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Having smaller energy density than batteries, supercapacitors have exceptional

power density and cyclability. Their energy density can be increased using ionic liq-

uids and electrodes with sub-nanometer pores, but this tends to reduce their power

density and compromise the key advantage of supercapacitors. To help address this

issue through material optimization, here we unravel the mechanisms of charging

sub-nanometer pores with ionic liquids using molecular simulations, navigated by a

phenomenological model. We show that charging of ionophilic pores is a diffusive

process, often accompanied by overfilling followed by de-filling. In sharp contrast to

conventional expectations, charging is fast because ion diffusion during charging can

be an order of magnitude faster than in bulk, and charging itself is accelerated by

the onset of collective modes. Further acceleration can be achieved using ionopho-

bic pores by eliminating overfilling/de-filling and thus leading to charging behavior

qualitatively different from that in conventional, ionophilic pores.
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I. INTRODUCTION

Supercapacitors offer unique advantages of high power density and extraordinary cy-

clability but provide moderate energy density.1 Enhancing their energy density without

compromising the mentioned advantages would enable their widespread applications.2 The

current surge of interest in supercapacitors is driven by recent breakthroughs in developing

novel electrode materials and electrolytes.3 In particular, electrodes featuring sub-nanometer

pores and room-temperature ionic liquids (RTILs) are among the most promising materials

for next-generation supercapacitors: The former affords large specific surface area and may

also enhance the specific capacitance4,5 and energy density;6 the latter allows increasing the

operation voltage beyond that of organic electrolytes.7,8 These materials have enabled im-

pressive improvement of energy density,9–12 and the thermodynamics of charge storage in

these materials are now understood reasonably well.13–21 An emerging issue of these materi-

als, however, is that they tend to lower the power density of supercapacitors.22 For example,

ion transport in RTILs is slow in the bulk and can be even slower in nanoconfinement,23–26

leading to sluggish charging dynamics and thus low power density. Resolving these issues,

e.g., by judicious selection of pores and RTILs, necessitates a fundamental understanding of

the charging dynamics of sub-nanometer pores with RTILs.

The latter is, however, complicated by unique features emerging in sub-nanometer pores.

In these pores, all ions of RTIL are in close contact with each other. Consequently, charg-

ing dynamics are affected by a multitude of collective effects that cannot be described by

existing theories proved valid for mesoporous electrodes, such as the classical transmission

line model. Furthermore, conventional ion transport theories, rigorous in the limit of weak

ion-ion correlations, cannot be directly used to predict transport of RTILs in nanopores.27,28

The comprehensive picture of the charging dynamics of supercapacitors with sub-

nanometer porous electrodes and RTILs should answer the following questions:

• Are there universal features of charging dynamics in such systems?

• Does the slow ion transport in bulk RTILs necessarily imply slow ion transport during

charging of sub-nanometer pores?

• Is it feasible to accelerate charging by tailoring the size, geometry, and surface prop-

erties of pores?



3

Resolving these issues can shape and guide the development of novel materials for super-

capacitors. Here we use Molecular Dynamics (MD) simulations and a recently developed29

phenomenological mean-field type (MFT) model to study the dynamics of charging ultra-

nanoporous electrodes with RTILs. We investigate the charging of a pair of slit nanopores

in two metallic electrodes, which mimics the nanopores in graphene-based nanoporous

electrodes.10,12 Figure 1 shows our nanopore system together with a few snapshots of the

time evolution during charging. In MD simulations, we consider ions as charged van der

Waals particles of identical size (see Methods). Such approach does not take into account

electronic structure of carbon electrodes, neither goes into the details of atomistic structure

of real ions. With these deliberate simplifications we aim at revealing the essential physics

responsible for generic features of the charging dynamics, unobscured by the chemical com-

plexity of RTILs and real carbon materials. Insights gained from this study will help guide

future study of charging dynamics in more complicated situations, e.g., in pores that can

accommodate a few layers of ions and in interconnected nanopore networks.

II. CHARGING OF NANOPORES PRE-WETTED BY RTILS

A. MFT predictions

.

