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A B S T R A C T

The primary objective of this thesis is to enhance the accuracy of a
machine learning model for predicting multiple potential future hu-
man movements. This has been achieved by incorporating semantic
information into the input data, contributing to the broader goal of
advancing safer and efficient human-robot cooperation within an In-
dustry 5.0 context.

We analyzed diverse performance metrics and explored multiple
aspects of the problem, from the integration of semantic data into the
preprocessing phase, to the development of semantic class labeling
strategies and comprehensive evaluation methodologies.

We demonstrated the significance of semantic context in motion
prediction through a comparative analysis of models utilizing kine-
matic data alone and those augmented with semantic information.
We conducted experiments on one of the most recent and signifi-
cant datasets in the literature, simulating a realistic scenario where
approximately 40% of the data lacked semantic information. Remark-
ably, even in this setting, the model with the most parameter capacity
enhanced by semantic information (128 kin+sem) outperformed both
the kinematic-only counterpart and the zero-velocity baseline model.

In particular, "128 kin+sem" reduced by 3% the cumulative error
over the "128 kin" and exhibited a 10% error reduction against the
zero-velocity over one second of prediction timespan.

The importance of a careful model design is highlighted, by show-
ing why ensuring sufficient parameter capacity is necessary to effec-
tively accommodate the augmented input data when semantic infor-
mation is introduced.

Regarding the practical applications of our model, it is important
to consider that for cooperative robotic planning, the initial moments
of motion prediction hold relatively less significance. The primary
focus lies in achieving accurate predictions for a range of potential
outcomes in long-term motion prediction.

While our research has primarily centered around cooperative robotic
applications, we also expect that our methodologies can be applied to
diverse fields beyond the initial scope. The prediction of future body
movements opens up possibilities for offline utilization in non-real-
time tasks, such as generating realistic human motion. In particular,
motion prediction models hold potential in generating partial move-
ments, allowing us to leverage a limited amount of available data to
generate new data points.

In terms of performance evaluation, we measured the time it took
to compute the inference of predictions using the metrics script. The
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tested models exhibited slightly longer inference times compared to
the duration of the predicted sequence, since the models were de-
signed with offline testing in mind, but can be optimized for real-time
with software and hardware adaptations.

The findings of this study lay the foundation for future research en-
deavors, as numerous deep learning models that solely rely on kine-
matic information could potentially achieve groundbreaking results
by effectively incorporating semantic information. This study repre-
sents an initial step in showcasing the influential role of semantics in
enhancing the prediction of human motion.
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The problem with quotes
found on the internet is that

they are often not true.
— Abraham Lincoln
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1
I N T R O D U C T I O N

1.1 problem description

1.1.1 Collaborative robotics

The industrial sector is currently experiencing a revolution known as
Industry 5.0, where the focus is on environmental and social factors,
with an increased emphasis on the cooperation between humans and
robots. The idea behind this shift is to create an environment where
humans and robots can coexist and leverage each other’s strengths.

An extensive review on quality in Human-Robot Interaction (HRI)
applications in manufacturing environments [11] discusses the differ-
ent interests in the robotics community, such as performance-centered
and human-centered paradigms, emphasizing the need to enhance
human work and well-being in robotics systems. This review asserts
that robots can often handle repetitive, unsafe, and physically de-
manding tasks, while humans engage in critical thinking and cus-
tomization, highlighting the strengths of human-robot interaction.

Human-robot cooperation in an industrial environment can be a
significant advantage. However, it is important to consider various
factors that may impact the efficiency and effectiveness of this coop-
eration. Here are some key points to consider:

• Efficiency: In some cases, human-robot cooperation may be slow-
er than using a regular human worker. This could be due to
several reasons, such as the complexity of the task, the need for
coordination between humans and robots, or the limitations of
current robotic technology.

• Regulations: Strict regulations surrounding the coexistence of hu-
mans and robots in the same working space can impact the
efficiency of human-robot cooperation. These regulations are
in place to ensure the safety of human workers and prevent
accidents. However, they can also impose constraints on the
movement and capabilities of robots, which may affect their per-
formance [36]. Standards such as EN ISO 10218 aim to give
guidelines for the implementation of hybrid production sys-
tems, where robots and humans can work together safely.

• Possible improvements: The performance of human-robot cooper-
ation can be improved by making robots smarter and enabling
them to predict the motion of human agents [25]. This requires
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2 introduction

advanced sensing, perception, and prediction capabilities in ro-
bots. By understanding human behavior and intent, robots can
anticipate and adapt to human actions, leading to better coordi-
nation and efficiency.

1.1.2 Anticipation of human motion

To enable an efficient and safe human-robot cooperation, systems
should accurately predict human actions and understand non-verbal
cues. Neural network-based approaches have shown promise in pre-
dicting human actions, such as explored in an article by P. Schydlo
et al. which research validates the use of gaze and body pose cues
for action prediction in the context of human-robot cooperation [42].
Their proposed solution employs an encoder-decoder recurrent neu-
ral network model, which in part is similar to the architectures used
in this thesis main model.

When cooperative robotic systems can anticipate human motion,
they have a higher chance of avoiding collisions, ensuring a safer
working environment. By proactively responding to human actions,
robots can better coordinate and synchronize their actions with their
human counterparts, reducing the time spent waiting for the other
agent to complete their part of the task.

Multi-Future prediction

Human motion is a stochastic sequential process with a high level of
intrinsic uncertainty. Given an observed sequence of poses, a diverse
set of future pose sequences is likely to occur. Hence, due to the in-
trinsic uncertainty, even with an excellent model, when predicting a
long-term sequence of future poses, it is improbable that the predic-
tions for distant future poses will precisely match the ground truth
as stated by Pavllo et al. [35].

For that reason, this work utilizes a machine learning model capa-
ble of generating multiple possible outputs from a single input. This
approach is expected to enhance safety in the context of human-robot
collaboration, as it enables proactive measures to mitigate potential
risks.

1.2 methods

1.2.1 Semantics in the context of human movement

The integration of semantics into motion prediction models holds po-
tential in various domains, particularly in collaborative robotics. By
augmenting the prediction process with contextual meaning, these
models can enhance the overall performance and adaptability of ro-
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botic systems operating in dynamic environments alongside humans.
This can enable more efficient human-robot interaction, leading to
improved collaboration, safety, and productivity.

The source of semantic information

As mentioned earlier, this thesis focuses on exploring the incorpora-
tion of semantic information to improve the accuracy of motion pre-
dictions. However, it is based on the fundamental assumption that
this semantic data is accessible and readily available during the infer-
ence phase.

This assumption can be supported by the potential integration of
an auxiliary model that identifies the semantics of actions through ac-
tion recognition techniques. Action recognition in video footage using
machine learning has been the subject of extensive research. Notably,
K. Simonyan et al. demonstrated the effectiveness of deep neural net-
works for video classification in their work titled "Two-Stream Convo-
lutional Networks for Action Recognition in Videos" [43]. Their study
validated the usage of deep neural networks by achieving state-of-
the-art performance on standard benchmarks at that time.

In more recent research, S. Yan, Y. Xiong et al. introduced a novel
approach to modeling human-skeleton dynamics in their work titled
"Spatial Temporal Graph Convolutional Networks for Skeleton-Based
Action Recognition" [48]. They employed techniques such as pose es-
timation and action classification to effectively capture the dynamics
of human-skeleton movements. This approach showcased promising
advancements in the field of action recognition.

Another justification for assuming the availability of semantic in-
formation for the motion prediction, is that the context of human
movement in a work environment can be derived from the schedul-
ing of tasks performed by the operator in their activity plan. In such
scenarios, the actions to be executed are often known and repetitive,
offering a unique advantage for motion prediction. By incorporating
knowledge of the expected actions, the prediction model can not only
consider the spatio-temporal aspects of the body’s movement trajec-
tories in space, but also the high-level context associated with the
agent’s actions.

This higher-level comprehension of the action’s significance pro-
vides the prediction model with valuable insights into the underly-
ing intentions and goals of the operator. Consequently, it allows the
model to generate more accurate and contextually relevant predic-
tions of the agent’s future movements. By considering not only the
physical aspects of the motion but also the semantic context in which
the actions occur, the prediction model gains a more comprehensive
understanding of the human movement dynamics.
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1.2.2 Machine Learning, Artificial Intelligence

To achieve the objective of building a prediction model for human mo-
tion, machine learning and artificial intelligence methodologies are
used, leveraging their capabilities to process and interpret complex
spatio-temporal data along with contextual information.

Why machine learning

Human motion is a really complex phenomenon, with sophisticated
behavior and contextual dependencies. A mathematical model that
accurately represents such phenomenon would be equally complex,
even more so if the input data is strongly decimated in comparison
to the real world.

This leads to the consideration that defining a model that predicts
human motion would be a highly complex task. If a human had to
come up with all the rules and exceptions that model the motion, it
would take a very long time and incredible effort.

Since creating a model "manually" is not realistically achievable,
machine learning (ML) can be a good choice for creating a model
for a phenomenon that is very complex to model, in comparison to
traditional methods of modeling physical systems.

ML has the capability to learn from large datasets and automati-
cally discover meaningful relationships, enabling it to effectively model
the complex and nonlinear nature of human motion and the relative
semantic data.

While machine learning holds promise, it is important to note that
there is no one-size-fits-all solution. ML includes a diverse range of
architectures, each suited for different types of tasks and data.

Machine learning is not a modern concept, earlier architectures
such as decision trees, support vector machines, and linear regression
were employed before the advancements in computational power that
facilitated the emergence of deep learning algorithms. These early
(non-deep) machine learning approaches laid the foundation for un-
derstanding patterns and making predictions based on data. An ex-
ample of three non-deep learning machine learning algorithms are
listed below.

• Decision Trees: hierarchical structures that partition the input
space based on features to make predictions or decisions. They
are commonly used for classification and regression tasks in
various domains.

• Support Vector Machines (SVM): supervised learning algorithm
that finds an optimal hyperplane to separate different classes
in the input space. SVMs are frequently applied to classifica-
tion problems, especially when dealing with complex and high-
dimensional data, but can also be used for regression tasks.
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• Linear Regression: also a supervised learning algorithm and pre-
dicts a continuous target variable based on input features, as-
suming a linear relationship between them. Linear regression is
often used for tasks such as predicting housing prices or esti-
mating sales.

Deep learning architectures span from simpler ones like fully con-
nected layers to more complex ones such as convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), transformers and
Generative Adversarial Networks (GANs), to mention just a few ex-
amples. The choice of architecture depends on various factors such as
the nature of the problem, the characteristics of the data, and the spe-
cific objectives of the task at hand. Thus, careful consideration and
experimentation are essential in selecting the most appropriate ML
architecture for a given scenario.

For example, image object recognition tasks are often effectively
handled by Convolutional Neural Networks (CNNs). They consist of
convolutional layers that can efficiently extract features from images
by applying filters across the input. This capability allows CNNs to
capture spatial hierarchies and patterns present in images, enabling
them to discern complex visual features such as edges, textures, and
shapes.

On the other hand, Recurrent Neural Networks (RNNs) have pro-
ven to be beneficial for speech recognition tasks. RNNs are designed
to handle sequential data, such as audio waveforms, by processing
information in a sequential and temporal manner. This sequential
processing enables RNNs to capture dependencies and patterns over
time, making them suitable for tasks that involve temporal sequences.

Inference times and physical feasibility

This study aims to investigate whether the semantic context of human
agent actions can assist in prediction, without considering the phys-
ical feasibility of real-time implementation or other computational
power-related issues, as it is a theoretical work. In this context, the
term "real-time" refers to the requirement of performing inference for
the human motion prediction, within a narrow time frame, as any
delay beyond the specified timeframe would make the prediction ir-
relevant in practice.

