11 research outputs found

    Video-Based Inpatient Fall Risk Assessment: A Case Study

    Full text link
    Inpatient falls are a serious safety issue in hospitals and healthcare facilities. Recent advances in video analytics for patient monitoring provide a non-intrusive avenue to reduce this risk through continuous activity monitoring. However, in-bed fall risk assessment systems have received less attention in the literature. The majority of prior studies have focused on fall event detection, and do not consider the circumstances that may indicate an imminent inpatient fall. Here, we propose a video-based system that can monitor the risk of a patient falling, and alert staff of unsafe behaviour to help prevent falls before they occur. We propose an approach that leverages recent advances in human localisation and skeleton pose estimation to extract spatial features from video frames recorded in a simulated environment. We demonstrate that body positions can be effectively recognised and provide useful evidence for fall risk assessment. This work highlights the benefits of video-based models for analysing behaviours of interest, and demonstrates how such a system could enable sufficient lead time for healthcare professionals to respond and address patient needs, which is necessary for the development of fall intervention programs

    Semantic guided multi-future human motion prediction

    Get PDF
    L'obiettivo della tesi è quello di esplorare il possibile utilizzo di un modello basato su reti neurali già sviluppato per la previsione multi-futuro del moto di un agente umano. Data una traiettoria con informazione spaziale (sotto forma di angoli relativi dei giunti) di una struttura semplificata di scheletro umano, si cerca di aumentare l'accuratezza di previsione del modello grazie all'aggiunta di informazione semantica. Per informazione semantica si intende il significato ad alto livello dell'azione che l'agente umano sta compiendo.Investigate the potential utilization of a pre-existing neural network model, originally designed for multi-future prediction of human agent motion in a static camera scene, adapted to forecast rotational trajectories of human joints. By incorporating semantic information, pertaining to the higher-level depiction of the human agent's action, the objective is to enhance the prediction accuracy of the model. The study made use of the AMASS and BABEL datasets to achieve this purpose

    Comprehensive review of vision-based fall detection systems

    Get PDF
    Vision-based fall detection systems have experienced fast development over the last years. To determine the course of its evolution and help new researchers, the main audience of this paper, a comprehensive revision of all published articles in the main scientific databases regarding this area during the last five years has been made. After a selection process, detailed in the Materials and Methods Section, eighty-one systems were thoroughly reviewed. Their characterization and classification techniques were analyzed and categorized. Their performance data were also studied, and comparisons were made to determine which classifying methods best work in this field. The evolution of artificial vision technology, very positively influenced by the incorporation of artificial neural networks, has allowed fall characterization to become more resistant to noise resultant from illumination phenomena or occlusion. The classification has also taken advantage of these networks, and the field starts using robots to make these systems mobile. However, datasets used to train them lack real-world data, raising doubts about their performances facing real elderly falls. In addition, there is no evidence of strong connections between the elderly and the communities of researchers

    Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

    Full text link
    Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications

    Bridge Structrural Health Monitoring Using a Cyber-Physical System Framework

    Full text link
    Highway bridges are critical infrastructure elements supporting commercial and personal traffic. However, bridge deterioration coupled with insufficient funding for bridge maintenance remain a chronic problem faced by the United States. With the emergence of wireless sensor networks (WSN), structural health monitoring (SHM) has gained increasing attention over the last decade as a viable means of assessing bridge structural conditions. While intensive research has been conducted on bridge SHM, few studies have clearly demonstrated the value of SHM to bridge owners, especially using real-world implementation in operational bridges. This thesis first aims to enhance existing bridge SHM implementations by developing a cyber-physical system (CPS) framework that integrates multiple SHM systems with traffic cameras and weigh-in-motion (WIM) stations located along the same corridor. To demonstrate the efficacy of the proposed CPS, a 20-mile segment of the northbound I-275 highway in Michigan is instrumented with four traffic cameras, two bridge SHM systems and a WIM station. Real-time truck detection algorithms are deployed to intelligently trigger the SHM systems for data collection during large truck events. Such a triggering approach can improve data acquisition efficiency by up to 70% (as compared to schedule-based data collection). Leveraging computer vision-based truck re-identification techniques applied to videos from the traffic cameras along the corridor, a two-stage pipeline is proposed to fuse bridge input data (i.e. truck loads as measured by the WIM station) and output data (i.e. bridge responses to a given truck load). From August 2017 to April 2019, over 20,000 truck events have been captured by the CPS. To the author’s best knowledge, the CPS implementation is the first of its kind in the nation and offers large volume of heterogeneous input-output data thereby opening new opportunities for novel data-driven bridge condition assessment methods. Built upon the developed CPS framework, the second half of the thesis focuses on use of the data in real-world bridge asset management applications. Long-term bridge strain response data is used to investigate and model composite action behavior exhibited in slab-on-girder highway bridges. Partial composite action is observed and quantified over negative bending regions of the bridge through the monitoring of slip strain at the girder-deck interface. It is revealed that undesired composite action over negative bending regions might be a cause of deck deterioration. The analysis performed on modeling composite action is a first in studying composite behavior in operational bridges with in-situ SHM measurements. Second, a data-driven analytical method is proposed to derive site-specific parameters such as dynamic load allowance and unit influence lines for bridge load rating using the input-output data. The resulting rating factors more rationally account for the bridge's systematic behavior leading to more accurate rating of a bridge's load-carrying capacity. Third, the proposed CPS framework is shown capable of measuring highway traffic loads. The paired WIM and bridge response data is used for training a learning-based bridge WIM system where truck weight characteristics such as axle weights are derived directly using corresponding bridge response measurements. Such an approach is successfully utilized to extend the functionality of an existing bridge SHM system for truck weighing purposes achieving precision requirements of a Type-II WIM station (e.g. vehicle gross weight error of less than 15%).PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163210/1/rayhou_1.pd

    AI Hallucinations: A Misnomer Worth Clarifying

    Full text link
    As large language models continue to advance in Artificial Intelligence (AI), text generation systems have been shown to suffer from a problematic phenomenon termed often as "hallucination." However, with AI's increasing presence across various domains including medicine, concerns have arisen regarding the use of the term itself. In this study, we conducted a systematic review to identify papers defining "AI hallucination" across fourteen databases. We present and analyze definitions obtained across all databases, categorize them based on their applications, and extract key points within each category. Our results highlight a lack of consistency in how the term is used, but also help identify several alternative terms in the literature. We discuss implications of these and call for a more unified effort to bring consistency to an important contemporary AI issue that can affect multiple domains significantly

    “The Bard meets the Doctor” – Computergestützte Identifikation intertextueller Shakespearebezüge in der Science Fiction-Serie Dr. Who.

    Get PDF
    A single abstract from the DHd-2019 Book of Abstracts.Sofern eine editorische Arbeit an dieser Publikation stattgefunden hat, dann bestand diese aus der Eliminierung von Bindestrichen in Ăśberschriften, die aufgrund fehlerhafter Silbentrennung entstanden sind, der Vereinheitlichung von Namen der Autor*innen in das Schema "Nachname, Vorname" und/oder der Trennung von Ăśberschrift und UnterĂĽberschrift durch die Setzung eines Punktes, sofern notwendig
    corecore