The flux (along the pore) of monovalent ions confined inside a metallic pore of width

comparable to the ion diameter can be written as29

J± = −D±∇ρ± ∓D±ρ±G∇c− D±ρ±
ρmax − ρΣ

∇ρΣ, (1)

where D± is ion’s diffusion coefficient (for simplicity we shall use the same D ≡ D±), ρ± is

the ion density, c = ρ+ − ρ− is the charge (in units of the elementary charge) and ρΣ the

total ion density, and ρmax is the total ion density at close packing; we never reach ρmax in

our calculations. G is a parameter characterizing the screening of the ion-ion electrostatic

interactions due to the electronic polarizability of metallic pore walls; when the pore is made

narrower, the screening becomes stronger and G decreases (see Methods). The first term in

the ion flux is simply diffusion. The second term comes from the ion ‘migration’. It is due to

the screened electrostatic interactions and is collective in nature. The last term has entropic

origin and represents the transport of ions due to the gradient of total ion density along the
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FIG. 1. Charging of narrow electrode pores with RTILs. (a) Side-view snapshot of one half

of the MD system featuring an electrode pore (width: 0.53 nm) and part of the RTIL reservoirs

connected to it. (b) Schematic of a continuum phenomenological model. The equilibrium ion

densities at zero electrode polarization (corresponding to the potential of zero charge) are set

inside the pore of width L and length H. The ion densities corresponding to a non-zero voltage

are set close to the pore entrances, and are kept fixed as the system is let evolve in time. (c-e)

Top-view snapshots of the ionic structure inside the negative electrode pore when a voltage of 3V

is imposed impulsively between the positive and the negative electrode pores (for a 5ns video, see

movie M2 in Supplementary Information). The blue and orange spheres represent cations and

anions, respectively. Wall atoms are not shown for clarity.

pore. Equation (1) together with the local conservation law define the MFT model for the

dynamics of pore charging.

The RTIL reservoir is not explicitly accounted for in the MFT model. Rather, the ion

densities close to the pore entrance are set to the equilibrium densities corresponding to

some non-zero voltage (see Methods), and the ion densities inside the pore are let evolve

from their equilibrium values at the potential of zero charge (PZC).

The numerical solution reveals that charging of pores wet by RTILs at PZC is a diffusive

process. This can also be seen analytically by noting that the time/space variation of total

ion density is small comparing to the variation of charge density (this is true up to times ≈ 15

in dimensionless units, see movie M1 in Supplementary Information). Then the last term in

Eq. (1) can be ignored and one easily arrives at the diffusion equation for the charge density,

∂tc = ∂xDeff∂xc(x, t), where Deff(ρΣ) = D(1 + ρΣG) is the effective diffusion coefficient.

From the analytical solution of this equation31 one readily finds the square root behavior at
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FIG. 2. Charging of nanopores predicted by the MFT theory. Till a pore is nearly fully charged,

Q(t) = Q∞ = Q(t = ∞), charging is a diffusive process that follows the square root law at short

times (panel (a)) and the exponential law at larger times (panel (b)). Charging is accompanied

by overfilling (panel c) and is followed by de-filling during which charging is slower. The thin

lines in (a) and (b) show the solution of the diffusion equation with Deff/D ≈ 26, corresponding

to zero voltage, in (a), and Deff ≈ 35 corresponding to the final state (≈ 0.78 V) in (b). A

long tail in panel (b), deviating from the exponential regime, marks a super-slow charging regime

(c.f. Fig. 4(d)). The speed of charging can be improved by making the pore wider or ionophobic

(panel (d)). In all plots time is measured in units of d2/D where D is ion’s diffusion coefficient

and d its diameter.

short times (Fig. 2(a))

Q/Q∞ ≈ 4
(

Deff/πH
2
)1/2 √

t, (2a)

and the exponential saturation at long times (Fig. 2(b))

Q/Q∞ ≈ 1− 8

π2
e−t/τ (2b)

with the relaxation time τ = H2/π2Deff , where H is the pore length.
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Diffusive nature of charging originates from the fact that the ion migration is proportional

to the charge density gradient (see second term in Eq. (1) which follows from the solution

of the Poisson equation for the electrostatic potential inside the pore). This contribution

enhances the ion transport, as compared to ion’s self-diffusion, and leads to Deff/D ≫ 1.

By narrowing the pore, the ion-ion interactions become more screened, thus G and Deff ∼

1 + ρΣG decrease; this means that wider pores charge faster (Fig. 2(d)). Interestingly, a

similar diffusion slow-down is observed in micellar systems, where the ‘apparent’ diffusion

coefficient decreases with adding salt.32 Similarly to our case, where the screening is due to

metallic pore walls, the salt screens the electrostatic interactions between the micelles and

reduces their collective diffusivity.

