0.8378  0.0123 

0.0008  0.0396  0.9596 

0.8922 

0.0823 

0.0255 

0.0947 

0.3010 

0.0505 

0.9892 

0.3510 

0.0000 

17dB 

-1.6dB 

0dB 

0dB 

-9dB 

-23dB 

Rural 
0.9795  0.0204  0.0001 

0.1007  0.8277  0.0716 

0.0010  0.1813  0.8177 

0.7844 

0.1555 

0.0600 

0.0916 

0.2464 

0.0993 

0.9976 

0.4020 

0.0000 

17dB 

1.2dB 

0dB 

0dB 

-8dB 

-17dB 

Suburban 
0.9796  0.0204  0.0000 

0.0929  0.8571  0.0500 

0.0015  0.1876  0.8109 

0.7831 

0.1715 

0.0454 

0.0829 

0.2289 

0.1054 

0.9994 

0.4393 

0.0000 

18dB 

2.6dB 

0dB 

0dB 

-7dB 

-17dB 

Urban 0.9902  0.0098  0.0001 0.6025 0.0926 0.9936 17dB 0dB 
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0.0714  0.8756  0.0529 

0.0000  0.0140  0.9860 

0.0825 

0.3150 

0.1900 

0.0610 

0.4132 

0.0000 

-3.7dB 

0dB 

-7dB 

-21Db 

 

The measurements were taken in four environments Highway, Rural, Suburban and Urban. The 

transition probabilities  (shown as the transitional probabilities in Figure 3.5) are given by the 

state transition matrix and   represent the state probabilities. The values of Rice sigma ( ) and 

Rice z ( ) are used in order to generate the value    which is the value of the shadowing in the 

form of a probability. 

In terms of replicating the channel described in [109], all of the parameters have been provided, 

the channel can transition effectively between states as well as generate differing levels of fading 

in each state according to (3.7). The channel will transition only between the states and is 

assumed to exist in a single environment, for the purpose of the implementation the environment 

considered is the Highway, the top row of Table 3.1 is utilized. 

It is important to consider how the shadowing will affect the PL system; the input into the 

channel model is in the form of bits of length      , the values of which are ±1. The channel 

model then proceeds to generate a value   , which is considered as a form of fading. The 

equation of the implementation is given in (3.8) where   is the output of the channel model. 

The fading component is multiplied with both the link budget constant     and the input bit value 

given by  , which is ±1. The link budget constant will be defined in the following section, the 

result of the multiplication is then added to   which is the noise generated assuming an AWGN 

channel. 

 

            (3.8) 

 

The details required for the implementation of the channel model have been given; the system 

replicates the LMS channel by implementing a form of shadowing based on a Rician distribution, 

resulting in the output given in (3.8). The following section discusses the power costs associated 

with transmission in a satellite channel by analyzing the link budget. 

3.3.4 Link budget 
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The link budget is an important part of satellite communications; a large amount of power is 

required when transmitting in a satellite channel, due mainly to the large distances over which 

communication takes place as well as the effects of shadowing.  

In order to calculate an accurate analog in a LMS channel these losses must be taken into 

account, in (3.8) the constant     was defined, which acts as a scalar constant in terms of the 

received bit energy. The aim of the section is to calculate the value of     given the link budget 

values provided in Table 3.2. 

 

             (3.9) 

 

In order to calculate    , it is important to understand equation (3.9) which defines the received 

signal power(    in terms of the transmitter power (   , the gain at the transmitter   , the gain at 

the receiver    and    in (3.10) which is a summation of losses such as those due to 

shadowing(    and free space loss(  ).  

 

               (3.10) 

 

 
      

      

  
  (3.11) 

 

The value of the link budget     can be calculated by reordering (3.9) to form the equation given 

in (3.11). The values of the parameters are given in Table 3.2 below, the resultant being -

137.8dB which is within the range of the received antenna gain. The value of     is very small as 

was expected due to the heavy free space loss in satellite systems. In terms of the implementation 

    acts as a constant scaling factor, this shifts the performance curves by 137.8dB. In the 

presentation of the simulation results the value of     will not be taken into account, simply to 

allow for easier relative comparison of results in the AWGN and satellite channels relative to 

each other 

Table 3.2-Link budget values [109] 

Satellite EIRP (dBW) 50 

Free Space Loss (dB) 205.3 
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Additional Loss(dB) 1.5 

Receiver Antenna Gain(dBi) 19 

Received Power at LNB Input (dBW) -137.8 

Receiver Antenna Noise Temp. (K) 80 

LNB Noise Figure (dB) 0.9 

C/N0 at LNB Output (dBHz) 69.13 

Noise Equivalent Bandwidth (kHz) 5 

Carrier to Noise Ratio CNR (dB) 32.14 

 

The three state LMS channel model selected above is important in providing a better analog for 

predicting the effects of traversing a satellite channel. Several types of models have been 

investigated however the accuracy and detail given in [109] matched the requirements for 

implementation in the PL system. The channel model will provide a more accurate representation 

than that of the AWGN channel however for ease of relative analysis will only take into account 

shadowing losses and not those due to free space loss. 

 

3.4 Receiver model 

 

The aim of this section is to present the implementation of the receiver system in the PL model, 

focusing on the process of integration. In previous sections of this chapter the transmission and 

channel models have been discussed, the final component to be integrated is the receiver model. 

In Chapter 2 of the dissertation a literature survey was carried out in order to select a decoding 

structure suitable for use in the DVB-S2 physical model. The decoder must be capable of 

decoding the FEC codeword defined in the DVB-S2 protocol, taking this into account the 

outcome of the survey was the selection of the concatenated iterative BP-Chase decoder 

produced in [13]. The decoder implements a concatenated decoding structure switching between 

BP and Chase decoder to correctly decode the FEC codeword. The BP-Chase decoder has shown 

to provide improved error correcting performance over its constituent decoders. The input into 

the receiver system is in the form of a vector of energy values of length      , the output of the 

system is the corrected binary FEC codeword. 
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Figure 3.6-Receiver model 

 

The distinct difference between the iterative concatenated BP-Chase decoder, to be referred to as 

the BP-Chase decoder for the remainder of the dissertation, and the individual component 

decoders is the transfer of soft information between the BP and Chase decoders, represented by   

and     
   given Figure 3.6. The passing of the soft information increases the complexity of the 

decoding however it improves the decoding performance as the process of decoding conditions 

the soft information improving the ability of the individual components to successfully decode 

the codeword. A single iteration of the BP-Chase decoder, implements the iterative BP decoder 

after which a single pass of the Chase decoder occurs. 

In order to clearly detail the implementation of the BP-Chase decoder, the BP and Chase 

decoding components will be discussed individually in Section 3.4.1 and 3.4.2 respectively. The 

concatenation and soft information transfer will then be discussed in Section 3.4.3. 

3.4.1 Belief propagation 

 

Belief propagation is the message passing decoding technique originally described by Gallagher 

in his thesis [26] in 1969 will be discussed together with several variants in Chapter 2. The 

algorithm is an iterative decoding scheme and involves the passing of messages or “beliefs” 

between the variable and check nodes in the Tanner graph, see Figure 2.10, which is used to 

graphically represent a LDPC code. The BP algorithm [26] [45] [122] [123] [124] [125] will be 

presented as follows. 

There are two basic variations of the algorithm, the probability domain and the log domain 

algorithms. The difference being the log domain decoder utilizes the ratio of the probabilities 

implemented in the probability domain technique. The motive for implementing log likelihood 

ratios (LLR) instead of operating with the probabilities is the reduced complexity, the probability 

domain algorithm requires multiplications which are more complex than the associated additions 

in the log domain. The log domain decoder is the algorithm which will be implemented. 
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The BP decoder as previously mentioned operates iteratively with messages, in the form of 

LLRs, passed between the connected bit and check nodes and vice versa in a single iteration. In 

order to fully describe the BP algorithm the following definitions are required, the LDPC code 

has a parity check matrix    , where   is the number of columns in  , which is equivalent to 

the number of bit nodes and code length; while   is the number of rows of   and equivalent to 

the number of check nodes. The set       are the bits which participate in check   and      

are the checks which bit   participates in. A very important definition in the algorithm is the set 

given by      

 
 and      

 
 which is the set of      and      excluding bit   and m respectively.  

The transmitted signal is a binary codeword modulated using BPSK before transmission across 

the channel. The channel is in the form of the LMS channel model presented in Section 3.3 with 

zero mean, variance given by   

 
 where    is the noise power and the shadowing factor   . The 

result of the transmission of the signal through the noisy channel is the input into the decoder   . 

