37,872 research outputs found

    False-name-Proof Combinatorial Auction Mechanisms

    Get PDF
    In Internet auctions, it is easy for a bidder to submit multiple bids under multiple identifiers (e.g., multiple e-mail addresses). If only one good is sold, a bidder cannot make any additional profit by using multiple bids. However, in combinatorial auctions, where multiple goods are sold simultaneously, submitting multiple bids under fictitious names can be profitable. A bid made under a fictitious name is called a {em false-name bid}. In this talk, I describe the summary of existing works and open problems on false-name bids

    False-name-proof combinatorial auction design via single-minded decomposition

    No full text
    This paper proposes a new approach to building false-name-proof (FNP) combinatorial auctions from those that are FNP only with single-minded bidders, each of whom requires only one particular bundle. Under this approach, a general bidder is decomposed into a set of single-minded bidders, and after the decomposition the price and the allocation are determined by the FNP auctions for single-minded bidders. We first show that the auctions we get with the single-minded decomposition are FNP if those for single-minded bidders satisfy a condition called PIA. We then show that another condition, weaker than PIA, is necessary for the decomposition to build FNP auctions. To close the gap between the two conditions, we have found another sufficient condition weaker than PIA for the decomposition to produce strategy-proof mechanisms. Furthermore, we demonstrate that once we have PIA, the mechanisms created by the decomposition actually satisfy a stronger version of false-name-proofness, called false-name-proofness with withdrawal

    VCG Under Sybil (False-name) Attacks -- a Bayesian Analysis

    Full text link
    VCG is a classical combinatorial auction that maximizes social welfare. However, while the standard single-item Vickrey auction is false-name-proof, a major failure of multi-item VCG is its vulnerability to false-name attacks. This occurs already in the natural bare minimum model in which there are two identical items and bidders are single-minded. Previous solutions to this challenge focused on developing alternative mechanisms that compromise social welfare. We re-visit the VCG auction vulnerability and consider the bidder behavior in Bayesian settings. In service of that we introduce a novel notion, termed the granularity threshold, that characterizes VCG Bayesian resilience to false-name attacks as a function of the bidder type distribution. Using this notion we show a large class of cases in which VCG indeed obtains Bayesian resilience for the two-item single-minded setting.Comment: This is an extended version of an article to appear in AAAI-2020. Supporting code for generating the article's figures can be found at https://github.com/yotam-gafni/vcg_bayesian_fn

    Online Ascending Auctions for Gradually Expiring Items

    Get PDF
    In this paper we consider online auction mechanisms for the allocation of M items that are identical to each other except for the fact that they have different expiration times, and each item must be allocated before it expires. Players arrive at different times, and wish to buy one item before their deadline. The main difficulty is that players act "selfishly" and may mis-report their values, deadlines, or arrival times. We begin by showing that the usual notion of truthfulness (where players follow a single dominant strategy) cannot be used in this case, since any (deterministic) truthful auction cannot obtain better than an M-approximation of the social welfare. Therefore, instead of designing auctions in which players should follow a single strategy, we design two auctions that perform well under a wide class of selfish, "semi-myopic", strategies. For every combination of such strategies, the auction is associated with a different algorithm, and so we have a family of "semi-myopic" algorithms. We show that any algorithm in this family obtains a 3-approximation, and by this conclude that our auctions will perform well under any choice of such semi-myopic behaviors. We next turn to provide a game-theoretic justification for acting in such a semi-myopic way. We suggest a new notion of "Set-Nash" equilibrium, where we cannot pin-point a single best-response strategy, but rather only a set of possible best-response strategies. We show that our auctions have a Set-Nash equilibrium which is all semi-myopic, hence guarantees a 3-approximation. We believe that this notion is of independent interest

    Existing and Potential Remedies for Illegal Flipping in Buffalo, New York

    Get PDF
    The City of Buffalo should amend the documents used at the annual In Rem foreclosure auction to require more information from bidders and purchasers under penalty of perjury, thereby making it easier to detect, deter, and punish parties interested in purchasing properties to illegally flip them. There are already more abandoned houses in the City of Buffalo than it can even keep track of. These houses lower property values of surrounding homes in already distressed neighborhoods and in turn, lower tax revenues for the city. Abandoned houses also invite vandalism, drug users and squatters. They pose a threat in the form of potential instances of arson and cost the city millions of dollars in demolition expenses. Houses become abandoned for many reasons, but one is that they sometimes fall into the hands of illegal flippers

    Fictitious students creation incentives in school choice problems

    Get PDF
    We address the question of whether schools can manipulate the student-optimal stable mechanism by creating fictitious students in school choice problems. To this end, we introduce two different manipulation concepts, where one of them is stronger. We first demonstrate that the student-optimal stable mechanism is not even weakly fictitious student-proof under general priority structures. Then, we investigate the same question under acyclic priority structures. We prove that, while the student-optimal stable mechanism is not strongly fictitious student-proof even under the acyclicity condition, weak fictitious student-proofness is achieved under acyclicity. This paper, hence, shows a way to avoid the welfare detrimental fictitious students creation (in the weak sense) in terms of priority structures
    corecore