The pore occupancy (i.e., the total number of ions inside the pore) increases in the course

of charging and reaches values higher than the final, equilibrium occupancy. This overfilling

is more distinct for narrow pores (Fig. 2(c)) and disappears for sufficiently wide pores (not

shown). Interestingly, de-filling extends over time scales much longer than overfilling and is

accompanied by a third ’super-slow’ regime (c.f. the long tail in Fig. 2(b)). This super-slow

regime, however, seems to be of little practical importance in the present system as the pore

is ≈ 99% charged at its onset.

B. Ion diffusion in charged nanopores.

Although ions’ self-diffusion coefficient is frequently assumed constant,27–29,33 it depends

on ion densities, pore size and other factors. In bulk and in mesopores such dependence is

relatively weak or moderate,24,34 and can be neglected in many relevant situations. As we

shall see, however, this is not the case for sub-nanometer pores, where the ion diffusivity

depends dramatically on ion concentrations or degree of pore charging.

For other parameters kept fixed, the self-diffusion coefficient (D±) turns a complicated

function of total (ρΣ) and charge (c) densities. For simplicity, therefore, we look at D±

along certain ‘paths’ on the (ρΣ, c) plane, closely related to the actual charging conditions;

figure 3(a) shows such paths. We find that the average total ion density during charging,

ρ̄Σ(t), does not drop below the equilibrium density, ρ
(equ)
Σ (c), at the same degree of charging,

i.e. for c = c̄(t). Therefore, we calculate (see Methods) the in-plane self-diffusion coefficient

along the equilibrium path, as a limiting case, and compare it with D± along the average
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FIG. 3. (a) A map showing the average total (ρΣ) and charge (c) densities during ‘impulsive’

charging (solid line) and in equilibrium (dash double dot line); the dash-dot line corresponds to an

iono-phobic pore (c. f. Fig. 5). The average total ion density during charging lies within the shaded

(blue) area. (b) Cation’s self-diffusion coefficient in a 0.53nm wide pore along the equilibrium

path and along ρΣ(c) corresponding to the impulsive charging at 3V. The diffusion coefficient is

expressed in terms of the diffusion coefficient of a neutral bulk system (Dbulk). For the 3V charging,

the data only up to 6ns is shown. Blue and orange spheres in the inset denote the cations and

anions, respectively.

ρ̄Σ(c) at c = c̄(t) corresponding to the impulsive charging at 3V. We focus on the diffusion

coefficient of cations (D+) and note that D− shows similar behaviour (see Figs. S2-S4 in

Supplementary Information SI.2).

The ion diffusion coefficient varies non-monotonically with the charge density inside the

pores: When the pore is neutral, ion’s self-diffusion is nearly two orders of magnitude slower

than in bulk; as the charge inside the pore increases, ion’s self-diffusion accelerates and

can become 10 times faster than in bulk; it slows down only when the pore become highly

charged (c ' 2.6e/nm2). These phenomena seem general and are observed in equilibrium

and during ‘impulsive’ charging, for wider pores and for more realistic RTILs (Figs. S2-S4

in SI.2).

The non-monotonic variation of the diffusion coefficient originates from the different

structure of an ionic liquid inside the pore at different states of charging (see insets in Fig.

3(b)). At PZC, ions form a two-dimensional lattice with counter- and co-ions interlocked

with each other like in an ionic crystal. Diffusion of ions in such an environment requires large

activation energy to unbind counter/co-ion pairs35 or to cleave their ‘bonds’, and thus the ion
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diffusion is slow. As more counter-ions are introduced, the perfect inter-locked counter/co-

ion lattice gradually disappears and ions diffuse more freely. Such accelerated self-diffusion

has also been observed near charged planar surfaces24, but the effect is moderate. This is

because counter-ions near charged surfaces are still bounded to many co-ions in adjacent

ionic layers. When the ions form a monolayer inside a narrow pore, such binding disappears

and the acceleration of ion diffusion is much more dramatic. At large counter-ion density,

ions form a quasi-Wigner crystal with a small number of co-ions as impurities, and the

diffusion coefficient decreases. In this case, however, there is mostly steric contribution to

the activation energy, which is much lower than at PZC, and hence the diffusion in highly

charged pores is much faster than at PZC.