A second consideration must be of the parameter      which represents the maximum amount of 

iterations the BP decoder can complete before the decoder halts. The value of      determines 

the level of error correcting performance, a greater number of iterations improves the 

conditioning of the passed messages, improving the error correcting capability however at the 

cost of increased complexity. 

The BP algorithm will be described in several stages the Initialization, Check Node Update, Bit 

Node Update and Decision phase. 

Parameters 

   - LLR of bit    which is derived from the input into the decoder,   . 

    - LLR of bit   which is transmitted from check node   to bit node  , the value of  

  which is derived from    . 

     LLR of bit   which is transmitted from bit node   to check node  , the value of  

  which is derived from    . 

    a posteriori LLR of bit   derived from the a priori information    and    . 

BP Algorithm [13] [45] [103]  

Initialization: 

Set     
 

  
    and        for all   and  . 
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Iterative Processing: 

Iterate while          ,where    the current number of iterations is less than the given 

maximum number of iterations. The     message is sent between a bit node and check node 

along an edge, while     is sent from the check node to the bit node. 

1) Check Node Update 

For all check nodes   connected to bit nodes   calculate the update message     using (3.12) 

and (3.13). 

 

 
    ∏

            

            
   

    
 

 (3.12) 

 
      

     

     
 (3.13) 

 

 

Figure 3.7-Process of updating the check nodes [122] 

 

The calculated value of     signifies the value of the messages or beliefs received from the 

edges connected to the given bit nodes as seen in Figure 3.7. 

2) Bit Node Update 

For all bit nodes   connected to check nodes   calculate the update message    . 
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       ∑     

   
    

 

 
(3.14) 

 

For all   update   . 

 

 
      ∑    

   
    

 

 
(3.15) 

 

 

 Figure 3.8-Process of update in bit nodes [122]  

 

The message     is defined by the messages or beliefs received from the edges connected to the 

check nodes seen in Figure 3.8. 

3) Decision Phase 

Form the vector   ̂ such that   ̂    if      and   ̂    if       

 If the formed codeword  ̂ is a valid codeword,  ̂   , the algorithm terminates and the output 

of the decoder is  ̂. If  ̂ is not a valid codeword then the algorithm iterates while         , 

return to the Check Node update phase. 

The BP decoder receives as input from the channel    and through the iterative process described 

above either fails or provides a valid codeword given by   ̂. The next section considered is the 

Chase decoder which forms the second component of the BP-Chase decoder. 

3.4.2 Chase decoder 
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The Chase decoder as was previously mentioned in Chapter 2 is a soft decision block decoder 

which utilizes reliability information to improve decoding performance. The Chase decoder 

forms the second component of the BP-Chase decoder and the algorithm will be presented in the 

following section. 

The Chase algorithms were originally presented by Chase in 1972, in [85] Chase presented three 

algorithms which can be used in conjunction with an algebraic decoder to provide improved 

decoding performance, when compared to sole algebraic decoding. The implementation of the 

Chase algorithms’ provide maximum likelihood decoding performance in AWGN and Rayleigh 

channels at high SNR’s [126]. The process of Chase decoding consists essentially of three stages, 

the definition of a most likely (ML) sequence of bits based on input from the channel, the 

formation of a set of test patterns using one of the three Chase algorithms; which are added to the 

ML sequence to form a set of candidate codewords, the third step sends the candidate codewords 

to an algebraic decoder and a selection process is applied to select the codeword which will be 

the output of the decoder. 

1) Define the ML sequence. 

2) Generate and add the test patterns to the ML sequence 

3) Decode candidate codewords and select the output codeword. 

 

As has been previously mentioned Chase presented three algorithms or methods for generating a 

set of test patterns to be utilized in the second stage of the decoding process. The algorithms vary 

in terms of the complexity, where the most complex Chase 1 generates the largest amount of test 

patterns (TP). The algorithms are based on the channel measurement decoding technique, which 

operates on the principle of Hamming distance   , is a property of a linear block codes. The 

Chase algorithm forms a sphere of potential codewords in       where the radius of the sphere 

is given in terms of   , dependent on the Chase algorithm used. The Chase algorithm also 

requires reliability information from the channel given by a vector    which is of codeword 

length. 

The channel measurement technique is depicted in Figure 3.9 where    and    represent 

possible codewords and   is the binary representation of the reliability information   . The 

codewords   ,    and   are surrounded by a sphere of radius⌊    

 
⌋, which is a function of the 

hamming distance. The technique takes advantage of the algebraic decoder which provides a 

unique error pattern when the codeword spheres overlap. In the case of Figure 3.9 the    and   

codeword spheres overlap, given the single case of overlap    is selected as the output 

codeword. The approach aims to develop a set of error patterns and select the codeword based on 
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the concept of analog weight. This is implemented by effectively changing the radius of the 

sphere of  , varying the amount of TPs generated. 

 

 

Figure 3.9-Depiction of channel measurement decoding technique 

 

The Chase 1 algorithm generates test patterns such that all codewords within a hamming distance 

of      or less of  . Let the set of test patterns generated by the Chase 1 algorithm be given by 

   for a given   it is possible to generate a TP such that                  if         

       where   is added to the potential candidate codewords. The actual implementation of 

the Chase algorithm is dependent on the value of   , based on whether it is even or odd. The set 

of test patterns    is defined as the set of all binary vectors of length   and hamming distance 

given by (3.16). 

 

                              (3.16) 

 

If    is even the value of   is given by ⌈   

      
⌉ else ⌈      

      
⌉  The Chase 1 algorithm as has been 

previously discussed is the most complex form presented by Chase as it considers a greater 

sphere of possible codewords. The Chase 2 and 3 algorithms are simplifications of Chase 1 

developed in an effort to compromise between decoding performance and complexity. 

The Chase 2 algorithm [85] defines the set    as all the binary vectors of length   which contain 

no particular number of binary ‘1’s in   least reliable bit(LRB) positions and the remainder of the 

elements are binary ‘0’s. The LRB positions are obtained by selecting the   lowest values in the 
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input vector   . The determination of the value of   is given in (3.17), the value of which 

determines the complexity of the algorithm, the amount of TPs generated is     
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(3.17) 

 

The Chase 3 algorithm is the least complex of those presented in [85], the algorithm takes the 

same approach given by Chase 2. The difference being that the Chase 3 algorithm has   binary 

“1”s in the   least reliable positions. If    is even the value of   is given by               

else if    is even                . The significance of the Chase 3 algorithm requires the 

generation of ⌊  

 
  ⌋ TPs, the growth in terms of complexity of the algorithm is linear with 

increase in   . 

The description of the Chase algorithms given above describes the generation of TPs which 

forms the second stage of the Chase decoder. All three stages of the decoding process will be 

given as follows. 

 

Figure 3.10-Chase decoder structure 

 

Chase Decoder [18] [85] [126] 
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The Chase Decoder algorithm to be implemented as seen in Figure 3.10 consists of four 

functional blocks pertaining to the different stages of decoding, where the BMA decoder and 

Analog weight selector make up stage 3 of the decoding process. 

In the process of defining the Chase decoder algorithm several assumptions are required. The 

input into the Chase decoder is the resultant of a binary BCH codeword modulated using BPSK 

and transmitted over an AWGN channel. The resultant signal is represented by    of codeword 

length   is known as reliability. The Chase decoding algorithm has been developed for iterative 

processing [127] however given the description of the BP-Chase decoder in [13], only a single 

pass algorithm is implemented. The Chase decoder algorithm presented below will thus not take 

into account the iterative component. The BP-Chase decoder utilizes the Chase 2 algorithm in the 

stage of generating TPs and thus the value of   is based on (3.17). In the same manner in which 

     determines the performance and complexity in BP; the value of   is to Chase decoder by 

increasing the value of   the potential codeword space is increased, effectively checking a larger 

number of alternatives at the cost of greater complexity. 

Initialization 

Form the ML sequence  , where   (
(         )

 
)            . 

 

The first step involves choosing the most likely sequence of bits which make up the codeword 

based on the channel conditions. The channel measurement information can be defined by   ; a 

hard decision is taken based on   , in order to produce the most likely sequence of bits given by 

 .  

Chase 2 

1) Form the reliability information vector    from   , where    {|  |}. 

2) Determine the set of indices of the LRBs, the LRBs are the   minimum values of   . 

3) Construct the    TPs using the Chase 2 algorithm, where   represents the set of  - 

dimensional vectors, consisiting of all combination of   variables in        

4) Construct the set of candidate codewords    where the set consists of    elements, where 

    
                                         .  