Nevertheless, it is possible for machine learning models to operate
in real-time if adequately optimized and paired with suitable hard-
ware, as demonstrated in other application fields such as real-time
object detection [38], licence-plate recognition [3], just to mention a
few examples.
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1.3 state of the art

The problem at hand is: semantic multi-future human motion predic-
tion. There have been numerous works on human body pose predic-
tion, many of them focused on the kinematic aspect of the problem
while not considering the semantic information, these approaches are
discussed in the Section 1.3.1.

Those works still contain very insightful observations on the best
ways on how to leverage kinematic information (usually body joint
angles or body keypoint position) to predict motion. In this thesis
work, the objective is to enhance the predictive ability of a model
with the addition of semantic information, this is why considering ex-
isting approaches, although they do not employ semantics, is a good
starting point.

SCAFF

One recent work that used both semantic and kinematic information
is the paper titled "Semantic Correlation Attention-Based Multiorder
Multiscale Feature Fusion Network for Human Motion Prediction"
[23].

While this study, proposing a new approach named SCAFF for hu-
man motion prediction, does not explicitly account for the semantics
as we intend in this work which is the type of action being performed
(e.g., walking, playing sports), it does consider the semantic correla-
tions in kinematic relations between body parts such as joints and
bones.

Although those are different kinds of semantics, this is still note-
worthy as it signifies a growing interest in the scientific community
towards incorporating semantic information to enhance human mo-
tion prediction.

In SCAFF, the approach is to build a model able to assess the com-
plex differences in joint and bone movements, with a set of opera-
tors that are deployed to extract patterns from this data. A semantic
correlation attention module refines these patterns, focusing on the
temporal relationships between different body parts.

The refined data is then fused to generate a comprehensive rep-
resentation of the individual’s current motion, serving as the basis
for future motion prediction. Experimental results indicate that this
method outperforms existing models, underscoring the potential value
of incorporating semantics into motion prediction frameworks.
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1.3.1 Review of existing methods for human motion prediction

QuaterNet

One of the most cited papers is titled "QuaterNet: A Quaternion-
based Recurrent Model for Human Motion" [35]. It presents a new
approach to improve the prediction and generation of 3D human
pose sequences. Pavllo et al. found that joint rotation predictions can
suffer from error accumulation along the kinematic chain and discon-
tinuities in Euler angle or exponential map parameterization. Joint
position methods require re-projection onto skeleton constraints to
avoid issues like bone stretching and invalid configurations.

To address these limitations, the authors propose QuaterNet, a re-
current neural network that uses quaternions for rotation representa-
tion and a new loss function. The loss function conducts forward kine-
matics on a parameterized skeleton, which allows penalizing absolute
position errors instead of angle errors. This combination leverages the
advantages of joint orientation prediction with a position-based loss.

The experimental results demonstrate that for short-term predic-
tions, QuaterNet quantitatively improves the (at the time) state-of-
the-art by reducing angle prediction errors on the Human3.6m bench-
mark.

ST-Transformer

The paper "A Spatio-temporal Transformer for 3D Human Motion
Prediction" [2] introduces a Transformer-based architecture for the
task of generative modeling of 3D human motion.

In the past, recurrent neural networks (RNNs) and convolutional
neural networks (CNNs) have been commonly used given their ca-
pacity to handle temporal data. However, these methods often ne-
glect structural priors, and error accumulation over time can lead to
non-plausible pose predictions.

The authors of this paper propose a Spatio-temporal Transformer
(ST-Transformer) model, which learns a spatio-temporal representa-
tion explicitly without relying on a hidden state or fixed temporal en-
codings. The novel aspect of this model lies in the decoupling of the
temporal and spatial dimensions, which allows for a spatio-temporal
attention mechanism, thus capturing dependencies explicitly, mitigat-
ing error accumulation over time, and increasing interpretability.

Experimental results demonstrate that the ST-Transformer can out-
perform state-of-the-art models in short-term horizons and produce
convincing long-term predictions (up to 20 seconds for periodic mo-
tions), such as locomotion. It demonstrates effectiveness in learning
representations for both short-term and long-term motion predictions,
which makes it a promising approach for 3D human motion predic-
tion tasks.
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MotionFlow

In the paper titled "Flow-based Spatio-Temporal Structured Predic-
tion of Dynamics" [49], the authors introduce an end-to-end deep
learning architecture that’s tailored to learn temporal and spatial de-
pendencies, enabling explicit modeling of joint connectivity. They also
highlight that their model successfully marries the advantages of both
stochastic and deterministic representations, enabling more reliable
long-term predictions.

The methodology is designed to cope with the large variations of
potential outputs, without losing dynamic diversity across body joint
components. The presented MotionFlow model is a conditional au-
toregressive flow-based solution designed to learn spatio-temporal
relations in dynamic systems. It excels at directly modeling the log-
likelihood of temporal and spatial information for long sequences,
yielding more robust spatio-temporal representations while preserv-
ing the structure of high-dimensional data.

Diverse and controllable motion prediction

In the publication titled "Generating Smooth Pose Sequences for Di-
verse Human Motion Prediction" [31], the authors introduce a deep
generative network designed for both diverse and controllable mo-
tion prediction. They exploit the notion that human motions are fun-
damentally sequences of smooth, valid poses, and create a generator
that predicts motion for different body parts sequentially. The model
incorporates a normalizing flow-based pose prior and a joint angle
loss to ensure the realism of the generated motion.

They offer a method for diverse motion prediction that doesn’t rely
on learning several mappings, providing an end-to-end trainable solu-
tion. This approach results in a fully controllable motion prediction,
permitting the motion of certain portions of the human body to be
fixed while generating diverse predictions for the remaining portions.
The technique involves the application of a pose prior and a strict
constraint on the predicted poses to form smooth sequences that sat-
isfy human kinematic constraints, rather than learning a motion prior,
which often suffers from a lack of sufficiently diverse training data.
Notably, the pose prior is modeled as a normalizing flow, which en-
ables exact computation of the data log-likelihood and further pro-
motes diversity by maximizing the distance between pairs of samples
during training.

Through experimental validation on two standard benchmark data-
sets (Human3.6M and HumanEva-I), the authors demonstrate that
their approach outperforms state-of-the-art baselines in terms of both
sample diversity and accuracy. Overall, the authors’ contributions
are two-fold: they present a unified framework achieving both di-
verse and part-based controllable human motion prediction, and they
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propose a pose prior and a joint angle constraint that regulate the
training of the generator, encouraging it to produce smooth pose se-
quences.

Coordinated Motion Optimization

The paper "Prediction of Human Full-Body Movements with Mo-
tion Optimization and Recurrent Neural Networks" [21] presents a
new approach for predicting complex human behaviors, particularly
when those behaviors change in different environments. The pro-
posed framework uses a dual strategy, utilizing a recurrent neural
network to encode short-term body dynamics, while considering en-
vironmental constraints via gradient-based trajectory optimization.

The key premise of the work is to improve safety and efficiency
in human-robot interaction by accurately predicting human motion.
One limitation in other approaches is that the motion prediction model
is trained only on human body motion data, and doesn’t adequately
consider scene context such as targets or obstacles.

The approach in this paper uses a recurrent neural network for
pure kinematic predictions of human motion, but also adds to the
model a way to control human velocities at each prediction step. The
motion is then optimized using a gradient-based optimization algo-
rithm.

One of the benefits of this method is that it’s flexible, allowing
for the integration of numerous constraints in motion planning, like
smoothness, obstacle avoidance, and hand orientation.

Through experiments conducted on real motion data, the authors
demonstrate that their framework significantly improves prediction
accuracy compared to conventional neural network predictors, espe-
cially in long-term prediction.

1.3.2 Human motion datasets

In the field of body motion datasets, several alternatives have been
developed, each with its unique characteristics and applications. The
following sections contain a concise overview of these alternatives,
outlining their key attributes, advantages, and potential limitations.

AMASS

Archive of Motion Capture As Surface Shapes [28] is a large and diverse
collection of human motion data, aggregating 15 different optical
marker-based mocap datasets into a common framework and param-
eterization. The major advantage is its size, featuring more than 40

hours of motion data, over 300 subjects, and more than 11,000 mo-
tions. This provides a vast resource for deep learning applications.
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The dataset is standardized using the Skinned Multi-Person Linear
Model (SMPL) [27], ensuring consistency and compatibility across
various motions.

This dataset is particularly interesting for the purposes of this work,
as in combination with the BABEL (Bodies, Action and Behavior with
English Labels) [37] dataset, it addresses the challenge of understand-
ing the semantics of human movement by providing precise descrip-
tions for about 43 hours of mocap sequences from AMASS.

DIP

Deep Inertial Poser [19] is a deep learning model that can predict full-
body pose from sparse (only six) Inertial-Measurement-Units (IMUs)
in real-time. It has been trained on a large scale synthetic dataset
generated from other datasets MoCap data (from AMASS), and fine-
tuned on DIP-IMU, a real IMU dataset. DIP is especially useful for
applications like AR and VR due to its real-time capabilities. This
dataset has also been used in the project reported in the ST-Transformer
paper.

H3.6M

Human 3.6 Million [20, 8] is one of the first and most well-established
datasets in the field, containing 3.6 million 3D human poses and cor-
responding images. The data features 11 professional actors perform-
ing in 17 different scenarios. It is a rich dataset that is highly diverse
and offers a good balance of male and female performers. One draw-
back is that larger datasets like AMASS are available, and its size
might not be sufficient for increasingly advanced deep learning mod-
els. Despite that, Human3.6M is still frequently used due to its highly
accurate 3D joint positions and diverse scenarios. However, as of now,
it is no longer available through official sources.

3DPW

3D Poses in the Wild Dataset [46] is the first dataset truly outdoor ("in
the wild") with accurate 3D poses for evaluation, taken from a moving
phone camera. This novel approach allows for a more dynamic cap-
ture of human motion, especially in outdoor settings. With 60 video
sequences and 18 3D models, it includes a variety of clothing varia-
tions and complex scenes. Its strengths lie in its ability to handle mov-
ing cameras, heading drift, occlusions, and multiple people visible in
the video. However, its complexity could also be seen as a limitation,
as it may require more advanced processing and analytical methods.



2
D E S C R I P T I O N O F M U LT I V E R S E A N D M U LT I P O S E
M O D E L S

The primary focus of this thesis is to enhance an existing model, Mul-
tiPose, that has been adapted from an original model, Multiverse, to
predict human motion.

The original model, Multiverse, was first introduced in the article
"The Garden of Forking Paths: Towards Multi-Future Trajectory Pre-
diction" [24]. The original model’s primary focus was the prediction
of a human agent path within an environment using 2D video data.
M. Cunico, in his master’s thesis titled "Human Motion Anticipation
through 3D Structured Multi-Future Trajectory Prediction" [24], sub-
sequently modified this model to predict human body motion. The
resulting model was then named MultiPose.

The motivation behind the selection of the Multiverse model as the
base for the problem of human body motion prediction was moti-
vated fundamentally by these considerations:

• Generation of Multiple Outputs: Multiverse has a multi-future
capability thanks to its classifier component, which generates
a heatmap of possible futures. This is particularly pertinent
given the stochastic nature of human motion, where possible
outcomes can vary substantially unless the motion in question
is highly repetitive.

• Semantic Context: Furthermore, the Multiverse model has been
designed to accept semantic segmentation maps as inputs, pro-
viding an opportunity to introduce semantics in the human mo-
tion context, the primary focus of this thesis.

2.1 fundamentals

To help the explanation of the Multiverse and MultiPose models,
some fundamental concepts used in the models will be introduced
in the following sections.

Supervised and unsupervised learning

Among the different approaches to machine learning, supervised and
unsupervised learning represent two fundamental approaches.

