2,511 research outputs found

    Towards a Simple Relationship to Estimate the Capacity of Static and Mobile Wireless Networks

    Full text link
    Extensive research has been done on studying the capacity of wireless multi-hop networks. These efforts have led to many sophisticated and customized analytical studies on the capacity of particular networks. While most of the analyses are intellectually challenging, they lack universal properties that can be extended to study the capacity of a different network. In this paper, we sift through various capacity-impacting parameters and present a simple relationship that can be used to estimate the capacity of both static and mobile networks. Specifically, we show that the network capacity is determined by the average number of simultaneous transmissions, the link capacity and the average number of transmissions required to deliver a packet to its destination. Our result is valid for both finite networks and asymptotically infinite networks. We then use this result to explain and better understand the insights of some existing results on the capacity of static networks, mobile networks and hybrid networks and the multicast capacity. The capacity analysis using the aforementioned relationship often becomes simpler. The relationship can be used as a powerful tool to estimate the capacity of different networks. Our work makes important contributions towards developing a generic methodology for network capacity analysis that is applicable to a variety of different scenarios.Comment: accepted to appear in IEEE Transactions on Wireless Communication

    Upper Bounds to the Performance of Cooperative Traffic Relaying in Wireless Linear Networks

    Get PDF
    Wireless networks with linear topology, where nodes generate their own traffic and relay other nodes' traffic, have attracted increasing attention. Indeed, they well represent sensor networks monitoring paths or streets, as well as multihop networks for videosurveillance of roads or vehicular traffic. We study the performance limits of such network systems when (i) the nodes' transmissions can reach receivers farther than one-hop distance from the sender, (ii) the transmitters cooperate in the data delivery, and (iii) interference due to concurrent transmissions is taken into account. By adopting an information-theoretic approach, we derive analytical bounds to the achievable data rate in both the cases where the nodes have full-duplex and half-duplex radios. The expressions we provide are mathematically tractable and allow the analysis of multihop networks with a large number of nodes. Our analysis highlights that increasing the number of coop- erating transmitters beyond two leads to a very limited gain in the achievable data rate. Also, for half-duplex radios, it indicates the existence of dominant network states, which have a major influence on the bound. It follows that efficient, yet simple, communication strategies can be designed by considering at most two cooperating transmitters and by letting half-duplex nodes operate according to the aforementioned dominant state

    Coalitional Game Theoretic Approach for Cooperative Transmission in Vehicular Networks

    Full text link
    Cooperative transmission in vehicular networks is studied by using coalitional game and pricing in this paper. There are several vehicles and roadside units (RSUs) in the networks. Each vehicle has a desire to transmit with a certain probability, which represents its data burtiness. The RSUs can enhance the vehicles' transmissions by cooperatively relaying the vehicles' data. We consider two kinds of cooperations: cooperation among the vehicles and cooperation between the vehicle and RSU. First, vehicles cooperate to avoid interfering transmissions by scheduling the transmissions of the vehicles in each coalition. Second, a RSU can join some coalition to cooperate the transmissions of the vehicles in that coalition. Moreover, due to the mobility of the vehicles, we introduce the notion of encounter between the vehicle and RSU to indicate the availability of the relay in space. To stimulate the RSU's cooperative relaying for the vehicles, the pricing mechanism is applied. A non-transferable utility (NTU) game is developed to analyze the behaviors of the vehicles and RSUs. The stability of the formulated game is studied. Finally, we present and discuss the numerical results for the 2-vehicle and 2-RSU scenario, and the numerical results verify the theoretical analysis.Comment: accepted by IEEE ICC'1

    Libra, a Multi-hop Radio Network Bandwidth Market

    Get PDF
    Libra is a two-level market which assigns fractional shares of time to the transmitting nodes in local regions of a multi-hop network. In Libra, users are assigned budgets by management and users assign funding to services within their budget limits. The purpose is to prioritize users and also optimize network utilization by preventing source nodes from injecting too much traffic into the network and thereby causing downstream packet loss. All transmitting nodes sell capacity in the region surrounding them, and buy capacity from their neighbors in order to be able to transmit. Streams buy capacity from each of the nodes on their paths, thus streams that cross the same region compete directly for the bandwidth in that region. Prices are adjusted incrementally on both levels
    corecore