 



 

57 
 

The Chase 2 module is responsible for the construction of the set of candidate codewords by 

adding each TP of set  , represented individually by    to the ML codeword  . The binary 

addition adds only the   bits which make up the minimum values of   . 

BMA Decoder 

1) Syndrome Calculator 

2) Key Equation Solver 

3) Chien Search 

 

The algebraic decoder selected for implementation was the BMA discussed in Section 2.5.2, the 

algorithms of which will not be presented to maintain clarity in the definition of the Chase 

decoder. The generalized BCH decoding structure consists of three basic steps given above and 

where the BMA is used to solve for the error locator polynomial in step 2. The algebraic decoder 

operates on the set of candidate codewords   , firstly verifying if the codewords contained in the 

candidate codeword set are valid, if so the algebraic decoder proceeds to correct detected errors. 

The output of the decoder is the set of valid error corrected codewords given by   
 . 

Analog Weight Selector 

1)  Calculate the set of analog weights   from the input   
  which is the set of valid corrected 

codewords. Where        ∑ (          ) 
     . 

2) Select the output codeword  , if                 {    } then       . 

 

The analog weight selector determines the closest match to the ML codeword while taking into 

account the measure of reliability given to the designated bit. The analog weight is effectively a 

scheme which measures the distances between the spheres pictured in Figure 3.9 above, factoring 

in the channel reliability. In step 2 the codeword with the minimum analog weight is selected as 

the output of the decoder, given by  . 

The Chase Decoding algorithm has thus been defined; the BP-Chase decoder will be presented as 

follow, highlighting the sharing of soft information between the constituent decoders. 

3.4.3 BP-Chase decoder 

 

In the previous sections the BP and Chase decoders have been defined building towards the BP-

Chase decoder. The concatenated iterative BP-Chase decoder presented in [13] by Shi et al; the 
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decoder improves upon the performance of the constituent decoders by sharing soft information. 

It passes the conditioned soft information, improving the input into the constituent decoders. The 

following section will focus on the generation and transfer of soft information between the BP 

and Chase decoders as well as the utilization within the decoders; the process of switching 

between the decoders is also considered. 

The BP-Chase algorithm consists of three steps and operates upon the assumptions made in the 

previous decoder. The structure of the decoder is given in Figure 3.6; the input into the decoder 

is the resultant of a FEC codeword modulated using BPSK and transmitted over an AWGN 

channel given in   . The notation employed in the definition of the constituent decoders will be 

used to define the BP-Chase decoder algorithm below. 

Iterative Algorithm [13] 

1) The LDPC decoder receives the input from the channel in the form of a vector of codeword 

length given by    and performs BP decoding, the algorithm works iteratively until either 

   ̂    making   ̂ a valid codeword or the maximum number of iterations given by      is 

reached. If a valid codeword is obtained the iterative concatenated algorithm terminates and 

the output of BP-Chase decoder is   ̂. If the maximum number of iterations is reached the 

algorithm proceeds to step 2. The last act of the BP decoder is to transfer the soft information 

which will be used by the Chase Decoder in the form of the a posteriori LLR    

 

2) The BCH decoder runs the Chase algorithm for a single iteration using the transferred soft 

information    from the LDPC decoder to replace the channel information   , altering the 

equations in the Intialistion and Chase 2 phases of the Chase Decoder Algorithm in Section 

3.4.2. Decoding then commences with the normal process. Once a codeword   has been 

selected the algorithm either terminates if the analog weight   of   is equal to zero. If   is 

not equal to zero the algorithm proceeds to step 3. The BCH decoder forms the soft 

information to be transferred to the BP module. The soft information is derived using the 

formula given by equation (3.18). 

 

 
 (  

 )  
 

  
     

        
     

   
{    }     

        
     

   
{    }  (3.18) 

 

The soft information transferred to the LDPC decoder  (  
 ) is based on the analog weights 

assigned to the codewords in the corrected candidate codeword set   
  where   is the index of 
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the bit in the set of codewords   . The soft information for each bit   
  is based on the 

variance of the channel given by    as well as the difference between the maximum analog 

weight given by the set of codewords in   
  with   

    (           
     

   {    }) and set of 

codewords in   
  with   

    (           
     

   {    }), if either of the sets are empty, 

default soft outputs are employed. 

3) If   , the number of concatenated iterations, the number of times that switching occurs from 

the BP to Chase decoder, is less than      , the maximum number of concatenated iterations 

allowed, then proceed with BP decoding. The BP decoder uses the received soft information 

from the Chase decoder to replace the value of   (determined from the received channel) in 

equations (3.15) and (3.16) given in Section 3.4.1. If       then the codeword is 

considered valid and the algorithm terminates, otherwise go back to step 2. If    is greater 

than or equal to      , halt the decoding process. 

 

An important metric to highlight is the value of       which determines how many iterations the 

BP-Chase decoder implements. In the same manner which   and      are important in 

determining error correcting performance in the Chase and BP decoders respectively. The value 

of       is a compromise between the level of performance due to improved conditioning and 

level of complexity. 

The algorithm presented above describes the BP-Chase decoder which forms the reception 

system in the PL system model. The preceding sections have defined the constituent decoders as 

well as providing the concatenated decoding implementation information. The reception system 

receives a FEC codeword which has propagated over the channel as input and after a degree of 

processing produces a binary FEC codeword as output. The definition of the reception system 

completes the construction of the PL model, from which performance results can be obtained, 

which will be presented as follows. 

 

3.5 Simulation results 

 

This section aims to present and discuss results generated by the PL model implementation, 

constructed throughout the course of the chapter. The results presented are in the form of error 

performance curves in both the AWGN and a LMS channel. The LMS channel was selected and 

implemented in order to provide a more realistic representation of the disturbances experienced 

by a signal propagating through a satellite system. The result of which are more accurate 
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measures of performance for the receiver system. This forms one of the original contributions of 

the dissertation. The performance results generated in both channels will be compared and 

discussed as follows. 

In order to generate simulation results for the PL system model, depicted in Figure 3.1, the 

algorithms detailed in the preceding sections were implemented in software, using the C++ 

programming language. There is an issue which is important to note in terms of high level 

software implementations. They provide a great degree of flexibility in terms of allowing 

modification to the implementation. They however require a greater amount of processing power 

as they utilize high level instructions. The available processing power for experimentation is 

fixed, so the complexity of the implementation is bounded. 

There are several factors which contribute to the complexity; the DVB-S2 defines very large 

block lengths which require a greater number of computations to decode. The DVB-S2 FEC 

provides powerful decoding performance thus for comprehensive analysis of the decoder it must 

be simulated to low bit error rates, which require a larger amount of simulated transmissions. The 

final issue is the decoding structure, which is iterative in nature and requires a great deal of 

computation. In order to compensate for this issue the codes used to generate results will be of 

medium length and the lower end of the DVB-S2 defined length. It has been previously 

discussed that as the LDPC code increases in terms of block length so does the performance; 

what we aim to gauge from testing medium length codes is to identify trends which can be 

applied to longer length codes. The medium length codes provide lower performance however 

the aim of the chapter is to produce results as well as provide comparative analysis, rather than 

simulate longer block codes; it was preferred to provide more comprehensive performance 

results. 

Prior to generating the PL system results in a satellite channel, the PL system requires validation 

in the AWGN channel. The error performance metric which will be used in analyzing the results 

is bit error rate (BER), a ratio of the number of received bits in error versus the total number of 

bits transmitted. This will be measured against SNR (  

  
) ,the depiction of which are the 

performance curves. 

The results generated using the PL system model are validated using the performance curves 

presented in Figure 3.11. In this case an LDPC (3, 6) code of length (1416, 1134) is concatenated 

with a BCH (63, 51) code, the result of which is a 0.648 code rate. The BP-Chase decoder was 

initialized with the value of   set to 3 for the Chase inner decoder, the BP inner decoder 

initialized      to 10 and the overall       of the BP-Chase decoder is set to 5. The result of 
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which is given in Figure 3.11, importantly the performance curves match the results produced in 

[13], showing little variation from that given in the literature. 