• Supervised Learning: the model learns from labeled training data,
where the desired output is known. This approach can be vi-
sualized as a teacher-supervised learning process where the

11
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model under guidance. The aim is to learn a function that best
maps the input data (features) to the corresponding output. Su-
pervised learning is typically used for tasks such as classifica-
tion (where the output is a categorical variable) and regression
(where the output is a continuous variable).

• Unsupervised Learning: Unlike supervised learning, unsupervised
learning involves training the model on data without prede-
fined labels, i.e., the desired output is unknown. Here, the model’s
objective is to identify patterns, structures, or relationships within
the input data. This is useful for clustering data into different
groups, detecting outliers, or reducing the dimensionality of the
data for easier visualization or computation.

The supervised learning approach is used both for the classifier
and the regressor that constitute the Multiverse model. While the un-
supervised learning will be used for Principal Component Analysis
(PCA) for the dimensionality reduction task used in the preprocess-
ing of the MultiPose model.

2.1.1 Sequence-to-Sequence neural networks

Sequence-to-sequence (Seq2Seq) models are a category of machine
learning models primarily used for tasks that require the handling of
sequential data. They were introduced for natural language process-
ing (NLP), but Seq2Seq models have found use-cases across diverse
applications such as machine translation [33], speech recognition [10],
time series prediction [5], and image captioning [40].

At a high level, Seq2Seq models are composed of two main com-
ponents: an encoder and a decoder. The encoder processes the input
sequence, transforming it into a context vector which aims to encap-
sulate the information contained in the input sequence. The decoder
then takes this context vector and generates the output sequence.

In essence, the model reads the input sequence, abstracts it into a
fixed-length context vector, and then generates an output sequence
from this context.

For example, in machine translation, the model has to translate a
sentence from one language to another, so the lengths of the inputs
may vary, and the inputs are usually different in size to the outputs.
The input sequence (a sentence, for example) is encoded into a con-
text vector, which the decoder uses to generate the output sequence
that is the translated sentence.

Search

The generation of sequences in Seq2Seq models involves predicting
a series of outputs, such as words or characters, one at a time. After
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each prediction, a decision must be made about which output to se-
lect before moving on to predict the next one in the sequence. This is
essentially a search problem.

Ideally, the algorithm would have to search through all possible
sequences to find the most probable one given the input and the
model’s learned parameters. But the complexity of this task grows ex-
ponentially with the length of the sequence, making efficient search
strategies crucial for good performance. This topic will be better cov-
ered in the section Diverse beam search.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural
networks designed to recognize patterns in sequences of data, such
as text, speech and time-series in general.

RNNs can remember the information computed in the previous
steps, and this makes them suitable for dealing with sequential data.
The "memory" in RNNs is captured through hidden states, which
aim to encode the information of past inputs, which is crucial when
an understanding of context over time is needed.

Seq2Seq Architecture

As mentioned, the seq2seq model basically consists of an encoder and
a decoder:

• The encoder is typically implemented as a recurrent neural net-
work (RNN) layer or a stack of RNN layers. It processes the
input sequence one time step at a time and returns its own in-
ternal state. The outputs of the encoder are discarded, and only
the final state is retained. This state serves as the "context" for
the decoder.

• The decoder is also implemented as an RNN layer or a stack
of RNN layers. It is trained to generate the next samples of the
target sequence based on the context provided by the encoder’s
output and the previously generated samples from the target
sequence. During training, it is conditioned on the previously
generated samples and its task is to generate the next sample
based on the context and the previous samples.

During training, a technique called "teacher forcing" can be used.
It means that the decoder is fed with the correct previous samples as
inputs. While this technique can provide benefits, it is important to
notice that it can also create a discrepancy between training and infer-
ence. When using teacher forcing during training, the model learns
to predict from the correct inputs at each step. However, during infer-
ence or real-world use, the model will rely on the predictions that it
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generates as inputs, which might be very different from the ground-
truth that it was fed during training.

It is important to note that the side effects of teacher forcing can be
mitigated by implementing approaches such as Scheduled Sampling [4]
and Professor Forcing [22], but due to time constraints these methods
have not been considered in this thesis.

2.1.2 Search algorithms

Diverse beam search has been used to produce qualitatively different
outputs generated by neural networks, and it is also fundamental
in the Multiverse and MultiPose models in order to produce multi-
future predictions.

Greedy search

Greedy search is a simple and commonly used method for generating
output sequences in Seq2Seq models. It works by always selecting the
token (i.e., word, character, or feature) with the highest probability at
each time step in the sequence, given the current context. However,
this approach can lead to suboptimal solutions, as it fails to consider
the overall sequence probability. Instead, it takes the locally optimal
choice at each step, which can result in globally suboptimal solutions.

Beam search

Beam search alleviates some shortcomings of greedy search by main-
taining a set of the most probable sequences (known as ’beams’)
at each time step, instead of just one. The width of the beam, i.e.,
the number of kept sequences, is a hyperparameter that governs the
trade-off between computational complexity and output quality. By
generating multiple output sequences, beam search provides a better
chance of finding a globally optimal solution, which makes it partic-
ularly well-suited to the nature of Seq2Seq models where the goal is
often to generate the most probable sequence given the input.

Diverse beam search

Standard beam search tends to generate a set of highly similar se-
quences given similar inputs, due to the shared beginning tokens
among the beams. The lack of diversity among the top sequences may
be a limitation, especially in tasks where multiple diverse solutions
are required, as in the multi-future approach that is fundamental to
this thesis.

To address this limitation, diverse beam search has been proposed [45].
The idea is to add a diversity-promoting term to the objective func-
tion during the search process. This term discourages the algorithm
from selecting similar sequences for the top beams.
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As a result, diverse beam search can provide multiple diverse and
high-quality sequences, offering a broader range of possible solutions
to choose from. This is particularly useful in tasks where more varied
outputs are desired [17].

Diversity Strength

The Diversity Strength, in diverse beam search, is a parameter that con-
trols the level of diversity in the generated results. It affects the trade-
off between exploring diverse options and selecting high-scoring op-
tions.

The diversity strength term is used to encourage or discourage the
selection of similar hypotheses, its impact can be qualitatively de-
scribed as follows:

• A larger diversity strength term encourages the algorithm to pri-
oritize diverse solutions. It discourages the selection of similar
hypotheses and promotes exploration of different paths. This
can lead to more varied and distinct results, but it may also
sacrifice some quality in terms of the highest-scoring options.

• Reducing the diversity strength term allows similar hypotheses
to have a higher chance of being selected. This can result in
more focused and coherent outputs, as the algorithm is more
likely to converge on high-scoring options. However, it may lead
to less diversity in the generated results, with potentially fewer
novel or alternative solutions explored.

Experimenting with different values of the diversity strength term
is often necessary to find the desired level of diversity and quality for
the particular application. A. Vijayakumar et al. [45] suggest a value
between 0.2 and 0.8 for most applications and datasets.

2.1.3 Graph attention networks

Graph Attention Networks (GATs) are a class of machine learning al-
gorithm specifically designed to handle data structured as graphs. In
a graph, data points (referred to as nodes) are connected via relation-
ships (edges), forming a complex network. GATs, using an attention
mechanism, determine the importance of each connection in this net-
work as part of the learning process.

When data is represented in a graph, each data point (node) is asso-
ciated with others through various relationships (edges). This allows
the GAT to capture both the characteristics of the node itself and the
context given by its relationships with other nodes in the graph. In
GATs, the importance (or weight) given to each relationship (edge) is
calculated by the attention mechanism, offering an adaptive learning:
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this enables the network to capture complex and non-linear relation-
ships within the graph structure.

The edge function in GATs determines the attention weights, which
are a score representing the importance of one node to another. This
function can adopt various forms. For instance, it could be a multi-
layer perceptron (MLP), a type of neural network that can model
non-linear relationships. With an MLP as an edge function, attention
weights are derived from a non-linear function of the nodes’ charac-
teristics, offering a more flexible and adaptable modeling approach.

2.2 original multiverse model

The neural network model central to this thesis was introduced in
the paper titled "The Garden of Forking Paths: Towards Multi-Future
Trajectory Prediction" [24]. In the following sections, a description of
the model will be provided, while also presenting an updated version
called "MultiPose" [12], which is derived from the original Multiverse
framework, but is adapted to predict human body motion.

2.2.1 Overview of the model

The Multiverse model focuses on predicting multiple plausible future
trajectories of individuals navigating (outdoor) environments based
on visual inputs from cameras (typically security cameras). Basically,
the objective is to predict future paths of a single human agent, given
the past video frames, location of the agent in the scene and a seman-
tic segmentation map. By utilizing a particular method of location en-
coding and convolutional RNNs (inspired in part by object-detection
methods [39]), the model can generate diverse plausible future paths.

2.2.2 Architecture

The Multiverse model can be seen as a variant of the sequence-to-
sequence (seq2seq) structure. It includes an encoder, the History En-
coder, which processes the past sequence of frames and locations, and
two decoders, the Coarse and Fine Location Decoders, which gener-
ate the sequence of predicted locations.

As illustrated in the image 1, the model’s output is a fusion of the
outputs generated by a classifier, referred to as the coarse location de-
coder, and a regressor, which is the fine location decoder. This char-
acteristic enables the model to generate multiple future trajectories.
The classifier provides a heatmap of potential future locations, while
a search algorithm uses this probability distribution across the im-
age to generate coarse trajectories. These trajectories are then refined
thanks to the fine location decoder.
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Figure 1: Multiverse block diagram.

History Encoder

The History Encoder works by encoding the past sequence of agent
locations and video frames. Each agent location is encoded as a cell in
a multi-scale grid, and each video frame has a semantic segmentation
map associated to it. The segmentation map is produced during the
preprocessing of the video frames thanks to a semantic segmentation
model, which in this case is the Deeplab [9], which produced a total
of 13 semantic classes for the image pixels. Note that in the block
diagram 1, only one grid is considered for simplicity.

These locations and semantic maps are then fed into a Convolu-
tional recursive neural network (ConvRNN), which generates a se-
quence of spatio-temporal feature maps. This sequence of maps con-
stitutes the output of the History Encoder and serves to initialize the
decoders. While the hidden state of the encoder is randomly initial-
ized.

In particular, the semantic segmentation map is processed by a 2d
convolution layer, while the ConvRNN is constituted by a ConvLSTM
(convolutional long short-term memory) layer.

Coarse Location Decoder

The Coarse Location Decoder operates as a grid cell classifier. It is
constituted by a ConvRNN which hidden state is initialized by the
History Encoder. The ConvRNN takes two inputs:
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• H̃C
t−1: the past hidden state (HC

t−1) is processed by a Graph At-
tention Network (GAT), which models the spatial dependencies
on the grid, ensuring more realistic location predictions. This
is works thanks to the notion that the trajectory is most likely
going to spread through adjacent cells, instead of jumping to
distant cells.

• embed(Ct−1): the hidden state is also processed by a 2D convo-
lutional layer, and a softmax() operation to obtain a belief state
Ct which represents the "heatmap", or the probability distribu-
tion generated by the classifier over the grid.

The result is a "belief state", a probability distribution over grid
cells, which represents the decoder’s predicted locations at a coarse
level.

The encoder hidden state update is represented by the Equation 1 [24].

HC
t = ConvRNN

(
GAT

(
HC

t−1

)
, embed (Ct−1)

)
(1)

Fine Location Decoder

The Fine Location Decoder operates as a regressor, which refines the
coarse predictions of the Coarse Location Decoder. For each grid cell
an offset is computed by a ConvRNN updated with a GAT as in the
coarse decoder. The offset vectors are then computed by a multilayer
perceptron (MLP).

The inputs to the ConvRNN in this case are both the fine decoder
hidden state processed by a GAT, and also the offsets vectors (out-
put of the MLP). The hidden state update function can be seen in
Equation 2.