We thus conclude that a careful examination of RTILs inside nanopores precisely under

charging conditions is necessary for selecting an optimal electrode/RTIL pair, rather than

a simple ‘extrapolation’ of RTIL’s bulk properties. While this renders the design of RTILs

more complex, it also opens up exciting opportunities for tailoring RTILs for specific pores

and degrees of charging.

C. Charging Dynamics from MD simulations.

Let us now return to the dynamics of charging. We impose ‘impulsively’ a potential

difference of 3V between the negative and positive electrodes, analyze however the charging

of only one electrode pore (negative, to be specific, see Fig. 1(a)), as our system is fully

symmetric; we shall also restrict our considerations to pores of two different widths.

In line with the MFT predictions, the pore occupancy behaves non-monotonically with

time. Initially, the incoming flux of counter-ions overweights the outgoing flux of co-ions,

leading to a slight overfilling (Fig. 4(a) and (b)). Although overfilling is similar for both

pores, the subsequent de-filling differs significantly. In case of a wider pore (0.66nm), the

pore occupancies at PZC and in the final state (corresponding to 3V) are comparable, and

de-filling has little effect on charging. Indeed, we find that the accumulated charge reaches

nearly 98% of the final charge at the onset of de-filling, which is thus mainly characterized

by ‘removal’ of both co- and counter-ions from the pore. This is followed by a ’super slow’

regime similar to the one predicted by the MFT (see Fig. 2(b)). In the narrower pore

(0.53nm), the difference between the initial (at PZC) and final occupancies is considerable,
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FIG. 4. Charging of ionophilic pores of length 12.09 nm obtained from MD simulations. A

voltage of 3 V is imposed impulsively between the negative and positive electrodes at t = 0. The

average cation and anion densities are shown in panel (a) and the total pore occupancy in (b).

The evolution of the net charge inside the pores exhibits a diffusive behavior: the initial stage

of charging follows a square-root law (c) and the late stage of charging follows an exponential

saturation law (d).

and the charging in later times is essentially due to de-filling (see video M2 in Supplementary

Information), which leads to a significant slow-down of the charging process.

The evolution of net charge inside the pore, Q(t), exhibits the square-root and exponential

saturation regimes revealed by the MFT model (compare Figs. 2(a-b) and Figs. 4(c-d)).

Motivated by this, we use Eqs. (2) to fit Q(t) and extract the effective diffusion coefficients,

Deff ; note that Deff characterizes the whole system in a given time frame. In the square-

root regime, Eq. (2a), we get Deff = 3.09± 0.39× 10−9 m2/s for L = 0.53 nm and Deff =

7.17 ± 0.88 × 10−8 m2/s for L = 0.66 nm wide pore; in the exponential regime, Eq. (2b),

we obtain Deff = 0.4± 0.08× 10−8 m2/s and Deff = 5.91± 0.71× 10−8 m2/s, respectively.

The extracted values of Deff show a decrease with reducing pore width, manifesting slower
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charging in narrower pores.

It is instructive to compare Deff with the self-diffusion coefficient (D±). This is impeded

however by the fact that D± varies with RTIL density and composition (recall however that

D+ ≈ D− ≈ D, see Figs. S2-S4 in SI.2). To be on a safe side, in most cases we take the

highest value of D at relevant conditions (see section SIII.B in SI.2). For the 0.66nm pore

we get Deff/D ≈ 30 in both square-root and exponential regimes. This is in qualitative

agreement with the MFT, which predicts a considerable enhancement of ion transport due

to collective effects (the second term in Eq. (1))

Similar enhancement is obtained in the square-root regime for the narrower pore (0.53 nm),

Deff/D ≈ 10. At later times, however, Deff becomes comparable to the self-diffusion coeffi-

cients, with Deff/D ≈ 0.5−1.0. This is closely related to the de-filling character of charging

discussed above. In this case, the first and third terms in Eq. (1) dominate, and charging

becomes subdominant to de-filling. Physically, such a slow-down can be understood by not-

ing that low co-ion concentrations and strong screening of ion-ion interactions in nanopores

reduce collective effects. In other words, the co-ions have to diffuse on their own in the sea

of counter-ions, to find a way out of the pore, and hence Deff becomes comparable to D.