 

Figure 3.11- BER performance of PL decoding system over AWGN channel 

 

The second important result given in Figure 3.11 are the presentation of the BP and Chase 

decoder simulation for similar codes to that utilized by the BP-Chase decoder. The BP decoder 

uses a (3, 6) code of length (1412, 916) with the      equal to 50, the Chase decoder uses a (63, 

51) BCH codeword with   set to 2. The significance of these results is that they validate the 

selection of the BP-Chase decoder system. In Chapter 2 the motivation for the selection was 

provision of improved performance over its constituent decoders. The results produced show a 

noted improvement over the BP and Chase decoder at low SNR while maintaining an improved 

level of performance as the SNR increases beyond 2dB. The difference in performance can be 

attributed to the transfer of soft information between the constituent decoders and is quantified to 

a coding gain of 0.13dB at a BER of 10-3over BP. 

The benefit of which is further exhibited in Figure 3.12 which provides the BER performance of 

the BP-Chase decoder together with its constituents for half rate codes. In Figure 3.12 a 

BCH(15,7) code is concatenated with a (3,6) LDPC code of length (540,270), where the inner 

Chase decoder has   set to 2, the inner BP decoder has      equal to 10 and the concatenated 

system has       set to 5. The constituent decoders operate on the identical BCH and LDPC 

codes respectively, the parameters of which are   equals 2 and      equal to 50. Figure 3.12 

allows for a direct comparison of the performance of concatenated and constituent decoders as 

they all operate on the identical code, with identical decoding parameters. The BP-Chase decoder 

similarly shows improved performance over the independent BP and Chase decoders. At a BER 
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of 10-3 the BP-Chase decoder provides coding gain of 0.2dB over BP and a visibly improved 

performance over the Chase system. 

 

Figure 3.12-BER performance of half rate codes in PL decoding system over AWGN 

 

Another important conclusion which can be confirmed is the assumption made previously that 

the BP decoder performance is the core provider of error correcting performance in DVB-S2. 

The BP decoder is shown to vastly outperform the Chase decoder in both Figure 3.11 and 3.12. 

The results depicted above allow for the validation of the simulated output of the constructed 

system model, as it is shown to match results given in the literature. They also confirm the 

selection for the receiver system, as the BP-Chase decoder is shown to provide improved 

decoding performance at two different code rates and lengths. 

The satellite channel to be implemented is the Ku band LMS model produced in [109] described 

in Section 3.3. The assumptions made in the implementation are that the Highway environment is 

selected. The reason for which is twofold, the Highway environment describes the best case 

performance of the LMS channel in terms of level of shadowing. The environment is low density 

hence there is a smaller number of blockages. DVB-S2 although present in high density 

environments are generally stationary and positioned in order to reduce the number of blockages. 

They experience a much lower level of shadowing then mobile terminals. 
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Figure 3.13-PL system BER results over AWGN and satellite channel 

 

Figure 3.13 and 3.14 depict performance results in both AWGN and the satellite channel for BP 

and the BP-Chase decoder. In Figure 3.13 three different medium length codes are presented, BP 

decoding results are presented for LDPC codes of length (200,100) and (504,252) with      set 

to 50. BP-Chase decoder results are also given for the (540,270) length concatenated scheme 

described in Figure 3.12.The difference between the results produced is notable. A trend which 

can be observed is that the satellite channel shifts the performance of the decoders, across all 

decoders and code lengths. This can be attributed to the effect of shadowing on the transmission 

and can be quantified at a BER of 10-3 producing a reduction in coding performance of 3.9dB for 

the BP-Chase decoder; similar declines in performance are experienced by the BP decoders. 
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Figure 3.14-PL system BER results for large code lengths over AWGN and satellite channel 

 

The loss due to shadowing is further reiterated in Figure 3.14 which depicts the performance of a 

DVB-S2 short length code in both channels. The LDPC code utilized by the BP decoder is of 

length (16200, 8100) given in Figure 3.14.The resulting performance endorses the theory behind 

LDPC codes, as it shows that the longer length code has much improved decoding performance 

for a fixed distance. The BP-Chase decoder implements a concatenated BCH-LDPC code of 

equivalent length defined in the standard [11]. The results given in Figure 3.14 match those of 

Figure 3.11 and 3.12 in that the concatenated system provides improved decoding performance 

of 0.2dB at a BER of 10-3. The trend in Figure 3.13 is also maintained where the performance of 

the decoders of higher block length are shifted in the satellite channel. The shift is similar to that 

of the medium length codes; at a BER of 10-3 the performance of the BP-Chase decoder is shifted 

by 4.2dB. which again can be attributed to the level of shadowing. 

The conclusions that can be drawn with regard to the results is that the affect of shadowing in a 

satellite channel plays a significant role in reducing error correcting performance. The AWGN 

channel was discussed to be an inaccurate model for a satellite system as it does not accurately 

model the effects of shadowing. The LMS model implemented, which was in fact the best case 

environment, is shown to reduce the decoding performance by approximately 4dB across all the 

decoders simulated. This can be attributed to the blockages and disturbances expected in the 

LMS channel. The loss is solely that of the effect of shadowing as the free space loss is not taken 

into account, which would further negatively affect the performance shifting the curve a further 

    dB. The outcome of implementing the satellite channel in the PL model has shown to reduce 
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the decoding performance of the system; the shifted performance results make up the first 

original contribution of the dissertation. 

 

3.6 Conclusion 

 

The preceding chapter has focused on the definition, construction and implementation of the PL 

system model. The model composes the transmission, channel and reception systems each of 

which were discussed and detailed in terms of their implementation requirements. A LMS 

channel model was selected in order to provide a more accurate representation of a satellite 

channel. The results of which were presented, validating the receiver system decoding structure 

in an AWGN channel as well as providing results in a satellite medium; fulfilling one of the 

objectives of the dissertation. The results in the satellite channel show a shift in the performance 

curve of approximately 4dB, depicted in several cases, to the detriment of performance. 

The construction and validation of the PL system model, including the implemented satellite 

channel, acts as a base for attempting further improvement. The subsequent chapter will attempt 

to build on the PL model performance results, by improving the BP-Chase decoder. 
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Chapter 4 

4 ADVANCED CONCATENATED DECODER 

4.1 Introduction 

 

The aim of the chapter is to construct and define an improved error correcting receiver structure, 

which will be integrated into the PL system model. The novel decoding structure forms the 

second original contribution of the dissertation. The novel decoder attempts to expand upon the 

receiver structure given in [13], implemented in Chapter 3, to advance the error correcting 

performance. 

Throughout the course of the dissertation the PL has been modeled and implemented. In Chapter 

2 the literature was reviewed with regard to the receiver system, the result of which was the 

selection of the BP-Chase decoder. The performance of the implemented receiver structure was 

presented in Section 3.5 and is shown to match that given in the literature thus validating the 

receiver implementation. 

The BER curves specifically those of Figure 3.12 show that the BP-Chase decoder outperforms 

its constituent BP and Chase decoders. At a BER of        a coding gain of 0.2dB and 2.2dB 

is achieved with regard to BP and Chase respectively, for equivalent decoding parameters. The 

gains in error correcting performance can be credited to the sharing of soft information between 

the constituent decoders, the details of which are provided in [13]. 

The main motivation for selecting the BP-Chase decoder was that it allowed for improved soft 

decoding performance of a concatenated BCH-LDPC code, which forms the DVB-S2 FEC. In 

the process of producing a novel decoder, the structure of the BP-Chase decoder will be 

preserved firstly to retain the ability to decode concatenated BCH-LDPC codes; allowing the 

system to remain relevant to DVB-S2. It is also important to maintain the gains made by soft 

information sharing. The methodology is to improve the performance of the constituent BP and 

Chase decoders in order to improve the overall performance of the concatenated decoder. 

The development of the novel decoder requires the selection of a decoding scheme or schemes 

which enhance the constituent decoder performance. This requires a review of the literature 

expanding upon the survey carried out in Chapter 2 and will be presented in Section 4.2. The 

selected decoding algorithm will then be detailed in Section 4.3. In Section 4.4 the novel 

decoding structure will be presented, focusing on the integration of the chosen decoding 
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algorithms into the PL system. The simulation results are given in section 4.5 and to conclude the 

outcomes of the chapter are given in Section 4.6. 

 

4.2 Constituent decoder development 

 

The system model depicted in Figure 3.1, has been constructed and implemented throughout the 

course of Chapter 3.The result of which was observed in Figure 3.11 and Figure 3.12, showing 

the improved decoding performance of the BP-Chase decoder over its constituent BP and Chase 

decoders. The improvements are attributed to the soft information transfer in the concatenated 

system which allows conditioning of soft information between the inner decoders, improving 

error detection and correction [13]. The concatenated iterative decoder is depicted in Figure 3.6 

and indicates the transfer of soft information   from the BP to Chase decoder’s and     
   from 

the Chase to BP decoder’s; the formation and transfer of which is described in Section 3.4.3.  