HO
t = ConvRNN

(
GAT

(
HO

t−1

)
,Ot−1

)
∈ RH×W×ddec (2)

Where HO
t−1 is the hidden state of the fine decoder (O stands for

offsets), and Ot−1 are the grid cell offsets.

Prediction Generation

The final prediction combines the outputs of the Coarse and Fine
Location Decoders.

The Coarse Location Decoder identifies the most probable grid
cells, and the Fine Location Decoder provides the more precise lo-
cation within each cell.

The path selection process depends on the type of prediction needed,
which in turn depends on the type of search algorithm used.
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• For single-future predictions, for each future time-step the grid
cell with the highest probability is chosen from the coarse pre-
diction (greedy search)

• For multi-future predictions, a set of potential grid cells are
chosen from the coarse prediction by applying a diverse beam
search (as seen in Section 2.1.2.3).

In conclusion, this architecture leverages the seq2seq paradigm to
effectively process past information (via the History Encoder) and
generate future predictions (via the two decoders). Its unique feature
is its combination of classification (coarse decoder) and regression
(fine decoder) mechanisms to generate both diverse (multi-future)
and precise predictions.

2.2.3 Description of loss function

The model loss is a linear combination of the classification and regres-
sion losses. As in the paper that first introduced Multiverse [24], the
losses will be described below.

Coarse location decoder loss

For the coarse decoder, the cross-entropy loss is used, and the for-
mula is shown in Equation 3. This loss function is relative to the
classification task of the coarse locator.

Lcls = −
1

T

T∑
t=h+1

∑
i∈G

C∗
ti log (Cti) (3)

Cross-entropy is a favored loss function for machine learning clas-
sifiers due to its ability to quantify the difference between predicted
probabilities and true class labels. Derived from information theory,
it offers a probabilistic interpretation by measuring the average in-
formation required to determine the correct class. As a differentiable
function, it facilitates gradient-based optimization methods, enabling
efficient parameter adjustments through backpropagation.

By minimizing cross-entropy loss, the classifier aligns with maxi-
mum likelihood estimation principles, maximizing the likelihood of
observed data.

Fine location decoder loss

For the fine location decoder, a smoothed L1 loss is used:

Lreg =
1

T

T∑
t=h+1

∑
i∈G

smoothL1
((L∗i −Qi),Oti) (4)



20 description of multiverse and multipose models

Where Oti is the offset relative to the grid cell i at the time t, L∗t is
the ground truth location and Qi is the location of the i− th cell grid
center.

The smoothed L1 loss is utilized, by inspiration from object detec-
tion methods, for several reasons [24].

• It offers a more robust alternative to the standard L1 loss by in-
corporating a smooth transition around the origin. This smooth-
ness property helps to reduce the impact of outliers and noisy
data points, making the loss function less sensitive to extreme
errors.

• Moreover, the smoothness property of the loss function ensures
that small errors in the predictions contribute less to the overall
loss, providing stability during training. This can prevent the
model from overfitting to individual outliers or noisy examples.

2.3 multipose : human motion prediction

As described in Section 2.2, the Multiverse model works with 2D
video data. In order to achieve the objective of human motion predic-
tion, the model instead has to work with 3D data, specifically with
the joint values of a simplified human skeleton model. To this end,
Cunico adapted the model by modifying the preprocessing of the
joint trajectories and fitting a prediction model for each joint. All the
models predictions are then combined using a beam search, with a
technique similar to the one seen in the Multiverse model [24], Di-
verse beam search.

2.3.1 Human motion prediction

It is first necessary to introduce what we mean by human motion
prediction and how the motion data is represented.

Human Body Representation

In the context of representing human poses, various approaches exist
using kinematic models, which provide simplified representations of
the underlying skeleton. One commonly used model is the OpenPose
model [6], which has gained significant popularity due to its robust-
ness and versatility in estimating human pose. Additionally, other
skeleton models, such as the International Society of Biomechanics
(ISB) biomechanical skeleton model [47], are also utilized.

In this thesis in particular, the Skinned Multi-Person Linear Model
(SMPL) model is used [27] since the AMASS dataset is used [28], but
the methodologies are applicable independently of the body repre-
sentation choice.
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Other benefits of using the SMPL model are that it employs an
overall more natural structure of the kinematic skeleton rather than
the one chose by H3.6M [20], and not as simplicistic as the one in
OpenPose [6]. Another advantage of using SMPL is that it can be am-
plified by adding further body joints, such as realistic hands move-
ments given by the addition of the MANO [41] model; furthermore,
and SMPL-X [34] adds facial expression features that could be crucial
in further research on the understanding of semantic features of hu-
man subjects. On top of all of that, visualization tools [34] exist for
the SMPL model, which can produce realistic 3D full-body models
with many adjustable parameters to vary the body shapes, this can
be useful both for visual validation of results, but also to check for
accurate collisions in the body (which cannot be done as accurately
with a simple kinematic skeleton model).

Figure 2: SMPL human skeleton model. [18]

These models consist of interconnected segments representing dif-
ferent body parts and joints, enabling the estimation and tracking
of joint angles during motion analysis. By employing these skeleton
models, researchers can efficiently process and analyze human mo-
tion data, facilitating various applications in fields such as animation,
biomechanics, and human-computer interaction.

Human Motion

Once a simplified skeleton representation is available, human motion
can be described as a time series of joint angle values. These values
capture the relative positions and orientations of the body joints, pro-
viding a comprehensive representation of the subject’s movements.
Various techniques can be employed to capture human motion, in-
cluding Inertial Measurement Units (IMUs) and reflective markers
placed on key body landmarks. These techniques enable the record-
ing of precise joint angle measurements over time, allowing for de-
tailed analysis and understanding of human movement patterns.
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The rotational information of the joints can be represented in dif-
ferent ways:

• Euler angles: Euler angles are easy to comprehend for humans
and can provide an intuitive representation of 3D rotations. How-
ever, they suffer from the issue of singularities, which can lead
to ambiguities and numerical instability in certain orientations.

• Quaternions: Quaternions offer a singularity-free representation
of 3D rotations and can be efficiently interpolated. However,
they require normalization to maintain their mathematical prop-
erties, which adds computational overhead and necessitates spe-
cial treatment when integrating them into a neural network
model.

• Exponential map / angle axis: The exponential map or angle-
axis representation mitigates the singularity problem of Euler
angles and avoids the normalization requirement of quaternions.
It provides a compact representation with three values, facilitat-
ing ease of use. However, its interpretation may be less intuitive
for humans compared to Euler angles.

• Rotation matrices: Rotation matrices provide a complete and
singularity-free representation of 3D rotations. They are widely
used in graphics and geometry computations. However, their
drawback lies in the high dimensionality, requiring nine ele-
ments to represent a 3D rotation, which can increase compu-
tational complexity and memory usage.

Human Motion Prediction

In the context of motion prediction, the objective is to generate possi-
ble future "frames" of human motion based on the past motion data.
Given the historical trajectory of joint angles, a predictive model is
employed to generate updated values for future time points. The pre-
diction model leverages the temporal patterns and dependencies ob-
served in the past motion data to forecast the future joint angles.

2.3.2 Dimensionality reduction

Two options were considered by Cunico [12] to adapt the Multiverse
model for the task of human motion prediction.

1. Increasing the input size to 3-dimensional, and consequently in-
creasing all the layer dimensions. This proved inefficient both
computationally (the training / inferencing times increased ex-
ponentially), and in the sense of training effectiveness. The latter
being a result of the neural network architecture, where sparse



2.3 multipose : human motion prediction 23

data meant a more difficult learning target for the model; par-
ticularly for neural networks which implement convolutional
layers and must be treated carefully [26].

2. Reducing the dimensionality of the input: this in turn can be
done with multiple techniques, for instance by projecting 3D tra-
jectories onto a pre-defined 2D plane (e.g., the plane determined
by the first two parameters) or reducing the dimensionality by
simply removing one component from the rotational informa-
tion. That approach may not be optimal in terms of information
loss, for this reason in the Multipose work of Cunico [12] he
chose to implement a principal component analysis to project
the 3D rotations in a 2D space with the minimum information
loss.

The transformation process involves two steps: applying dimen-
sionality reduction to reduce the necessary parameters from 3 to 2,
and subsequently scaling the resulting 2D trajectories to fit within
the Multiverse-interpretable video scene (VH × VW in pixels).

PCA

Principal Component Analysis (PCA) is a technique used for dimen-
sionality reduction to preserve as much variability (or information)
in the data as possible.

PCA works by finding a new set of orthogonal axes, the so-called
principal components, that are linear combinations of the original
axes and capture the most variance in the data. The first principal
component captures the most variance, the second principal compo-
nent captures the second most variance, and so on.

The steps to perform the PCA and dimensionality reduction are as
follows:

1. Standardization: Normalize the data by subtracting the mean and
dividing by the standard deviation of each feature.

2. Covariance Matrix: Compute the covariance matrix of the stan-
dardized data to capture the variance and correlation structure.
The covariance between two variables indicates how they vary
together, for instance, large covariance indicates strong correla-
tions, while small or zero covariance values indicate little to no
linear relationship.

3. Eigendecomposition: Perform eigendecomposition of the covari-
ance matrix to obtain the eigenvectors (principal components)
and eigenvalues.

4. Dimensionality Reduction: Select the top eigenvectors correspond-
ing to the largest eigenvalues to form a projection matrix. Project
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the original data onto the projection matrix to obtain the reduced-
dimensional representation.

2.3.3 Range Saturation and Prediction Combination

At this stage, it is assumed that the models for each joint have gener-
ated trajectory predictions (single or multi-future), and it is possible
to apply the inverse transformation of dimensionality reduction to
return to the 3D representation of rotations.

Range Saturation

Given the absence of explicit constraints on the output ranges of the
prediction models, it is possible for the generated trajectories to con-
tain rotations that exceed the natural limits of human body joints.
While a well-trained model should ideally learn to avoid such out-
of-bounds predictions, it is necessary to apply range saturation to
address this issue and ensure that the predicted rotation values fall
within acceptable boundaries. By imposing saturation, any predicted
rotations beyond the permitted range can be clipped according to the
known constraints.

The conversion from axis-angle representations to Euler angles is
performed to comply with the kinematic rotation constraints of the
human body. A technique similar to the one adopted by OpenSim [13]
is used by Cunico in the Multipose model [12] to saturate any pre-
dicted values exceeding the predefined limits.

These limits are statically defined as ranges of allowed rotations.
The rotation ranges are empirically determined based on the maxi-
mum and minimum rotation values observed in the joint rotations of
the dataset and kinematic model, specifically the SMPL skeleton in
the AMASS dataset [27, 28].

Prediction Combination

Since multiple models are used to generate independent trajectories
for each joint, it is necessary to combine these trajectories to obtain a
comprehensive human body motion.

Each model predicts a number N of future scenarios and assigns
a probability (that quantifies the model belief state) to each trajec-
tory. Considering J joints, with N trajectories per joint, an efficient
approach is to apply a beam search to generate comprehensive trajec-
tories. However, unlike the beam search performed in Multiverse, the
search process advances from joint to joint instead of progressing in
time steps at each iteration.



2.4 modifications to the multipose model 25

2.4 modifications to the multipose model

While the main focus of the thesis is the implementation of semantic
information, other aspects of the Multipose model were changed. The
most relevant changes will be discussed in the following sections.

2.4.1 Preprocessing

Multiple framerate support

An added functionality to the model preprocessing is the ability to
handle motion capture (mocap) data with different source frame rate.
This is useful because in mocap datasets like AMASS [28], that is
a group of mocap from various datasets, the frequency of the data
samples may be different.

Downsampling

Moreover, the target frame rate (the one which the model should
work with) was assumed to be an integer multiple of a fixed down-
sampling factor. This meant less flexibility in the possible mocap that
could be used.

