1,001 research outputs found

    Learning Fair Naive Bayes Classifiers by Discovering and Eliminating Discrimination Patterns

    Full text link
    As machine learning is increasingly used to make real-world decisions, recent research efforts aim to define and ensure fairness in algorithmic decision making. Existing methods often assume a fixed set of observable features to define individuals, but lack a discussion of certain features not being observed at test time. In this paper, we study fairness of naive Bayes classifiers, which allow partial observations. In particular, we introduce the notion of a discrimination pattern, which refers to an individual receiving different classifications depending on whether some sensitive attributes were observed. Then a model is considered fair if it has no such pattern. We propose an algorithm to discover and mine for discrimination patterns in a naive Bayes classifier, and show how to learn maximum likelihood parameters subject to these fairness constraints. Our approach iteratively discovers and eliminates discrimination patterns until a fair model is learned. An empirical evaluation on three real-world datasets demonstrates that we can remove exponentially many discrimination patterns by only adding a small fraction of them as constraints

    Is it ethical to avoid error analysis?

    Full text link
    Machine learning algorithms tend to create more accurate models with the availability of large datasets. In some cases, highly accurate models can hide the presence of bias in the data. There are several studies published that tackle the development of discriminatory-aware machine learning algorithms. We center on the further evaluation of machine learning models by doing error analysis, to understand under what conditions the model is not working as expected. We focus on the ethical implications of avoiding error analysis, from a falsification of results and discrimination perspective. Finally, we show different ways to approach error analysis in non-interpretable machine learning algorithms such as deep learning.Comment: Presented as a poster at the 2017 Workshop on Fairness, Accountability, and Transparency in Machine Learning (FAT/ML 2017

    Quantifying and Reducing Stereotypes in Word Embeddings

    Full text link
    Machine learning algorithms are optimized to model statistical properties of the training data. If the input data reflects stereotypes and biases of the broader society, then the output of the learning algorithm also captures these stereotypes. In this paper, we initiate the study of gender stereotypes in {\em word embedding}, a popular framework to represent text data. As their use becomes increasingly common, applications can inadvertently amplify unwanted stereotypes. We show across multiple datasets that the embeddings contain significant gender stereotypes, especially with regard to professions. We created a novel gender analogy task and combined it with crowdsourcing to systematically quantify the gender bias in a given embedding. We developed an efficient algorithm that reduces gender stereotype using just a handful of training examples while preserving the useful geometric properties of the embedding. We evaluated our algorithm on several metrics. While we focus on male/female stereotypes, our framework may be applicable to other types of embedding biases.Comment: presented at 2016 ICML Workshop on #Data4Good: Machine Learning in Social Good Applications, New York, N
    • …
    corecore