One of the aims of the dissertation, given in Chapter 1, is to produce a decoding structure which 

improves performance of the constructed DVB-S2 PL. The methodology used to construct the 

improved decoder, is to maintain the BP-Chase decoder structure and improve the constituent BP 

and Chase decoders. The assumption being examined is that by attempting to improve the 

constituent decoders a reciprocal increase in gain will be achieved in the performance of the 

concatenated decoder. 

 

 

Figure 4.1-Construction of improved system model 

 

The DVB-S2 FEC provides error correcting performance by concatenating BCH and LDPC 

channel codes [11]. The majority of the error correcting performance in the FEC is provided in 

the form of large length LDPC codes; concatenated with low length BCH codes. The core benefit 

of the concatenation is that the BCH code negates the error floor problem inherent with iterative 
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LDPC decoding. The potential performance improvement experienced by the concatenated 

decoder, related to improving the BCH decoder module is thus logically minimal. The BCH 

codes are not as powerful when compared to the LDPC codes utilized in DVB-S2. The difference 

is marked when considering the results of Figure 3.11 and 3.12 illustrating a gain by BP over 

Chase of 1.7dB at a BER of       . The focus of the improvement will thus be centered on 

the decoding the LDPC module. The objective being to replace the LDPC Decoder block in 

Figure 4.1,while utilizing the soft information at the input and generating soft information at the 

output. The following review will thus examine possible improvements to the BP decoders 

presented in the literature. 

4.2.1 Literature review of improved BP decoders 

 

The goal of the literature review is to analyze and select a suitable LDPC decoding algorithm for 

implementation within the BP-Chase structure presented in Chapter 3, see Figure 4.1. The core 

components defining suitability are that the algorithm must provide improved performance when 

compared to BP.  The algorithm must also be able to adequately integrate into the decoding 

structure presented in Figure 4.1, generating and utilizing soft information. 

In Chapter 2 a broad review of the LDPC decoding landscape was considered, for the most part 

discussing the modifications made to the soft information BP or SPA. The BP algorithm 

originally presented by Gallager in [26] and further expanded upon in [27] [36] [37]  [38] [39], 

attempt to reduce the complexity of BP while retaining the error correcting performance. This 

has been seen in algorithms such as MS and UMP decoding [42] [44] [45]. There have also been 

hybrid models presented in [65] [66] [67] [68] which combine soft decision BP with a variety of 

hard decision decoders in order to reduce the complexity of the system. This however only 

maintains the error correcting performance it does not improve it, which does not achieve the 

goals of the review. 

In the literature reviewed only the Fossorier algorithm [69] provides superior performance to BP. 

Fossorier presents a concatenated decoding structure using both SPA and OSD (Ordered 

statistics decoding) to decode LDPC codes. The Fossorier technique is shown to elevate 

traditional LDPC decoding to achieve ML decoding performance whereas SPA only provides 

suboptimum performance. It operates on the principle of soft information conditioning in the 

same manner as the BP-Chase decoder; the soft information generated by the BP decoding phase 

is used to aid the OSD. In order to understand the operation of the BP-OSD decoder a description 

of OSD as well as the algorithm is presented. 
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OSD is a reliability based decoding scheme presented by Fossorier and Lin in [128]. OSD 

operates in a very similar manner to the Chase algorithms, analyzed in Chapter 3.The algorithm 

forms a sequence of test patterns given input reliability or channel measurement information. 

OSD in the same manner as the Chase algorithm can be defined for different levels of 

complexity. OSD-  is the OSD algorithm, where the value of   determines the dimension of the 

codeword space. The greater values of   generate greater numbers of candidate codewords, the 

complexity of OSD grows with     

OSD operates on the principle of reordering of the input codeword, utilizing the input reliability 

information. The algorithm applies a series of permutations based on the generator matrix   of 

the input code, in order to generate a set of bits known as the most reliable basis (MRB) are 

obtained. The MRB is used to generate the set of candidate codewords, the method of which 

varies as per the flavor of the OSD, dependent on the value of  . The output of OSD is a single 

codeword which is selected based on the analog weight. The algorithm can be divided into three 

basic steps. 

 Construction of MRB 

 Reorder and re-encode 

 Codeword Selection 

 

In order to fully define the hard output OSD algorithm given in [128] several assumptions and 

definitions are required. The block code utilized is a       binary linear block code, the   most 

reliable independent positions (MRIP) form the MRB. The input into the OSD is an encoded 

binary codeword, modulated using BPSK and transmitted over an AWGN channel, given by 

    . The hard decision of which gives the binary sequence  . The second input into the decoder 

is the generator of the linear block code  , the permutations applied to the input vectors are given 

by  . 

OSD-  Algorith m [69] [122] 

Construction of MRB 

1) Order the received reliabilities given by   |    | in decreasing order, the shifted ordering 

defining the permutation    . 

2) Apply     to   and the columns of  , to obtain    and    respectively. 

3) Perform Gaussian elimination on    starting from the left and moving towards the right, 

where all dependent columns are permuted after the last independent column, to obtain the 

matrix    and the permutation    . 



 

70 
 

4) Apply permutation     to    to obtain   . 

 

The construction of the MRB (    is computation intensive due to the application of the 

permutations. The MRB consists of the   positions, of the set of columns in   . 

Reorder and re-encode 

1) For       make all changes of   of the   MRB positions of   . 

2) For all changes to    re-encode the   bits using   ,to form the candidate codeword set  . 

 

Form the sphere of candidate codewords based on the value of   and the MRB positions of 

  .The   changes are made to the MRB which is essentially forms a new information vector 

which is re-encoded with    to form the candidate codeword set  . 

Codeword Selection 

1) Calculate the decoding cost of each candidate codeword        ∑ |  |         
 where the 

function   represents the discrepancy between the received binary input   and the candidate 

codeword given by  . 

2) The candidate codeword of lowest cost is selected as the output given by   . 

 

There have been several variations to OSD given in the literature which will be mentioned. In 

[130] a strategy is presented which utilizes a supercode of the overall block code to generate the 

MRB, however this leads to an exponential increase in the complexity of the algorithm with 

regards to the code length. The opposite approach is taken in [131] which reduces the amount of 

reliable information sets taken into account when generating the MRB, the result of which is a 

reduction in error correcting capability. The failing of the algorithms [130] [131] mentioned 

above is that they only partially take into account the bits which are not considered in the set of 

MRIPs, an issue which affects the performance as the code length increases, as the number of 

unselected bits increase. The Fossorier BP-OSD algorithm [69] solves this issue allowing it to 

provide improved decoding for longer length codes. 
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Figure 4.2-BP-OSD decoder 

 

The Fossorier BP-OSD is a concatenated decoder consisting of a BP decoder followed by an 

OSD, depicted in Figure 4.2, the BP decoding system has been described in detail in Chapter 3 

and the OSD algorithm has been given above. The focus of the presented algorithm centers on 

the soft information transfer between the decoders. The notation for both the BP and OSD 

algorithms will be reused in the discussion of the concatenated structure. The assumptions made 

in the previous decoder definitions are sustained where the input into the decoder is given by 

       , which is the resultant of a LDPC encoded codeword modulated using BPSK and 

transmitted over an AWGN channel. 

BP-OSD Algorithm [69] 

1) Perform BP decoding for a single iteration, incrementing   , if the formed codeword  ̂ is 

valid   ̂    then halt BP-OSD decoding and output          ̂. If the codeword is 

invalid halt BP decoding and transmit    the a posteriori LLR to the OSD module. 

 

2) Perform OSD-  decoding for a single pass, using    to replace  , if the formed codeword    

is valid       then halt BP-OSD decoding and the output           . If the codeword 

is not valid check if         , while this is true return to Step 1, if false output         

   and halt. 

 

In [69] the value of   is set to either 0 or 1 to reduce the complexity of the decoding system; 

Fossorier also presented several modifications to the stopping conditions of the concatenated 

decoder. In [69] several options are examined for selecting a valid codeword other than using 

syndrome calculation. The benefit of which is a reduction in the complexity of the algorithm as 

the number of iterations are reduced. This comes at the cost of reduced decoding performance, 

thus will not be considered. 
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The BP-OSD algorithm has generated a great deal of interest; in the literature and several 

schemes have been presented building on the improvements made by Fossorier to LDPC 

decoding. One of the disputes with iterative decoding of LPDC codes is the LLR oscillation 

problem posed in [132]. The LLR oscillation problem puts into question the credibility of 

utilizing LLRs as a measure of reliability. The problem details the fluctuation in the value of 

LLR mainly in the last iteration of message passing decoding, which inflates the value of the 

LLR. This makes it unreliable and little is gained if only the last iteration is used to generate the 

MRB. In [133] a technique is introduced to circumnavigate the oscillation problem which 

accumulates the LLR in order to generate a more reliable metric from which the MRB can be 

constructed. The equation of which is given in (4.1), where    represents the reliability value 

used to construct the MRB and   is attenuation scaling factor. 