Due to the constant frame rate assumption, the downsampling
method was a simple decimation, but has now been updated with
a more robust SLERP (spherical linear interpolation).

2.4.2 Training

Working frame rate increase

The original Multipose model working frequency was set to 10Hz but
has been increased to 25Hz to better capture dynamics in the human
joint trajectories.

This means that by keeping the same temporal time-frame, the in-
put and output sequences have more frames to work with.

This was done because it is generally acceptable to increase the in-
put and output sizes of a sequence-to-sequence model, as long as the
increased computational requirements, such as memory and process-
ing power, are available.

Training statistics visualization

The evaluation on the validation set is not synchronous with the
epochs, so the x-axis unit of measure of the plot in Figure 3a is train-
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ing steps, where the total number of training steps is defined as in
Equation 5.

total_steps = epochs · total_samples

batch_size
(5)

(a) Evaluation during trainig and total
loss for the "pelvis" joint, which is
the global orientation of the body.

(b) Evaluation and total loss for .

Figure 3: Training statistics visualization.

The plots of the loss function and evaluation metric in the training
process provide insights for model analysis. In particular, in Figure 3b
the total loss is shown, since it is a combination of multiple losses, see
Section 2.2.3. The loss function plot indicates model convergence and
overfitting, with a decreasing trend reflecting how well the model is
converging during training. Deviations or increases in the validation
set loss may indicate overfitting, so that we have an indication of
when to stop the training.

2.4.3 Post-processing

The main contributions in the post-processing of the Multiverse model
are the following:

• Due to an error in the trajectory saturation, the allowed ranges
for joint rotations were not applied correctly.

• The whole process of pre-processing, training, inference and
metric evaluation has been streamlined for a more efficient way
of defining experiments with the ability to change hyperparam-
eters and mocap datasets.
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M U LT I P O S E M O D E L

3.1 datasets

The dataset that has been chosen for human body motion data is
AMASS (briefly described in section AMASS). Although Human 3.6
Million (H3.6M) is currently one of the most used dataset in the field
of human motion prediction, the main advantages of AMASS are:

• AMASS size is considerably larger than Human 3.6 M, com-
prised of many independent datasets unified through the SMPL
model. This means that there is more variety in types of actions
and number of mocap hours necessary to train deep learning
algorithms.

• The BABEL dataset [37] that complements AMASS with seman-
tic information is crucial for the task at hand. While BABEL
does not cover the semantic information of all the AMASS mo-
caps, it still represents a clear upgrade to Human 3.6 M.

Although the techniques described in this thesis for the implemen-
tation of semantic information in a human motion prediction model
can be applied generally, the specific techniques were adapted specif-
ically to work with the BABEL dataset.

For this reason, a concise description of the BABEL dataset will be
provided in the following sections.

3.1.1 BABEL dataset

BABEL is a comprehensive dataset developed to facilitate an in-depth
understanding of the semantics of human movement. BABEL focuses
on providing dense action labels for high-quality motion capture (mo-
cap) sequences. This involves categorizing around 43 hours of mocap
sequences from the AMASS dataset with two levels of action abstrac-
tion: sequence labels and frame labels.

Semantic data

To construct BABEL, motion-captured sequences from AMASS were
rendered into videos and shown to human annotators, who assigned
action labels.

Annotations occurred at two resolution levels:

27
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1. Sequence labels: describing the overall action being performed.
This is similar to a summarization of the overall action. For
instance, a sequence of a person playing basketball would be
broadly labeled as "Playing basketball".

2. Frame labels: providing a lower level description of the single
body actions occurring in specific time windows. For example,
within a basketball-playing sequence, frames labels might be la-
beled as "running", "shooting", "jumping", capturing the range
of actions involved in the higher level activity of playing basket-
ball. Frame labels are aligned precisely with their correspond-
ing frames in the sequence, and often overlap to capture simul-
taneous actions.

BABEL’s sequence labels provide a broader view of the sequence,
as one might call "high-level description of the whole sequence" - but
they are not limited to a single action category per sequence, as a
whole sequence could be described as "play sport" and "interact with
object". This is because human actions are often complex and involve
more than just a single activity.

Label Processing and Semantic Categories

Action categories: the human annotators write "raw" action labels
that need to be clustered into 260 distinct action categories, which
occurrence graph is partially shown in Figure 4. For example, raw
action labels for the category "walk" could be: walking, walk forward,
walk straight, walk normally etc.

This step of clustering and standardization of action description is
critical for the machine learning objective. But it should be noted that
the authors of BABEL themselves admitted that due to the long-tailed
distribution of the 260 action categories render the dataset a not trivial
choice to for action-recognition machine learning algorithms training.

Figure 4: BABEL categories log2 of number of occurrences in the dataset
(partial image). [37]



3.1 datasets 29

Action macro-categories: Furthermore, these action categories were
further grouped into eight semantic macro-categories.

The macro-categories are described below [37] and a chart of the
distribution of occurrences in the BABEL dataset is shown in Figure 5:

1. Simple dynamic actions: low level atomic actions such as "walk
and jump".

2. Static actions: when the body pose is mostly still, with actions
such as "lean" and "sit".

3. Object interaction: when the human agent is interacting with an
inanimate object, such as "place something" and "grasp object".

4. Body part interaction: when a body part of the actor is coming in
contact with another part of the actor’s body, such as "touching
face", "scratch".

5. Body part: this groups all the actions specific to a distinct body
part such as "arm movements" and "head movements".

6. Type of movement: it refers mostly to a movement that can be de-
scribed by an adjective such as "circular movement" and "back-
wards movement".

7. Activity: the movement is described by a high-level activity like
"play sport" and "dance".

8. Abstract actions: although there are not many abstract actions
in the dataset, this macro-category groups categories such as
"excite" and "support".

Figure 5: BABEL macro-categories occurrence distribution in the
dataset. [37]
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3.1.2 AMASS subsets

The BABEL dataset supplements the AMASS mocap dataset by pro-
viding semantic context to the movements. However, it is important to
note that the distribution of this semantic information across different
subsets of AMASS is not equal. The number of processed annotations
varies across different subsets, as does the total number of frame and
sequence annotations.

Given that our experiments do not utilize the entirety of AMASS,
selecting the most relevant subset for our problem is crucial. This
choice is influenced by how many mocaps have semantic annotation.
As we aim to provide a high-level semantic description of the scene,
sequence labels are more suitable. Moreover, most datasets contain a
higher number of sequence labels compared to frame labels as can be
seen in the Table 1.

The subset finally selected is BMLrub. This subset not only offers
a considerable volume of mocap data (over 500 minutes), ranking
it among the most populated datasets in AMASS, but it also has a
good semantic coverage compared to other subsets, as shown in Ta-
ble 1. BMLrub, designed with action recognition and other objectives
in mind, includes a diverse range of actions, making it a suitable
choice for our experiment.

Table 1: Semantic information for some AMASS subsets. "anno. %" indicates
the percent of mocaps with sequence or frame labels over the to-
tal in the subset. EKUT, KIT [29]; SSM [28]; BMLmovi [15]; BML-
rub [44]; CMU [7].

Mocaps / Datasets EKUT KIT SSM BMLmovi BMLrub CMU

Total number 349 4232 30 1887 3061 2088

In BABEL 265 3283 24 1378 2736 1702

Sequence anno. % 60.2 59.0 63.3 57.2 67.4 60.3

Frame anno. % 32.4 41.2 26.7 29.9 29.6 47.9

3.2 adapting the semantic map of multipose

To state the problem at hand one more time: the objective is to aug-
ment the predictive capabilities of a neural network model, by adding
semantic information. The model is MultiPose, or Multiverse in its
core, and so we need to consider how the semantics work in these
models.
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3.2.1 Multiverse semantics

Originally, the construction of the semantic map was intended to
allow Multiverse to establish correspondences of objects within the
scene. In that context, the semantic segmentation map represents a
2D scene as captured by a camera.

However, in our particular application, the scene does not contain
spatial information. The "image" in Multipose is essentially blank; the
information is conveyed through the "agent’s" location (as in the ter-
minology from Multiverse).

What was once the "agent" location on screen for Multiverse, is
now joint angle coordinates in the 2D dimensionally reduced space
of Multipose.

Therefore, semantics intended as action category does not corre-
spond directly to any visual component in the scene. With that in
mind, in the following sections (3.2.2), two approaches for action se-
mantic representation compatible with the Multiverse models are de-
scribed.

Semantic segmentation map internal representation:

the semantic segmentation map that the Multiverse preprocessing
pipeline receives as input is a tensor of shape:

shape(SegMapraw) = (T ,SH,SW) (6)

Where T is the number of video frames the semantic segmentation
map is computed for; SH and SW are respectively the height and the
width of the scene in pixels (which is generally a lower resolution
than the actual video dimensions);

This "raw" representation generated by the semantic segmentation
model is then converted into one-hot encoded matrices representing
a binary mask of the features in the image.

shape(SegMapproc) =

= shape(onehot(SegMapraw))) = (T ,SH,SW ,K) (7)

Where K is the number of semantic classes and the datatype of the
elements in the tensor is boolean.

3.2.2 Semantic representation approaches

Bitwise multi-class

Assuming that the class information for each pixel in the scene is in-
ternally represented as an N-bit unsigned integer variable, there can
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N possible semantic action classes that can be represented indepen-
dently. By representing the mocap action semantics as a bit in an N-bit
number, the simultaneous presence of multiple action categories can
be dealt with.

But it is important to note that Multiverse performs a one-hot en-
coding of the semantic classes of the scene, generating a binary mask
(the size of the scene) for each class.

There are two main issues when assuming N (independently acti-
vatable) action categories for describing human motion:

1. The potential number of classes seen by Multiverse is enor-
mous. Considering that for each Multiverse class, a matrix is
created with a size equal to the scene: SH × SW pixels, the to-
tal number of bits required would be SH · SW · K, as shown in
Equation 3.2.1.1. With N = 64, we would have approximately
2N ≃ 18 · 1018 Multiverse semantic classes and approximately
1022 bits of memory usage for a single mocap sub-sequence in
the worst case. Such a memory requirement is not physically
feasible.

Although the number of possible permutations of action classes
would not reach that extreme number from the AMASS dataset
possible combination of action classes, it would still grow rapidly
to an unmanageable number.

2. The presence of multiple action classes simultaneously results
in entirely different semantic classes from the perspective of
Multiverse, owing to the one-hot encoding of the scenes. This
would lead to a long-tailed distribution of semantic classes (where
the most of the classes would appear only once per dataset) and
lead to an ineffective learning by the model.

Fixed single-class

To overcome the excessive number of classes of the previous approach
(Bitwise multi-class), a single semantic class of action will be assigned
to each mocap sequence.

This means that once the action category is defined for the motion
sequence, it is applied uniformly to the semantic segmentation map
of the Multiverse model.

The method of choosing which label should represent an action
sequence is discussed in Section 3.3.

The main point is that, as stated in the introduction 3.2.1, the seman-
tics employed in the Multiverse model work with spatial attributes
and visual objects in a scene. On the other hand, the semantics that
we want to implement describe a more abstract concept of seman-
tics, in the sense that it is not tied to the physical image, nor to the
trajectories of the body joints. For this reason, the action semantics
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will be represented in the semantic segmentation map as a full im-
age with one class. Due to Multiverse performing one-hot encoding
on the semantic classes, the resulting action semantic information is
represented as described hereafter.

Let I denote the original image with dimensions SH × SW , where
each pixel Ii,j takes a value between 1 and K, representing the seman-
tic class of that pixel.

In our scenario, the entire image is a solid color, indicating that if
one pixel has the value k (representing class j), all other pixels in the
image will also have the same value k.

The one-hot encoding process generates K binary matrices for each
frame, each with the same dimensions as the original image. These
matrices will be denoted as Mk for k = 1, 2, . . . ,K so that Mk repre-
sents a binary mask of the semantic segmentation map for the class
k.