III. ACCELERATING CHARGING BY ENGINEERING NANOPORE

SURFACE PROPERTIES

Our results suggest that charging of narrow pores is nearly always accompanied by over-

filling, which itself is a fast process. The price one has to pay, however, is de-filling, which

turns out to slow down charging significantly. It seems thus beneficial from practical point of

view to use electrodes with wide pores, where overfilling and hence de-filling are reduced or

vanish. Unfortunately, however, in most cases increasing pore size deteriorates capacitance

and stored energy density.5,6

Motivated by the MFT results (Figs. 2(c-d) and Ref. 29), we explore here a different

possibility of accelerating charging, by making the surface of nanopores ionophobic. Pore

ionophobicity can be achieved, for instance, by using mixtures36 of different RTILs or by

adding surfactants.37 In this work we mimic it by tuning the ion-wall van der Waals inter-

actions, so that the pores are free of RTILs at PZC (see Methods).

Ionophobic pores charge initially in a front like fashion, with counter-ions spreading
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pore). The dashed line denotes the Knudsen diffusion coefficient. For comparison, short dash line

shows the bulk diffusion coefficient (see Fig. 3).

quickly throughout the pore (see video M3 in Supplementary Information); this is followed

by a slower ‘diffusive’ like charging, much alike wide ionophilic pores. Importantly, however,

we find that ionophobic pores charge order of magnitude faster than ionophilic pores at the

same conditions. For instance, in the ionophilic pore 90% of charging is achieved in 4ns,

while only ≈ 0.2ns is needed in case of an ionophobic pore.

A distinct feature of ionophobic pores is the behavior of self diffusion coefficient (D+

in our case). At early stage of charging, the ion density inside the pore is low and the

ion-ion separation is much larger than the ion-wall separation, hence the ion diffusion is

limited by collisions with the pore walls. In this case, the self-diffusion coefficient is very

large and approaches the Kundsen limit (Fig. 5(b)). As more counter-ions enter the pore,

the diffusion coefficient gradually reduces. Importantly, the pore becomes highly charged

before the diffusion coefficients decreases significantly. For instance, when charging reaches

90%, the self-diffusion coefficient, D+ ≈ 2.57 × 10−8 m2/s, is higher than in an ionophilic

pore and in the bulk at comparable conditions. Incidentally, the strong variation of D+

explains why the MFT, where we assumed a constant diffusion coefficient, underestimates

the acceleration of charging due to ionophobicity of pore walls.

Finally, it is interesting to note that we observe a transition between collective Fickian

diffusion and (nearly) self-diffusion in both iono-phobic and -philic pores. Its effect on
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charging is different, however. For ionophilic pores the charging undergoes a transition from

collective to self-diffusion, and this slows down charging. On the contrary, for ionophobic

pores a transition from Knudsen type self diffusion to collective diffusion is observed, and

the onset of collective modes slows down the dynamics.

IV. SUMMARY

In summary, a phenomenological model and molecular dynamics simulations show that

charging of ionophilic pores, of width comparable to the ion diameter, follows an effective

diffusion law. Such charging is a complex process, complicated by a myriad of factors, as

extreme confinement and ion crowding, image forces and screened interactions, etc. Thus,

the ‘law of effective diffusion’ is not only remarkable but also of practical importance. Indeed,

it can for instance help simplify the development of ‘whole porous-electrode’ models, and

thus open doors for optimizing electrode materials beyond single-pore level.

Ion’s self-diffusion in sub-nanometer pores shows an interesting dependence on ion densi-

ties and composition. The self-diffusion coefficient varies during charging over a few orders

of magnitude, and can exceed a few times the ion diffusion in the bulk (under similar con-

ditions). This suggests that fast charging can in principle be achieved if an ionic liquid is

optimized specifically for selected porous materials and the required degree of charging.