 

 
   |∑        

 

 

   

|           (4.1) 

 

The accumulation method is shown to achieve performance improvements with a minimal 

increase in the complexity due to the accumulated    metric. A similar technique was considered 

in [134] however the approach limits the LLRs used to construct the MRB in OSD. The limiting 

of the LLR information does not take into account the last iteration in order to reduce the impact 

of the oscillation error on the OSD decoder. The limitation method is shown to also provide 

improved performance. There are several other techniques to consider such as the cascaded 

approach adopted in [72], instead of BP-OSD the system implemented is a BF-OSD 

concatenation. The BF algorithm previously discussed in Chapter 2 is an iterative technique 

which has generated a great deal of interest in LDPC decoding literature. In a similar manner to 

BP the BF technique, of which there are variants, [27] [28] [29] [30] generate soft information 

which is fed to the OSD decoder to be used as a reliability metric. The main gain in terms of the 

BF-OSD concatenation is the reduction of complexity when compared to the BP-OSD scheme 

and provides similar decoding performance. The systems mentioned previously transferred 

information between the constituent decoders every BP iteration however in [14] the BP decoder 

iterates for a fixed number of iterations before transferring reliability information. This allows for 

a greater level of conditioning before transfer to the OSD module. The proposed system is shown 

to improve upon the Fossorier concatenated system in terms of error correcting performance, 

solving the error floor problem inherent to iterative LDPC decoding as well as reducing the 

complexity of the system as OSD is not run on every iteration. 
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The purpose of the literature review substantiates the selection of an algorithm which provides 

improved decoding performance over traditional BP decoding. Achieved while utilizing and 

generating the required soft information to integrate with the BP-Chase decoder presented in 

[13]. The Fossorier decoder given in [69] fulfills the requirements at the cost of greater 

complexity; the algorithm however has been improved in terms of error correcting performance 

at a lower complexity by Yang et al in [14]. The Yang decoder improves the performance while 

maintaining the benefits of Fossorier concatenation. The concatenated BP and OSD developed 

by Yang [14] will be referred to as BP-OSD for the remainder of the dissertation. It will be 

implemented in the PL system model in order to develop a novel decoder. 

 

4.3 BP-OSD 

 

The BP-OSD algorithm was selected as the outcome of the literature review to improve BP 

decoders. The BP-OSD decoder operates using the BP and OSD decoders arranged as depicted in 

Figure 4.3. The OSD decoder is divided into several sub-blocks the variation from the Fossorier 

decoder will be shown as follows. 

In order to define the BP-OSD require the assumptions made in defining BP and OSD are 

maintained; the input to the system is         and the output is the LDPC codeword          

 

 

Figure 4.3- Yang BP-OSD mode [14] l  

 

BP-OSD Algorithm [14] 
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1) The system proceeds with BP decoding using         as input, as defined in Chapter 3 until 

either a valid codeword is obtained when   ̂    at which point the decoder halts and 

         ̂ is the output of the decoding system. If the maximum number of iterations is 

reached          then the BP decoder halts and    is output to the OSD decoder. 

 

2) The OSD algorithm is divided into three functional blocks, the Reorder Re-encode block is 

the first component which handles the permutations required to construct the MRB, using the 

value of    as the input, as well as the process of re-encoding the MRB to produce the 

codeword     

 

The codeword    is then sent to the OSD-  functional block which handles the reordering of 

   to generate the list of candidate codewords    using the reordering and re-encoding 

technique described in the OSD-  algorithm. 

 

The final stage in the OSD process is the cross correlation which calculates the correlation 

between the codeword    and the set of candidate codewords    where the cross correlation is 

given by  (  
 )  ∑          

     
     

   , where   
  is a candidate codeword of the set   . 

The codeword which produces the highest cross correlation is the output of the system given 

by        . 

 

The Reorder Re-encode block unlike in the OSD-  algorithm creates the MRB and re-encodes to 

generate only a single codeword   , the reordering refers to the permutations in OSD- . The 

codeword    is used as a basis for both cross correlation and reordering to generate the candidate 

codeword set. In the second stage of the OSD-  functional block, the reordering and re-encoding 

technique was applied to generate a complete a set of candidate codewords      

The next stage in development is to build the complete novel decoder by integrating the BP-OSD 

model into Figure 4.1. 

 

4.4 Novel BP-OSD-Chase decoder 
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Figure 4.4-Novel BP-OSD-Chase decoder 

 

The following section defines the novel decoding structure which has been developed throughout 

the course of the chapter. In attempting to improve the decoding structure given in Figure 4.1, the 

assumption was made that by improving the decoding performance of the constituent LDPC 

decoder, while maintaining the concatenated structure, a reciprocal increase in the overall 

concatenated performance can be achieved. The LDPC decoder selected was presented by Yang 

in [14] and was detailed in Section 4.2.2. The integration of the BP-OSD decoder into the 

receiver structure given in Figure 4.4 will be discussed as follows. 

 

Figure 4.5-Integrated Yang BP-OSD decoder 

 

The BP-OSD module can be seen in greater detail in Figure 4.5, the figure depicts the functional 

block which replaces the LDPC decoder module in Figure 4.1. In order to understand the 

integration, the following section will highlight the interactions of the BP-OSD block with the 

other components in Figure 4.4. 

Input: The input into the LDPC decoder is fed directly into the BP decoding module and holds 

to the assumptions made in Section 3.4.3. The second input into the LDPC module is the form of 
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the soft information     
  , which also is fed direct into the BP module to improve the iterative 

message passing decoding. 

Output: The output of the decoder is determined by the Select module which handles the 

administrative duty. If the output codeword defined by the cross correlation is valid          

 , the codeword         is output and the concatenated decoder halts. If the codeword is not 

valid the soft information output   generated by the BP decoder is output to the Chase decoder. 

The interactions between the BP-OSD decoder has been fully defined in terms of its integration 

with the PL system model. The novel decoder has now been fully constructed and is in the form 

of a BP-OSD-Chase decoder. The BP-OSD is the improved LDPC decoder and the BCH 

decoding is handled by the Chase decoder. The transfer between the decoders is controlled by the 

rules defined in [13].  

The motivation for the concatenation of the BP-OSD with the BP-Chase structure is to improve 

the overall decoding performance of the PL receiver system. Improving the decoding 

performance of the PL system improves the quality of service which DVB-S2 provides. A factor 

to consider however is the complexity associated with the improved decoder. If the decoder 

provides optimum performance but is not realizable with regard to implementation or has very 

low throughput it has little relevance in industry. There are several approaches taken to compute 

complexity; the difference being the manner which the complexity metric is defined. 

Implementation complexity defines several metrics such as area, throughput and energy [135]. In 

[136] [137] the metric chosen are the number of operations which are required to be performed 

per received bit, which is measured in giga operations per second (GOP). A similar metric is 

defined by [138] but also takes into account the amount of storage capacity required to operate 

the system. The complexity of the novel decoder is focused on the computational aspect of the 

system instead of utilizing GOPs, the metric used are the number of mathematical operations 

required to decode. The operations considered are real multiplications, real additions and binary 

additions given in decreasing order of complexity. In most cases of complexity analysis the 

binary additions are ignored [122] however they will be considered as they form a large 

proportion of the proposed decoder complexity. The comparison will focus on comparing like 

metrics rather than comparing additions with multiplications. 

In order to develop the BP-OSD-Chase decoder the complexity of the constituent modules will 

be considered in turn. Given a LDPC code of parameters         where   is the block length,   

is the input information length and   is the number of check sums. Implementing the assumed 

codeword parameters the complexity of the stages comprising a single iteration of BP are given 

in Table 4.1. 
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Table 4.1 Decoding complexity of a single iteration of BP [37] [42] 

Operation Number of Computations 

        additions 

             multiplications 

   
     additions 

  
 ∏    

 

  

          multiplications 

       additions and    divisions 

   
      multiplications 

     additions and   divisions 

  
     multiplications 

 

The operations can be aggregated to         real multiplications and         real 

additions [122], the real divisions will not be considered in order to simplify comparison with the 

other modules. The complexity in Table-4.1 is given for only a single iteration however in the 

worst case the complexity is equal to               multiplications and               

additions where      is the maximum number of iterations of BP allowed.  

