378 research outputs found

    Smart Relay Selection Scheme Based on Fuzzy Logic with Optimal Power Allocation and Adaptive Data Rate Assignment

    Get PDF
    In this paper fuzzy logic-based algorithm with improved process of relay selection is presented which not only allocate optimal power for transmission but also help in choosing adaptive data rate. This algorithm utilizes channel gain, cooperative gain and signal to noise ratio with two cases considered in this paper: In case-I nodes do not have their geographical location information while in case-II nodes are having their geographical location information. From Monte Carlo simulations, it can be observed that both cases improve the selection process along with data rate assignment and power allocation, but case-II is the most reliable with almost zero probability of error at the cost of computational complexity which is 10 times more than case-I

    Relay Selection Considering Successive Packets Transmission in Cooperative Communication Networks

    Get PDF
    Relay selection has been regarded as an effective method to improve the performance of cooperative communication system. However, frequent operation of relay selection can bring enormous control message overhead and thereby decrease the performance of cooperative communication. To reduce the relay selection frequency, in this paper, we propose a relay selection scheme to choose the best relay with considering successive packets transmission. In this scheme, according to the length of data packet, data transmission rate and the estimated channel state information (CSI), the best relay is selected to maximize the number of successive packets transmission under the condition that the given symbol-error-rate (SER) is kept. Finally, numerical results show that the proposed relay selection scheme can support the operation of successive packets transmission in cooperative wireless networks and that the maximum number of successive packets transmission is affected by the different network parameters, i.e., data transmission rate, packet length and Doppler frequency at one relay node

    Cooperative wireless networks

    No full text
    In the last few years, there have been a lot of interests in wireless ad-hoc networks as they have remarkable commercial and military applications. Such wireless networks have the benefit of avoiding a wired infrastructure. However, signal fading is a severe problem for wireless communications particularly for the multi-hop transmissions in the ad-hoc networks. Cooperative communication has been proposed as an effective way to improve the quality of wireless links. The key idea is to have multiple wireless devices at different locations cooperatively share their antenna resources and aid each other’s transmission. In this thesis, we develop effective algorithms for cooperative wireless ad-hoc networks, and the performance of cooperative communication is measured based on various criteria, such as cooperative region, power ratio and end-to-end performance. For example, the proposed interference subtraction and supplementary cooperation algorithms can significantly improve network throughput of a multi-hop routing. Comprehensive simulations are carried out for all the proposed algorithms and performance analysis, providing quantitative evidence and comparison over other schemes. In our view, the new cooperative communication algorithms proposed in this research enable wireless ad-hoc networks to improve radio unreliability and meet future application requirements of high-speed and high-quality services with high energy efficiency. The acquired new insights on the network performance of the proposed algorithms can also provide precise guidelines for efficient designs of practical and reliable communications systems. Hence these results will potentially have a broad impact across a range of related areas, including wireless communications, network protocols, radio transceiver design and information theory

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF
    corecore