Therefore, the one-hot encoding transformation can be defined as
follows:

Mk(i, j) =

⎧⎨⎩1, if Ii,j = k

0, otherwise

Where i = 1, 2, . . . ,SH and j = 1, 2, . . . ,SW . By applying this trans-
formation, we obtain K binary matrices M1,M2, . . . ,MK, where each
matrix Mj represents the j-th action semantic class.

Each matrix is populated with zeros, except for the matrix associ-
ated with the semantic class of the scene.

This is the approach we chose to implement the semantic in the
MultiPose model.

3.3 action labeling approaches

The technique employed to incorporate semantic data into the model
partially depends on the format in which this semantic data is pre-
sented, but can in theory be applied to a wider rage of cases, inde-
pendently of the dataset choice.

In the following sections, three separate approaches will be dis-
cussed, about the representation of semantic data in the context of
human body motion, with the third approach ultimately being the
chosen one (3.3.3).

3.3.1 Raw Sequence Labels

Initially, an attempt was made to mimic the clustering methodology
already implemented by the BABEL dataset, but instead of creating
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new classes names, the classes themselves would be the raw label
words.

This approach involved extracting individual words from raw la-
bels associated with each mocap sequence and then transforming
these words into a one-hot encoded vector encompassing more than
500 classes (raw words) to represent semantics.

To reduce the word count, a random forest model was trained using
both the one-hot encoded semantic vectors and the kinematic infor-
mation of the human motion.

Subsequently, the feature importances of these raw words were ex-
tracted from the model, intending to retain a lower number of fea-
tures, so keeping only the words that ranked as the most valuable
predictors.

3.3.2 Action Categories

Despite its initial promise, the raw word approach encountered sev-
eral issues. For example, similar words such as "walk" and "walk-
ing" were classified differently, adding unnecessary complexity to the
model. To resolve this, the focus turned to using the preprocessed ac-
tion categories of BABEL, which offer a more structured and reliable
grouping of semantic action classes.

However, this approach of using "processed categories" presented
another set of challenges. Given that each mocap sequence was associ-
ated with multiple action categories, it is difficult to assign a primary
category to represent the sequence semantically.

Even though 260 categories was a marked improvement over the
Raw Sequence Labels approach, it was still an excessive number of
categories compared to the one found in the Multiverse semantics
(History Encoder).

3.3.3 Macro-Categories

Since the use of all 260 action categories in BABEL was still an ex-
cessive number of classes to be handled by the Multiverse model, we
considered using a further clustering of action classes already made
available by BABEL [37]. This clustering individuates 8 macrocate-
gories into which to group all the 260 categories, which is a much
more manageable number of semantic classes for our model.

The original Multiverse model utilized a semantic segmentation
map, which comprised 13 semantic classes. This is a number that
more closely aligns with the nine macro-categories derived from the
eight clustered categories from BABEL plus an additional category
representing unknown actions.



3.4 mocap labeling 35

Since the semantic information relative to actor actions is presumed
to be "high-level", we can assume an unlikely scenario to be able to
obtain a detailed frame-by-frame description of the actions. Instead,
it is more plausible to achieve a higher-level description of the ac-
tion being performed by the human agent, especially in an industrial
environment where worker tasks are often scheduled, periodic, and
typically limited in variety.

This led to the final decision to implement this "macro-category"
approach in the final model.

3.4 mocap labeling

Based on the considerations presented in the previous sections, the
two approaches we will follow are summarized below:

1. Semantic data: we will utilize BABEL macrocategories of se-
quence labels, which refer to the high-level categories that de-
scribe the entire sequence.

2. Multiverse implementation: the selected method is the one de-
scribed in Fixed single-class, where a mocap sequence is de-
scribed by a single semantic class.

Now, it is necessary to define how to assign a specific class to each
mocap sequence. This is because each sequence is typically described
by a list of categories, but with the described implementation ap-
proach, it is possible to assign only a single semantic class to each
mocap.

The chosen mapping is based on the dominant macrocategory in
the sequence, which is found based on the sum of "importance" of
each category. So if a sequence is semantically represented by a list of
categories (in italics) like such:

sequence = [walk, play sport, jump]

each category is grouped into its belonging macrocategory (in bold),
and to each category is assigned an importance score:

sequence =

⎡⎢⎢⎣Simple Dynamic Actions :

{
walk = 7

jump = 9

}
Activity :

{
play sport = 10

}
⎤⎥⎥⎦

Then the macrocategory importance is given by the sum of the
categories importances:

sequence =

[
Simple Dynamic Actions = 16

Activity = 10

]
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Yielding a total importance score of 16 for the macrocategory Simple
Dynamic Actions and 10 for the macrocategory Activity. This means
that the resulting semantic class which the sequence will be labeled
with the macrocategory "Simple Dynamic Actions".

To formalize mathematically that example in the context of our
implementation, consider the 260 action categories in BABEL (Label
Processing and Semantic Categories) denoted as c1, c2, c3, . . . , c260.
Assume there exists a function f that maps each category cj to its
corresponding macro-category Ck and a function g that assigns an
importance value vj to each category (see Section 3.4.1);

f : cj ↦→ Ck g : cj ↦→ vj

where j ∈ {1, 2, . . . , 260} is the index of the category in BABEL and
k ∈ {1, 2, . . . , 9} is the index of the macrocategory among the ones
highlighted in Label Processing and Semantic Categories, note that
in the list of BABEL macrocategories only 8 appear, but we consider
9 macrocategories since we added the "unknown" category to handle
motions without semantics.

A mocap sequence S can be semantically represented as a list of
categories:

Scat = {ci, . . . , cn}

Smacro cat = Scat
f−→ {C1, . . . ,Cn} (8)

Simportances = Scat
g−→ {v1, . . . , vn} (9)

where:

• Scat is the list of action categories that represent the semantics
in the sequence S.

• Smacro cat is a list of the macrocategories corresponding to the
categories in the list Scat.

• Simportances is the list of importance score for each category in
the list Scat.

The number of elements in Smacro cat is the same as in Scat, but while
every element in Scat is unique, in Smacro cat the elements may repeat
since the number of macrocategories is lower than the number of
categories.

We now one-hot the macrocategories list Smacro cat, for each macro-
category k, assuming the sequence is described by N categories:

SOH(k) = one-hot(Smacro cat,k) =

{b1, . . . ,bi, . . . ,bN} where bi =

⎧⎨⎩1, if Ci = k

0, otherwise
(10)
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The final step is to compute the elementwise product (⊙) between
Sone-hot MC and the importance scores list Simportances and the elements
of the resulting list to obtain the importance of the macrocategory:

Smacro score(k) =

N∑
i=1

SOH(k)⊙ Simportances (11)

The dominant macrocategory, so the one which will label the whole
sequence, is the macrocategory with the highest importance score:

Cdominant = max(Smacro score) (12)

In conclusion, the labeling of a mocap sequence is done by evalu-
ating the importance of the categories from which it is described and
keeping the macrocategory with the highest importance. Now a fun-
damental problem remains, which is: how do we determine the "im-
portance" of a category? This topic is discussed in the Section 3.4.1.

3.4.1 Category importance

The last step for introducing the action semantics in the model is to
define a way to assign the importance of a category in describing the
semantics of a whole motion sequence.

Two approaches have been considered:

1. Predictive importance: one approach involves training a random
forest model (like the one described in Raw Sequence Labels)
to obtain a feature importance list. By training the random for-
est model on both kinematic and semantic data, with motion
sequence prediction as the target, we assess the predictive per-
formance of each feature, including the semantic class labels.
The resulting feature importance list quantifies the significance
of each class label. Labels that have a greater influence on pre-
diction accuracy receive higher importance scores, while less
influential labels are assigned lower scores.

Although this method appeared to be a reasonable approach,
time limitations prevented its implementation and utilization
in this study.

2. Occurrence frequency: this method involves using the base 2 log-
arithm of the occurrence frequency of categories in the BABEL
dataset (Figure 4). The number of occurrences of action cate-
gories is considered a quantifiable measure for comparison, but
to ensure comparability, the base 2 logarithm is applied to nor-
malize the categories, as recommended by the creators of the
BABEL dataset [37].
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The first method seems to be a reasonable approach, but its usage
in the literature was not documented for human motion prediction,
indicating that it needed to be supported by a more formal study,
which could not be explored because it was not the main focus of
this thesis.

This lead to the second method to be implemented as the final
approach, concluding the description of the algorithm presented in
Section 3.4.



4
M E T R I C S

4.1 metrics used in literature

The following sections provide an overview of commonly utilized
metrics in the field of human motion prediction, along with pertinent
research studies that employed these metrics.

Furthermore, to gain a more in-depth understanding of the strengths
and limitations of the employed metrics, it is beneficial to examine
the different types of angle representation shown in Section Human
Motion.

A significant portion of the existing literature in this field heavily
relies on the H3.6M dataset [20] as well as an Euler angle-based metric
for assessing performance.

In contrast, the newly introduced AMASS [28] dataset presents a
substantial increase in sample size, offering approximately 14 times
more data compared to the H3.6M dataset.

4.1.1 SPL

The primary reference for defining the metrics for our experiments
has been the paper entitled "Structured Prediction Helps 3D Human
Motion Modeling" [1] due to the following factors:

• Focus of the paper and formalization. Of the two main contributions
of the paper, the first centered on defining meaningful measures
of accuracy for pose predictions, for the task of human motion
prediction.

• Comparison with existing metrics. The paper focused on the metric
aspect, going to deep detail both formalizing the metrics math,
comparing and evaluating state-of-the-art methods of quantify-
ing pose prediction accuracy.

• Usage in other works. The metrics proposed by the SPL paper by
Aksan et al. [1] were used in other notable and recent work [2].

• Code availability and readability. One aspect that should not be un-
derestimated is how much the code provided by the authors is
clean and understandable. This means that the work and time
needed to implement their ideas into our project can be opti-
mized, but most importantly, a more readable code is easier to
implement, which leads to the crucial aspect of being less error-
prone.

39
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The principal contributions of the SPL paper by Aksan et al. [1] are:

1. defining a meaningful measure of accuracy for pose predic-
tions, where lower errors correspond to favorable qualitative
outcomes of human motion.

2. proposing a novel structured prediction layer that enhances the
performance of existing models in this domain.

In the SPL paper, a review of the existing metrics and evaluation
methods is presented, a few mentions are in the following list:

• In the work by Fragkiadaki et al. [14], their evaluations are con-
ducted on the H3.6M dataset [20], employing a data representa-
tion based on joint angles represented by the exponential map,
also known as the angle-axis representation. For evaluating the
performance, the joint-wise Euclidean distance on the Euler an-
gles is utilized as the evaluation metric.

• One of the most noteworthy performances achieved thus far
on the H3.6M dataset is reported in the study conducted by
Wang et al. [16] Their approach involves utilizing a sequence-
to-sequence methodology, similar to previous works, but with
the introduction of a geodesic loss (analogous to the joint angle
difference metric 4.2.2) that holds greater significance in terms
of accuracy assessment.

Proposed metrics

The metrics that were considered in the SPL [1] work are a conjunc-
tion of the most relevant and widely used metrics in the field of hu-
man motion prediction, and are listed below.

• Euler angles error: This widely adopted metric involves the
specification of an Euler sequence (e.g. ZXY) and subsequently
calculating the Euclidean distance between the predicted angles
and the corresponding ground truth angles.

• Joint angle difference: Unlike being reliant on a specific angle
parametrization, this metric quantifies the rotational angle re-
quired to align the predicted joint with the target joint. In the
next sections (4.2), this will also be referenced as the "geodesic"
metric.