We have found that charging is often accompanied by overfilling. Although overfilling

can in fact accelerate charging, as demonstrated by high effective collective diffusivity, the

subsequent de-filling slows down charging significantly, and shall be avoided in practical

applications. One way to achieve this is to make pores ionophobic. We have shown that

ionophobic pores can accelerate charging by an order of magnitude. Our preliminary cal-

culations and the recent experience with cylindrical pores38 show that pore ionophobicity

leads to comparable values of capacitance and enhanced energy density at moderately high

voltages. We therefore believe that ionophobic pores present an exciting opportunity for

increasing both power and energy density of nanoporous supercapacitors.
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V. METHODS

A. Mean-field model.

We consider a single layer of ionic liquid confined in a slit nanopore formed by two parallel

metal walls. The free energy of the system can be written as29 F [ρ±] = Eel[ρ±]− TS[ρ±] +
∫

(h+ρ+(x)+h−ρ−(x))dx, where T is temperature and ρ± ion densities. In the first term we

take into account explicitly the pore-induced exponential screening of the ion-ion electro-

static interactions16. To account for excluded volumes, we adopt the Borukhov-Andelman-

Orlando expression39 for the entropy, S[ρ±]. The voltage-dependent ‘external fields,’ h±,

consist of ion’s electro-chemical potentials, resolvation energy, and the van der Waals and

image-force16 interactions of ions with the pore walls. The h± control the equilibrium ion

densities inside the pores and do not participate in the dynamics other than via initial and

boundary conditions.

The dynamics is defined by the continuity equation ∂tρ± = −∂xJ±. For the current we

postulate J± = −Γ ∂x(δF/δρ±), where Γ ≡ Γ± = D±/kBT is a phenomenological mobility

parameter and D± the diffusion constant, which we assumed pore-width, voltage and density

independent; kB is the Boltzmann constant, as usual. Plugging the free energy F [ρ±] in the

continuity equation results in Eq. (1): The first and third terms follow from the entropy,

and the second term is due to Eel, where
29

G = 4LBRc

∞
∑

n=1

sin2(πn/2)

n
K1 (πnRc/L) (3)

is a parameter characterizing screening of the electrostatic interactions by the metal pore

walls. Here K1 is the modified Bessel function of the second kind of first order, Rc is the

cut-off radius29 and LB = e2/εpkBT (in Gaussian units) is the Bjerrum length, where e is the

elementary charge and εp the dielectric permittivity inside the pore (we assumed εp pore-

width independent; for the effect of pore-width varying dielectric permittivity see Ref. 40).

The G depends on the pore width, L, and decreases with narrowing the pore.

Equations (1) were solved numerically using the GSL library41. The solution provides

the ion densities, and thus the accumulated charge and pore occupancy at any given time.
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B. Molecular Dynamics (MD) simulations.

The MD system consists of a pair of identical slit pores and two reservoirs separating the

pores. The access width of pores was 0.53nm and 0.66nm, the pore length was 12.09nm,

and periodic boundary conditions were applied in all directions. Each pore wall was made

of a square lattice of Lennard-Jones (LJ) particles, and cations and anions were modeled

as charged LJ particles. The ionophobicity of the pore wall was varied by tuning the LJ

parameters of the ion-wall interactions. A schematic picture of the MD system and the force

field parameters are provided in the Supplementary Information (section SI in SI.2).

MD simulations were performed using a customized Gromacs code.42 Pore walls were

maintained as equi-potential surfaces with their image planes coinciding with the geomet-

ric plane of wall atoms. In the method30 we used, the electronic polarizability of pore

walls is taken into account on the continuum electrostatics level. This method is in good

agreement17,43 with other models of polarizable electrodes.20,21

The system was first equilibrated for 2ns at PZC. The number of ions inside the entire

system was tuned so that the ion density in the RTIL reservoirs matched that of a bulk

system at 400K and 1atm (such an elevated temperature was chosen to ensure that the

model RTIL remains in the liquid phase). After the system reached the equilibrium, a

voltage difference was impulsively imposed between the negative and positive electrodes, and

the system was let evolve in the NVT ensemble for 6ns. Each charging case was repeated

50 times, with independent initial configurations, to obtain reliable statistics. To compute

the equilibrium charge at a given applied voltage, a separate system with 50% shorter pores

were setup and run for 20ns.

To study self-diffusion of ions inside nanopores, we setup MD systems which consist of

a single pore only (and the ions in it), with periodic boundary conditions in all directions.

We tuned the number of cations and anions to match the desired total and charge densities

inside the pore. Since pore walls are modeled as equi-potential surface, they form a Faraday

cage around ions, and electroneutrality is automatically satisfied. The diffusion coefficient of

ions was computed using the Einstein-Helfand relation44; the ion trajectories were obtained

from at least 5ns equilibrium runs.
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