The complexity of OSD as described in Section 4.2.1 is dependent on the value of   which 

determines the order of the algorithm implemented; this determines the number of TPs generated. 

The chief contributor to the complexity of OSD systems are the permutations applied to the   

matrix which requires a large degree of processing. This is endorsed by the information given in 

Table 4.2 which describes the number of operations required at each stage of OSD decoding.  

Table 4.2-Decoding complexity for OSD order-  reprocessing [128] 

Operations Real Additions Binary Additions 

Sorting       

Gaussian 

Elimination 
       {         } 

Phase-0 

reprocessing 
           

Phase-  

reprocessing 

        

 (
 

 
)        (

 

 
)        
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Maintaining the assumptions made in defining BP complexity, it is apparent that OSD 

complexity is dominated by the Gaussian elimination term giving       {         } binary 

additions. The second major contributor is the order-  reprocessing stage which produces 

        real additions [122], dependent on the value of  . 

The final component of the BP-OSD-Chase decoder is the Chase module. The assumptions made 

in defining the Chase module are that the input is in the form of a square generator matrix of size 

 , and the value of   represents the number of least reliable bits selected as is defined in Section 

3.4.2.  

Table 4.3-Decoding complexity of Chase algorithm [139] 

Real Additions Real Multiplications Binary Additions 

                                                      

 

The values given in Table 4.3 are based on a single pass of the Chase-2 decoder which is 

implemented in the BP-OSD-Chase decoder. The three metrics considered are all dominated by 

 . In general the value of   is low; the value of   is also generally considerably lower than  . 

The BP complexity is thus greater than the Chase decoder, the tradeoff being the decoding 

performance, which is provided chiefly by the BP decoder. 

The BP-OSD-Chase decoder complexity is presented in Table 4.4 the complexity of a single 

iteration is given, considering the worst case operation. The concatenation of the constituent 

decoders has led to an expected linear increase in complexity. 

Table 4.4-Decoding complexity of BP-OSD-Chase algorithm 

Real Additions Real Multiplications Binary Additions 

                         

                       

             

               

                

       {         } 

 

The BP-OSD-Chase is much more complex in comparison to other popular iterative decoders 

such as UMP-BP and MS [42] as well as the Yang BP-OSD decoder [14] . An important tradeoff 

to consider when discussing the complexity of the novel decoder is the value of the code 

parameters used. The values of  , ,      ,  and to a lesser extent   play a pivotal role in 

determining the complexity of the decoder. The tradeoff being performance versus complexity, 

increasing the value of the code parameters increases both performance and complexity. The 

decoder can be optimized with regard to the amount of processing power available. Given the 

above complexity equation the parameters can be selected to provide best possible performance. 
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The implementation complexity of the system has not been discussed mainly because there is no 

trivial link between computational complexity, given above, and implementation complexity. 

The decoder can achieve a high throughput even though it is not suggested by the examining the 

computational cost or generating a software implementation. A large proportion of the OSD and 

Chase computations can be parallelized thus improving the throughput. The next stage of the 

dissertation will present the performance results of the implemented BP-OSD-Chase module. 

The aim is to verify whether the increase in complexity has translated to an increase in 

performance. 

 

4.5 Simulation results 

 

The following section aims to provide simulation results validating and analyzing the results 

generated from the Chase-BP-OSD algorithm in the PL system model in both an AWGN and 

LMS channel. The performance results given are generated for medium length codes given the 

complexity of the BP-OSD-Chase system. This is due to the constraints in terms of processing 

power but is in line with the aim of the chapter which is to provide relative performance gains. In 

order to fully understand the nature of the decoder the decoding parameters will also be varied to 

determine the nature the decoding effectiveness at different complexities. 

 

 

Figure 4.6-PER curves for validation of decoding system 
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Figure 4.6 depicts the performance of several decoders in terms of packet error rate (PER),where 

the packet size is equivalent to the block length, versus the SNR in decibels. The results in Figure 

4.6 compare the performance of the BP-OSD decoder utilizing a (210,105) LDPC code with 

parameters(3,6) against the previously implemented BP-Chase decoder and the novel BP-OSD-

Chase decoder both utilizing a concatenated (210,105) BCH-LDPC code, constructed from a 

BCH (15,7,5)code. In order to allow for comparison OSD-1 decoder results are also provided, 

operating on a (210,105) LDPC code. The performance results for the BP-OSD decoder match 

similar results presented in [14] validating the implemented model, any variation of which are 

due to the minimal alteration in code length to allow for comparison with the other concatenated 

systems.  

In comparison with the constituent OSD and BP decoders the BP-OSD decoder is shown to 

provide superior performance, at a PER of 10-3 the BP-OSD decoder provides coding gain of 

1.6dB over OSD-1. The performance of the BP-OSD decoder when compared with the BP-Chase 

system is shown to be very similar, the power of the BP-Chase system in comparison to the 

performance of BP-OSD system. This validates the selection of BP-OSD as the BP-Chase system 

was shown to provide performance beyond that of BP in Chapter 3 of approximately 0.2dB. 

The BP-OSD and BP-Chase decoders are also shown to solve the error floor problem which 

afflicts BP decoding performance at 4dB. The BP-OSD and BP-Chase decoders do not 

experience the issue due to the concatenation with OSD and Chase respectively. The most 

important conclusion which can be drawn from Figure 4.6 is the improvement of performance 

when integrating the BP-OSD decoder into the BP-Chase system forming the BP-OSD-Chase 

decoder. The decoder outperforms both the BP-OSD and BP-Chase decoder, at a PER of 10-2 

providing coding gain of 0.15dB. This validates the assumption that attempting to improve the 

error correcting performance of the constituent BP decoder produced coding gain in the 

concatenated system. 
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Figure 4.7-Comparison of PER of BP-OSD-Chase for varying decoding parameters for length(210,105) 

 

In Figure 4.7 the performance of the BP-OSD-Chase decoder is further investigated for the 

(210,105) concatenated BCH-LDPC code. The figure shows several performance results 

comparing the BP-OSD-Chase for a variety of decoding parameters. The performance of the BP-

Chase case with the parameters (       ) are given with   equal to 2 and the number of 

concatenated iterations       given to be 5; in order to provide a basis of comparison. The BP-

OSD-Chase (2,5) results of which have been given in Figure 4.6 above is shown to provide 

approximately 0.15db coding gain when compared to BP-Chase of equivalent parameters. The 

BP-OSD-Chase performance results are then provided for the (3,5), (3,10) and (4,5) cases all of 

which show consistent improvement as the complexity of the system increases in a similar 

manner as that produced in [13]; where the gains are in the region of 0.25dB, 0.35dB and 0.4dB 

at a PER of 10-3 respectively when compared to the BP-Chase decoder. The performance 

improvement confirms the assumption made in Section 4.4 that an increase in the decoder 

complexity will produce a reciprocal increase in performance. 

In Figure 4.8 similar gains are achieved by the BP-OSD-Chase decoder of varying parameters 

utilizing a concatenated BCH-LDPC code of length (496,248), the BCH inner code is of length 

(15,7,5), when compared to the BP-Chase decoder. At a PER of 10-2 the coding gains for the BP-

OSD-Chase (2,5),(3,5),(3,10) and (4,5) are 0.15dB,0.2dB,0.36dB and 0.38dB respectively, which 

is similar to that achieved above. 
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Figure 4.8-Comparison of PER of BP-OSD-Chase for varying decoding parameters for length(496,248) 

 

Figure 4.9 compares the results of the BP-OSD-Chase and BP-Chase decoder in both the AWGN 

and satellite channel. The results of which are similar to those produced in the Chapter 3 where 

the effect of shadowing is shown to produce a coding loss of approximately 4dB at a PER of 10-2 

across both the decoders for both code lengths simulated.  

 

 

Figure 4.9-Comparison of PER performance of PL system in satellite and AWGN channels 
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The results presented above confirm that the BP-OSD-Chase decoder, implemented in the DVB-

S2 PL model, has produced improved decoding performance when compared to the receiver 

performance produced in Chapter 3. The second original contribution of the dissertation has thus 

been achieved. The BP-OSD-Chase decoder is an improvement of the BP-Chase structure and 

has shown to improve performance at the cost of an increase in complexity. The increase has 

been quantified in Table 4.2 of Section 4.4 which defines the cost of the additional reliability 

based decoder. In terms of the DVB-S2 standard the current system improves upon performance 

but may not viable for consumer level implementation. Implementations rarely use BP decoders 

as they are costly to manufacture, this however does not invalidate the work produced. The aim 

of the dissertation was to achieve a relative increase in performance, which has been achieved. In 

terms of implementation there are several approaches which can be applied which reduce 

complexity to manageable levels, such as introducing reduced complexity versions of BP. The 

aim being to maintain the relative performance gains while reducing the complexity of the 

constituent models. 

