251,009 research outputs found
Accelerating charging dynamics in sub-nanometer pores
Having smaller energy density than batteries, supercapacitors have
exceptional power density and cyclability. Their energy density can be
increased using ionic liquids and electrodes with sub-nanometer pores, but this
tends to reduce their power density and compromise the key advantage of
supercapacitors. To help address this issue through material optimization, here
we unravel the mechanisms of charging sub-nanometer pores with ionic liquids
using molecular simulations, navigated by a phenomenological model. We show
that charging of ionophilic pores is a diffusive process, often accompanied by
overfilling followed by de-filling. In sharp contrast to conventional
expectations, charging is fast because ion diffusion during charging can be an
order of magnitude faster than in bulk, and charging itself is accelerated by
the onset of collective modes. Further acceleration can be achieved using
ionophobic pores by eliminating overfilling/de-filling and thus leading to
charging behavior qualitatively different from that in conventional, ionophilic
pores
A Model for Public Fast Charging Infrastructure Needs
Plug-in electric vehicles can reduce GHG emissions although the low availability of public charging infrastructure combined with short driving ranges prevents potential users from adoption. The rollout and operation, especially of public fast charging infrastructure, is very costly. Therefore, policy makers, car manufacturers and charging infrastructure providers are interested in determining a number of charging stations that is sufficient. Since most studies focus on the placement and not on the determination of the number of charging stations, this paper proposes a model for the quantification of public fast charging points. We first analyze a large database of German driving profiles to obtain the viable share of plug-in electric vehicles in 2030 and determine the corresponding demand for fast charging events. Special focus lies on a general formalism of a queuing system for charging points. This approach allows us to quantify the capacity provided per charging point and the required quantity. Furthermore, we take a closer look on the stochastic occupancy rate of charging points for a certain service level and the distribution of the time users have to wait in the queue. When applying this model to Germany, we find about 15,000 fast charging points with 50 kW necessary in 2030 or ten fast charging point per 1,000 BEVs. When compared with existing charging data from Sweden, this is lower than the currently existing 36 fast charging points per 1,000 BEVs. Furthermore, we compare the models output of charging event distribution over the day with that of the real data and find a qualitatively similar load of the charging network, though with a small shift towards later in the day for the model
Electric Power Allocation in a Network of Fast Charging Stations
In order to increase the penetration of electric vehicles, a network of fast
charging stations that can provide drivers with a certain level of quality of
service (QoS) is needed. However, given the strain that such a network can
exert on the power grid, and the mobility of loads represented by electric
vehicles, operating it efficiently is a challenging problem. In this paper, we
examine a network of charging stations equipped with an energy storage device
and propose a scheme that allocates power to them from the grid, as well as
routes customers. We examine three scenarios, gradually increasing their
complexity. In the first one, all stations have identical charging capabilities
and energy storage devices, draw constant power from the grid and no routing
decisions of customers are considered. It represents the current state of
affairs and serves as a baseline for evaluating the performance of the proposed
scheme. In the second scenario, power to the stations is allocated in an
optimal manner from the grid and in addition a certain percentage of customers
can be routed to nearby stations. In the final scenario, optimal allocation of
both power from the grid and customers to stations is considered. The three
scenarios are evaluated using real traffic traces corresponding to weekday rush
hour from a large metropolitan area in the US. The results indicate that the
proposed scheme offers substantial improvements of performance compared to the
current mode of operation; namely, more customers can be served with the same
amount of power, thus enabling the station operators to increase their
profitability. Further, the scheme provides guarantees to customers in terms of
the probability of being blocked by the closest charging station. Overall, the
paper addresses key issues related to the efficient operation of a network of
charging stations.Comment: Published in IEEE Journal on Selected Areas in Communications July
201
Runaway electrification of friable self-replicating granular matter
We establish that the nonlinear dynamics of collisions between particles
favors the charging of a insulating, friable, self-replicating granular
material that undergoes nucleation, growth, and fission processes; we
demonstrate with a minimal dynamical model that secondary nucleation produces a
positive feedback in an electrification mechanism that leads to runaway
charging. We discuss ice as an example of such a self-replicating granular
material: We confirm with laboratory experiments in which we grow ice from the
vapor phase in situ within an environmental scanning electron microscope that
charging causes fast-growing and easily breakable palm-like structures to form,
which when broken off may form secondary nuclei. We propose that thunderstorms,
both terrestrial and on other planets, and lightning in the solar nebula are
instances of such runaway charging arising from this nonlinear dynamics in
self-replicating granular matter
Novel nonimaging solar concentrator for portable solar systems for developing countries
Portable solar chargers have been gaining popularity as a new technology to help increase electrification in rural areas in developing countries. It is a fast developing industry aiming to produce a low-cost solution for the application of off-grid solar lighting and charging of small devices to be used by the poorest and most vulnerable of society. Solar concentrators are proposed as an add-on to help further reduce costs, to increase light-output hours and to reduce charging time. So far, no suitable concentrator designs have been proposed. This paper presents a novel concept for the design of a static nonimaging concentrator, suitable for portable solar systems for developing countries. The novel concentrator design is compared with existing concentrators and its suitability for portable solar chargers, as well as its potential for further improvement, are highlighted
Vehicle charging and potential on the STS-3 mission
An electron gun with fast pulse capability was used in the vehicle charging and potential experiment carried on the OSS-1 pallet to study dielectric charging, return current mechanisms, and the techniques required to manage the electrical charging of the orbiter. Return currents and charging of the dielectrics were measured during electron beam emission and plasma characteristics in the payload bay were determined in the absence of electron beam emission. The fast pulse electron generator, charge current probes, spherical retarding potential analyzer, and the digital control interface unit which comprise the experiment are described. Results show that the thrusters produce disturbances which are variable in character and magnitude. Strong ram/wake effects were seen in the ion densities in the bay. Vehicle potentials are variable with respect to the plasma and depend upon location on the vehicle relative to the main engine nozzles, the vehicle attitude, and the direction of the geomagnetic field
Long-term evolution of broken wakefields in finite radius plasmas
A novel effect of fast heating and charging a finite-radius plasma is
discovered in the context of plasma wakefield acceleration. As the plasma wave
breaks, the most of its energy is transferred to plasma electrons which create
strong charge-separation electric field and azimuthal magnetic field around the
plasma. The slowly varying field structure is preserved for hundreds of
wakefield periods and contains (together with hot electrons) up to 80% of the
initial wakefield energy.Comment: 5 pages, 6 figure
- …