• Positional error: By performing forward kinematics on the hu-
man kinematic model, this metric compares the positions of key
points with the corresponding ground truth positions using the
Euclidean distance (L2 norm).
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• PCK: Originally introduced in the SPL paper, the Percentage of
Correct Keypoints (PCK) metric computes the proportion of pre-
dicted joints that fall within a predetermined spherical thresh-
old (ρ) around the target joint position.

However, the selection of the threshold ρ often appears some-
how arbitrary; hence it will not be utilized in the context of this
thesis.

4.1.2 History

The positional metric involves comparing the predicted global po-
sitions of body keypoints to the ground truth values. This metric is
important as it captures the cumulative effects of relative errors along
the kinematic model. Unlike the Euler angle error metric, which fo-
cuses on relative joint angle errors, the positional metric provides a
broader perspective on the overall accuracy.

This distinction arises because joints or body keypoints located at
the edges of the kinematic tree have a relatively smaller impact on the
global position compared to the main joints in the body. The errors
in these main joints can significantly affect the global positions of the
keypoints connected to them, resulting in a magnified effect on the
overall prediction accuracy.

The paper "History Repeats Itself: Human Motion Prediction via
Motion Attention" [30] presented one of the first models that could
beat the Zero Velocity baseline model (more on the zero-velocity in
the Section 4.3) and it specialized on the prediction of positions.

As a result, it introduces the joint position error and also employs
the widely used Euler angles error for evaluating performance. Both
these metrics will be used in our work, with the rigorous definitions
found in the work by Aksan et al. [1]. This is also one of the reasons
that the experimental results obtained by running their algorithms are
used as a cross-reference in our work to validate our implementation
of the zero-velocity model and the metrics implementation.

4.1.3 Spatio-temporal Transformer

The Euler error, joint angle difference and positional metrics were also
employed in a recent research that involved transformer models[2].
Their implementation of the metrics followed the definitions found
in the SPL paper [1].

The paper "A Spatio-temporal Transformer for 3D Human Motion
Prediction" [2] proved to have a similar approach to metrics as the
ones that will be implemented in this thesis.

The evaluation of the model’s performance in this study involves
the utilization of a mean angular error (MAE) on various metrics,
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including the L2 norm of Euler angles, positional metrics, and joint-
angle difference. The MAE is defined as shown in Equation 13:

MAE =
1

N

N∑
i=1

|ŷn − yn| (13)

where ŷn represents the predicted value and yn represents the corre-
sponding ground truth value. The MAE is calculated as the average
absolute difference between the predicted and ground truth values
across N instances. This metric provides a quantitative measure of
the overall accuracy of the model’s predictions.

4.2 metrics description

The metrics implemented in this work have been inspired by the SPL
and Spatio-temporal Transformer papers [1, 2].

4.2.1 Euler angles

The Euler angle error is one of the most commonly utilized metrics in
the field of human motion prediction. Despite its known limitations,
it remains valuable for comparing the performance of our work and
model with existing studies. While the Euler angle metric has cer-
tain weaknesses, it serves as a relevant benchmark for assessing the
accuracy of joint angle predictions.

The Euler angle metric, denoted as Leul(t), is utilized to evaluate
performance at time step t. It is computed as follows:

Leul(t) =
1

|Xtest |

∑
xt∈Xtest

√∑
k

(
α
(k)
t − α̂

(k)
t

)2
(14)

The Euler angle metric evaluates the average Euclidean distance
between the predicted and ground truth Euler angles across all sam-
ples in the test set. While this metric has certain weaknesses, it can be
used with other metrics as a benchmark for assessing the accuracy of
joint angle predictions.

4.2.2 Joint-Angle Difference

To mitigate potential errors associated with the Euler angle metric,
SPL [1] proposed this alternative angle-based metric, which quanti-
fies the angle of rotation required to align the predicted joint with
the target joint. Unlike the Euler angle metric, the geodesic metric is
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independent of the specific parameterization of rotations and exhibits
similarities to the geodesic loss. It is defined in Equation 15

Langle (t) =
1

|Xtest |

∑
xt∈Xtest

1

K

∑
k

log
(
R̃
(k)
t

)
2

(15)

Here, R̃t(k) represents the rotation matrix of joint k at time t. It is
important to note that unlike the Euler angle metric, which operates
on local joint angles, the geodesic metric evaluates the loss on global
joint angles by unwinding the kinematic chain before the computa-
tion of Langle.

In this thesis, we have also introduced the "local" joint angle differ-
ence metric to assess relative angle errors, similar to the Euler angle
error approach. This addition is motivated by the nature of our Mul-
tipose model, which consists of N independent prediction models.

Each model generates predictions for one of the N joints in the
simplified kinematic model of the human body. Thus, this metric pro-
vides an evaluation of how effectively each individual model predicts
the joint angles. The local joint angle difference metric calculates the
average performance across all models, offering insights into the over-
all predictive capabilities of the Multipose model.

4.2.3 Positional

To measure the accuracy of joint (or more precisely, body keypoint)
positions, we employ the positional metric, denoted as Lpos(t).

The positional error metric offers a more comprehensive perspec-
tive on the overall error by considering the influence of errors in the
initial joints of the kinematic tree, such as the spine and shoulders.
These initial joints have a greater impact on determining the final
positions of the subsequent joints compared to joints like the wrists.
Consequently, evaluating the positional error metric allows for a more
holistic assessment of the error, considering the cumulative effect of
errors across multiple joints rather than focusing solely on individual
joint relative errors.

This metric involves performing forward kinematics on the pre-
dicted joint positions p̂t and the ground truth joint positions pt at
time t. This process yields 3D joint positions pt and p̂t, respectively.
The Euclidean distance between each corresponding joint position
pair is then computed.

Lpos (t) =
1

|Xtest |

∑
xt∈Xtest

1

K

∑
k

p(k)
t − p̂

(k)
t


2

(16)
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where |Xtest| represents the total number of test samples, xt denotes
an individual sample at time t, K indicates the total number of joints,
and p

(k)
t and p̂

(k)
t refer to the ground truth and predicted joint posi-

tions, respectively. To ensure consistency, the lengths of the skeleton
bones are normalized, with the right thigh-bone serving as a unit
length reference as suggested in [1].

4.3 baseline model : zero velocity model

To evaluate the prediction quality of our model, metrics are employed;
however, these metrics alone may not provide a comprehensive as-
sessment of the model’s performance. Hence, it is crucial to compare
the model’s metrics with those of a suitable baseline. In our study, we
have chosen the Zero-Velocity model as the baseline for comparison.

It is worth noting that other studies, such as Martinez et al. [32],
have utilized different baseline models, such as the running average.

In numerous cases, the zero velocity model has proven to be chal-
lenging to surpass, particularly concerning Euler joint angle metrics,
as highlighted in the work by Aksan et al. [1]. Thus, comparing our
model’s metrics against the zero velocity model provides valuable in-
sights into the model’s performance and its ability to outperform the
baseline in terms of joint angle predictions.

The Zero-Velocity model: despite its simplicity, it exhibits competi-
tive performance even when compared to some deep learning models.
This model operates on a straightforward principle, making its perfor-
mance against more complex models quite remarkable, highlighting
the significance of comparing our model’s performance against this
baseline.

The Zero-Velocity model can be defined as a zero-order hold of the
most recent observed frame. In practical terms, this means that every
predicted frame will be an exact replica of the joint angles present in
the last observed frame.

4.3.1 Validation of metric and zero-velocity implementations

To validate the accuracy of our implemented metrics and the Zero-
Velocity model, we conducted testing using the results obtained from
the STT paper [2] on the DIP dataset [19].

The Euler angle error, positional error, and global joint angle dif-
ference exhibited results within a 1% margin of the values reported
in the Spatio-temporal Transformer paper [2]. This alignment with
the reputable reference validates the reliability of our metrics and the
effectiveness of the Zero-Velocity.



5
T E S T I N G A N D R E S U LT S

5.1 setup and resources

This thesis made use of two primary computing resources. The first
resource, referred to as the C-square Lab in Table 2, was employed for
the development of the model and metrics. Notably, this computer
was also utilized in the development of the MultiPose model by Mat-
teo Cunico [12].

The Cluster DTG (see Table 2) computer was utilized for computa-
tionally intensive tasks involving dataset training and preprocessing.
This computing resource played a crucial role due to the limitations
of the C-square Lab computer, particularly when handling the pre-
processed data with additional semantic information, which was sig-
nificantly larger.

Moreover, leveraging multiple GPUs on the Cluster DTG computer
enabled parallel training of the models, leading to a substantial re-
duction in training time.

Table 2: Computer specifications.

Computer C-square Lab DTG Cluster

GPU NVIDIA GeForce RTX 2080 Ti 3x NVIDIA Tesla V100 S

GPU mem 11 GB 3x 32 GB

CPU Intel Core i9-9900K Intel Xeon CPU E5-2609 v3

RAM 32 GB 64 GB

Disk 250 GB 30 TB

5.2 hyperparameter optimization

Several model hyperparameters were considered during the exper-
imentation, including semantic scene dimension, decoder, encoder
hidden sizes, learning rate, weight decay, teacher forcing, number
of training epochs, and batch size. Some key aspects are elaborated
upon below:

• Layer dimensions: The hidden layer dimensions of the encoder
and decoder play a crucial role in determining the complexity of
the models. These dimensions significantly impact both training
time and prediction accuracy.
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• Framerate and sequence lengths: The motion capture data has been
downsampled to a fixed framerate of 25Hz, with an observation
window of 0.8s and a desired predicted sequence length of 1.2s,
so the model receives 20 frames as input and is trained with
30 frames as output, but could theoretically produce longer se-
quences thanks to the recursive nature of the decoders.

Number of training epochs

About the number of epochs and the occurrence of overfitting in our
models, an observation is that each joint model exhibited a slightly
different optimal point. Specifically, we noticed that some joint mod-
els tended to overfit early on (as in number of training epochs), as
demonstrated in Figure 6a, which represents the training of the model
dedicated to the global orientation joint of the body.

Conversely, Figure 6b illustrates that joints such as the spine fol-
low a more meaningful (less randomic) movement, can lead to better
training

The reason behind this phenomenon lies on the fact that some
joints, like the global orientation of the body, can assume almost any
value (along the vertical axis of rotation), making it challenging for
the model to make accurate predictions and to train effectively.

(a) Evaluation on validation set dur-
ing training (SMPL joint index 0,
see Figure 2).

(b) Loss function trend during train-
ing epochs for one of the spine
joints (SMPL joint index 6, see Fig-
ure 2).

Figure 6: Loss and evaluation plots to verify overfitting of the models.

5.3 models comparison : with and without semantics

All models in this study have been trained on the BMLrub dataset [44].
To ensure consistent evaluation, the dataset’s mocap recordings were
randomly divided into three distinct groups: 85% of the mocap data
was allocated for training purposes, 10% for the validation set, and
the remaining 5% constituted the test subset. The results presented
in this section exclusively pertain to the test subset, which was em-
ployed for reporting the outcomes of our experiments.
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Training and inference times

The trained models used in this study are presented below. It is im-
portant to note that the numerical values in the model’s code-name
(32 and 128) represent the hidden sizes of the encoders and decoders.

• Small model (32 kin): This model was trained to establish a base-
line for assessing the capabilities of the system under capacity
limitations (low number of parameters as compared to the orig-
inal Multiverse model [24]). This model was created because
the training initially took place on the C-square Lab computer,
which has inherent constraints compared to the Cluster DTG
(refer to Table 2). The model exclusively utilizes kinematic in-
formation and does not incorporate semantic data.

• Small semantic model (32 kin+sem): trained to serve as a direct
comparison to the "32 kin" model. However, in this case, seman-
tic information was integrated into the training (and inference)
process.

• Big model (128 kin): This model was given a significantly larger
number of parameters and focuses exclusively on kinematic in-
formation.