 

4.6 Conclusion 

 

The aim of the chapter was to construct and present a novel decoder which provided improved 

decoding performance in the PL system model. This was achieved with the methodology focused 

on retaining the structure of the BP-Chase decoder, presented and implemented in Chapter 3. The 

intent was to improve the performance of the constituent BP decoder assuming that it would 

improve the overall decoding performance. The review of the literature presented the BP-OSD 

decoder originally produced by Fossorier in [69] and improved by Yang et al in [14], the decoder 

was shown to provide coding gain over traditional BP decoding; the Yang BP-OSD decoder was 

thus selected for implementation. The details of the decoder were discussed focusing on the 

implementation within the existing concatenated structure. The result of which was the novel BP-

OSD-Chase decoder which was implemented, which when implemented provided a coding gain 

of around 0.15dB over the BP-Chase decoder however at the cost of greater complexity which 

was quantified. 
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Chapter 5 

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 

The propagation of wireless systems worldwide has gained momentum in recent years; the 

motivation being the ability to provide services in locations where wired infrastructure is 

inconvenient. The development and proliferation of mobile devices especially in the form of 

smart phones has expanded the wireless market to a larger audience. This has increased the 

demand for improved quality and services. The development of wireless communications has 

spanned three generations, from traditional voice only to high speed multimedia networks. The 

goal has been to produce greater transmission speeds as well as improving QoS. Satellite systems 

play an important role in providing wireless services, the foremost being satellite video 

broadcasting. The main application of which is to provide television services to a large 

viewership, over a broad footprint. The DVB-S2 standard has been developed to achieve this, it 

specifies the PL modules required to achieve given QoS guarantees and transmission rates. The 

modules are capable of counteracting the issues prevalent with transmission over a satellite 

channel 

The motivation for the dissertation is based on two original contributions; the first is to provide 

decoding results for the DVB-S2 PL in a LMS channel. The literature provides performance 

results for DVB-S2 in an AWGN channel. The interest in mobile systems has led to the 

development of LMS channel models which can be applied to the DVB-S2 sphere of 

applications. The production of decoding results in a more accurate medium will allow for 

improved analysis of satellite disturbances on DVB-S2 PL performance. The second original 

contribution is to produce a novel decoding structure which improves the error correcting 

performance of the DVB-S2 PL receiver.  

The first step to achieve the goals of the dissertation was taken in Chapter 2. The DVB-S2 

physical layer transmission was discussed as specified in the standard. The explorative look of 

the transmission model improves understanding of the requirements for developing an adequate 

receiver structure. The receiver is not defined by the DVB-S2 standard in order to allow for 

greater flexibility as per the application. The next stage involved reviewing the literature in terms 

of BCH and LDPC decoding to select a beneficial pair of decoders to be used as the basis for the 

receiver. The selected decoders will be used in subsequent chapters; to produce decoding results 
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in a LMS channel and as a basis for the novel decoder to improve FEC decoding performance. 

The selected decoding algorithm was the iterative concatenated BP-Chase system presented in 

[13]. The motivation for the selection is the passing of soft information between the constituent 

decoders. This allows the concatenated system to provide improved decoding performance over 

its constituent modules. 

In Chapter 3 the focus of the work was on the definition, construction and implementation of the 

DVB-S2 PL system model. The implementation of the PL model will allow the generation of 

simulated performance results. It will also be used as a basis for the construction of the novel 

decoder. The PL system model consists of three components, the transmission, channel model 

and receiver systems .The transmission scheme is a condensed version of that presented by the 

standard, focused on the FEC encoding modules, instead of the administrative modules which do 

not affect decoding performance. The channel model represents the disturbances which a 

transmitted signal experiences when travelling through a LMS system. The satellite channel 

model forms a pivotal role in achieving the first original contribution of the dissertation; to 

produce decoding performance results in a LMS channel. A review of LMS channels presented 

in the literature was undertaken, considering different satellite bands and Markov 

representations. The outcome of the review was the selection of a three state Ku band Markov 

model. The implementation details of which were provided with regard to integration into the PL 

system model. The receiver system forms the final component of the PL model. The receiver 

follows the concatenated iterative BP-Chase structure defined in [13]. The constituent Chase and 

BP decoding structures are discussed after which the concatenated decoder is presented, 

completing the definition of the PL model. The implementation of the PL system allowed for the 

generation of simulation results representing the error correcting performance of the system. The 

results validate the selection of the receiver structure as the BP-Chase decoder is shown to 

outperform the constituent decoders by 0.2dB over BP at a BER of 10-3 in an AWGN channel. 

Simulation results were also generated using the selected LMS model, achieving the first 

contribution of the dissertation. The results given in the satellite channel are shown to reduce the 

performance of the implemented decoders by approximately 4dB over a range of block lengths. 

The reduction in performance is attributed to the effect of shadowing on the PL system, which is 

not considered in AWGN channels. 

In Chapter 4 the second original contribution of the dissertation is considered. It requires the 

construction of a novel decoder which will improve upon the performance of the DVB-S2 PL 

system constructed in Chapter 3. The novel decoder retains the BP-Chase structure in order to 

maintain the benefits associated with soft information sharing. The aim is to improve the 

performance of the constituent BP decoder. To select a scheme capable of improving the BP 

performance; a survey of the literature was provided focusing on the BP-OSD scheme developed 
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by Fossorier [69]. The criteria for selection were improved decoding performance over BP as 

well as generating and utilization of the soft information produced by the existing BP-Chase 

structure. The criteria was met by the Yang BP-OSD decoder in [14] resulting in the presentation 

of the Yang BP-OSD algorithm. The details of the decoder together with its integration into the 

PL system model are given, to form the novel BP-OSD-Chase decoder. The simulation results of 

the PL system show that the BP-OSD-Chase decoder achieves a coding gain of 0.15dB over the 

BP-Chase decoder. This is at the cost of greater complexity which is quantified with regard to 

decoding parameters selected. The second contribution of the dissertation has thus been 

achieved. 

 

5.2 Future work 

 

The following are potential paths along which future research work can take in order to expand 

upon the research presented in the dissertation: 

1) The next stage in improving the PL system is to reduce the complexity of the BP-OSD-Chase 

decoder. There have been several techniques mentioned in the literary reviews. These reduce 

the decoder complexity while maintaining the decoding performance. The application of 

these techniques to the decoder may improve throughput and reduce the computational 

complexity. In the same vein the decoder can be implemented in the form of an FPGA. 

Potential parallelization techniques can be applied to the hardware implementation in order 

to reduce the complexity. 

2) There is also the option of extending the system to incorporate the data link layer by reusing 

soft information. The soft information will be passed from the PL to the data link layer; to 

improve the decoding performance of the link layer. There are several presentations given in 

the literature which define decoders for the DVB-S2 link-layer FEC (LL-FEC) [140]. This is 

over and above the FEC at the PL, see Figure 2.4. The adopted LL-FEC code is a systematic 

Reed-Solomon (255,191) code. A RS code is an advanced form of BCH code, which uses 

parity bit information to perform error correction. The LL-FEC frame as seen in Figure 5.1 

consists of 255 columns and a variable number of rows. The first 191 columns in the frame 

make up the application data table, application datagrams are received from the upper layers 

of the system  
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Figure 5.1-Structure of LL-FEC frame [140] 

 

The right part of the LL-FEC frame, is called the RS Data Table (RSDT) which consists 

of 64 columns and contains the FEC parity information. The parity information is used at 

the receiver to determine if any errors have occurred as well as correct them. The RS 

(255,191) code can correct up to 64 erasures. If more than 64 erasures are detected in the 

frame which is determined using a CRC check. It is assumed that the RS (255,191) 

cannot cope with the received frame and it is discarded. This reduces the performance of 

the system as the LL-FEC frames are large, variable amount of rows, thus a large portion 

of data is lost. In terms of digital video broadcasting it reduces the quality of the received 

video causing distortion. The aim of the future work is to increase the errors correcting 

ability of the LL-FEC using the soft information generated by the novel BP-OSD-Chase 

decoder in order to reduce the number of frames dropped by the system. 
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