• Big semantic model (128 kin+sem): this serves as a comparison to
the "128 kin" model, but with the inclusion of semantic infor-
mation. It represents the final model and is expected to yield
superior predictive performance when provided with semantic
context as inputs.

Table 3 shows the training times for the different models.
The dataset preprocessing with semantics requires approximately

six times more time compared to the non-semantic one. Specifically,
for the training dataset alone (BMLrub [44]), the models without
semantic information require around 10 minutes for preprocessing,
while the inclusion of semantic information extends the preprocess-
ing time to approximately one hour.

Table 3: Training times of the models. * : indicates that the model has been
trained on the C-square Lab computer, the others were trained on
the Cluster DTG, see table 2

single model

[minutes]

total

[hours]

32 kin* 47 15,0

32 kin+sem 16 5,2

128 kin 34 10,7

128 kin+sem 38 12,0
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Inference Times: Utilizing the available hardware, the small (32)
and big (128) models require approximately 2.2s and 3s, respectively,
to generate predictions for the desired 1.2s sequence. It is important
to note that these inference times come from models that are not op-
timized for real-time performance. However, with further optimiza-
tions and dedicated hardware, these models hold potential for effec-
tive real-time motion prediction applications. For instance, instead of
having independent models for each joint, a single model could work
faster because it would have to load less data which is in common
with all the joints (such as the semantic data).

5.3.1 Metrics

This section presents the comprehensive results obtained using the
proposed metrics, including Euler angle error (Table 4), global and
local joint angle difference (Tables 6 and 5), and positional error (Ta-
ble 7). The metrics are computed in 200ms time increments and stop
at 1s of prediction time.

The presented metrics were obtained from the inference of 279 mo-
cap sequences extracted from the selected subset of AMASS dataset
[44]. It is important to note that, to better represent realistic scenar-
ios, not all mocap sequences possess semantic information pertaining
to the corresponding actions they represent. As indicated in Table 1,
approximately 60% of the mocap sequences in the dataset include se-
mantic information. This reflects the inherent nature of real-world sce-
narios, where the actions performed by human agents may not align
with the predefined semantic classes (macrocategories) and could be
undefined.

Cell Coloring: The cells within the tables have been color-coded ac-
cording to specific columns. A darker shade of red indicates a higher
error, while a darker shade of green signifies a lower error, indicating
a more accurate prediction. Cells that are white or lightly colored fall
within the middle range of error for the respective column.

Table 4: Cumulative and windowed average Euler angle error comparison.
Lower is better.

Cumulative Avg window (3 frames)

Time [ms]: 200 400 600 800 1000 200 400 600 800 1000

Zero-Vel 4.14 10.67 18.05 25.24 31.90 0.94 1.37 1.49 1.42 1.33

32 kin 4.83 10.15 15.99 22.16 28.90 0.93 1.09 1.19 1.24 1.38

32 kin+sem 5.31 10.98 17.12 23.53 30.36 1.01 1.15 1.25 1.28 1.40

128 kin 4.64 10.02 15.91 22.19 28.86 0.90 1.10 1.20 1.26 1.37

128 kin+sem 4.44 9.60 15.33 21.49 28.06 0.86 1.06 1.17 1.24 1.35

The findings indicate that the model with the highest capacity,
along with the inclusion of semantic information (128 kin+sem), emerges
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Table 5: Cumulative and windowed average joint angle difference on local
(relative) joint angles. Lower is better.

Cumulative Avg window (3 frames)

Time [ms]: 200 400 600 800 1000 200 400 600 800 1000

Zero-Vel 0.75 1.94 3.31 4.65 5.89 0.17 0.25 0.28 0.26 0.25

32 kin 0.94 1.96 3.08 4.26 5.54 0.18 0.21 0.23 0.24 0.26

32 kin+sem 1.05 2.13 3.32 4.56 5.87 0.20 0.22 0.24 0.25 0.27

128 kin 0.90 1.90 3.01 4.20 5.46 0.17 0.21 0.23 0.24 0.26

128 kin+sem 0.87 1.83 2.92 4.09 5.33 0.17 0.20 0.22 0.24 0.25

Table 6: Cumulative and windowed average joint angle difference on global
(absolute) joint angles. Lower is better.

Cumulative Avg window (3 frames)

Time [ms]: 200 400 600 800 1000 200 400 600 800 1000

Zero-Vel 1.08 2.87 4.99 6.94 8.67 0.25 0.38 0.43 0.38 0.34

32 kin 1.34 2.79 4.38 6.02 7.76 0.26 0.30 0.32 0.33 0.36

32 kin+sem 1.57 3.21 4.99 6.77 8.60 0.30 0.33 0.36 0.35 0.37

128 kin 1.27 2.69 4.28 5.91 7.64 0.24 0.29 0.32 0.33 0.35

128 kin+sem 1.27 2.69 4.25 5.86 7.56 0.24 0.29 0.32 0.32 0.35

Table 7: Cumulative and windowed average positional error comparison.
Lower is better.

Cumulative Avg window (3 frames)

Time [ms]: 200 400 600 800 1000 200 400 600 800 1000

Zero-Vel 0.43 1.16 2.02 2.86 3.66 0.10 0.15 0.18 0.16 0.16

32 kin 0.49 1.07 1.73 2.45 3.25 0.10 0.12 0.13 0.14 0.16

32 kin+sem 0.58 1.22 1.95 2.72 3.54 0.11 0.13 0.15 0.15 0.17

128 kin 0.47 1.03 1.69 2.40 3.18 0.09 0.12 0.13 0.14 0.16

128 kin+sem 0.46 1.00 1.64 2.33 3.09 0.09 0.11 0.13 0.14 0.16
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as the top-performing model, surpassing all others across nearly all
metrics.

Conversely, the 32 kin+sem model consistently demonstrates poorer
performance, occasionally on par with or even worse than the zero-
velocity model. On the other hand, the 32 kin model falls in between
the best and worst models, exhibiting moderate performance relative
to the others.

A noteworthy comparison to is between the "global" and "local"
metrics. Here, the term "global" refers to absolute metrics such as
positional error and global joint angle difference, while the "local"
metrics pertain to the Euler angle error and the local joint angle dif-
ference metric, which are computed on the relative joint angles.

In terms of the global metrics, it appears that the larger models gen-
erally exhibit an advantage, while this discrepancy is less pronounced
in the local metrics. This observation can be attributed to the nature
of the MultiPose model, which consists of multiple independent mod-
els. Each individual model predicts a joint angle without considering
the context of the other joints.

It appears that the smaller models perform reasonably well in the
relative metrics, but face challenges in the global metrics, where the
MultiPose model inherently encounters greater difficulty due to the
independent nature of the individual joint models.

First prediction frames

The resulting metrics tables, provide insightful observations when
comparing cumulative and average window errors. For the first pre-
dicted frames (at time 200ms), the zero-velocity model demonstrates
relatively better performance in terms of cumulative metric compared
to other models. However, upon examining the windowed average,
which considers the three preceding frames, the zero-velocity model
is no longer among the top performers.

This pattern is not unique to our motion prediction models; it is
commonly observed in various models. The initial instant of predic-
tion often suffers from the inherent discontinuity between the ob-
served pose and the predicted pose. Consequently, it is natural that
the zero-velocity model, which remains stationary, does not exhibit
significant errors during the initial divergence of movements from
the last observed pose.

Curse of Dimensionality

Across all metrics, the performance of the "small" model with seman-
tics (32 kin+sem) consistently exhibits lower performance. This sug-
gests that the introduction of semantic information may pose chal-
lenges for a model with a limited number of parameters. Notably, the
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model with equivalent capacity but without semantic information (32

kin) demonstrates comparatively better performance.
The phenomenon known as the "curse of dimensionality" becomes

apparent when the addition of semantic information overwhelms a
model with limited parameter capacity. The increased dimensionality
introduced by semantic information may hinder the model’s ability
to effectively learn and generalize.

5.4 multifuture predictions

The MultiPose model is designed to generate multi-future predic-
tions by leveraging the classifier (2.2.2.2) and employing diverse beam
search (Diverse beam search). While individual joint predictions, pro-
duced by separate models for each kinematic model joint, exhibit
some diversity due to the application of diverse beam search, the
final predictions do not.

Note that the final "body" prediction is obtained through a beam
search, exploring the single joint predicted trajectories and generating
the full-body pose.

Upon evaluating the models, it became apparent that the gener-
ated future trajectories exhibit minimal deviations from one another,
indicating a lack of qualitative differences between them.

Increasing the search diversity strength parameter (Diversity Strength)
does enhance the diversity of individual joint trajectories (although
at the expense of decreased prediction accuracy). However, the final
body predictions, still exhibit considerable similarity to one another.
This observation may suggest the suboptimal nature of the dataset
employed for training the models may contribute to this behavior in
the multifuture prediction task.

Understanding whether the dataset allows for sequences of move-
ments that share an initial portion but diverge into different move-
ments is not a trivial task. To address our specific needs, it would
be beneficial to have instances with identical initial contexts but dif-
ferent outcomes, which would be highly valuable for robotics. Upon
examining the utilized dataset [28], it makes sense that there is a lim-
ited multifuture diversity, since it is principally employed for action
recognition tasks or single future predictions.





C O N C L U S I O N S

This study showed how semantics was integrated into the MultiPose
model, which is a model for predicting human motion. Additionally,
it provided a comprehensive review of the relevant literature on the
methodological aspects of both existing motion prediction models
and metrics to evaluate those models.

The primary objective of enhancing the predictive capabilities of
the MultiPose model was achieved by incorporating semantics into
the model’s framework. This involved utilizing the BABEL dataset,
which provided semantic labels for human motion sequences, in con-
junction with the kinetic information provided by the AMASS dataset.

Through detailed evaluation, it was found that the integration of
semantic information led to improvements in the prediction perfor-
mance. Specifically, the more extensive model exhibited significant
improvements across the most used metrics, surpassing the perfor-
mance of the models without semantic context.

The MultiPose model, designed with the highest number of pa-
rameters (controlled in major part by the sizes of the encoder and
decoders hidden states), was tested alongside a model with the same
parameter capacity but trained with only kinematic data. We also
provide the metrics of the zero-velocity model as a common refer-
ence baseline, which has been validated with other works to ensure
the validity of our results.

Despite the historical difficulty of outperforming the zero-velocity
baseline even for deep learning models (with the most common met-
rics such as Euler error), the experiments revealed that the model
with semantic information achieved lower average positional errors
than the zero-velocity baseline within the first 800ms of prediction.
Furthermore, at 1s of prediction, the error was on par with the base-
line. This indicates that the model does not diverge worse than the
baseline, which is a positive indication for the possibility of long-term
prediction.

We observed that the multifuture aspect of the model could be
improved with the employment of a dataset with enhanced motion
diversity, as in a more diverse "branching" of actions given similar
initial contexts.

Another aspect that was found with extensive testing is that mod-
els which employ semantic information should be designed with the
right parameter capacity (or model complexity) to be able to effec-
tively enhance the prediction accuracy rather than models which only
employed kinematic information.
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These conclusions open a path for future work, since we demon-
strated that the addition of semantic information improves predic-
tion performance. This means that many existing architectures, which
only employ kinematic motion information, could be improved by ex-
ploring the semantic aspect.

While this thesis focused on the semantics related to the action cat-
egorization, other types of semantics can improve the predictions, as
shown in other works which employed attention mechanisms to iden-
tify semantic correlations between body parts. Other types of seman-
tics can derive from the environmental data, such as object handling,
physical obstacles or the presence of multiple actors in the scene.

Ultimately, the goal of these research directions is to further im-
prove human-robot collaboration, by enhancing safety and efficiency
in industrial settings and this thesis proved to be a step in the right di-
rection for enhancing the performance of existing motion prediction
models.
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