1,225 research outputs found

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    Incentive compatible route coordination of crowdsourced resources and its application to GeoPresence-as-a-Service

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen- ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent's exibility is exploited to maximize the coverage of a mo- bility field, with an objective to maximize the revenue collected from sat- isfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1 2 -approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent's truthfulness about its exibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Validating generic metrics of fairness in game-based resource allocation scenarios with crowdsourced annotations

    Get PDF
    Being able to effectively measure the notion of fairness is of vital importance as it can provide insight into the formation and evolution of complex patterns and phenomena, such as social preferences, collaboration, group structures and social conflicts. This paper presents a comparative study for quantitatively modelling the notion of fairness in one-to-many resource allocation scenarios - i.e. one provider agent has to allocate resources to multiple receiver agents. For this purpose, we investigate the efficacy of six metrics and cross-validate them on crowdsourced human ranks of fairness annotated through a computer game implementation of the one-to-many resource allocation scenario. Four of the fairness metrics examined are well-established metrics of data dispersion, namely standard deviation, normalised entropy, the Gini coefficient and the fairness index. The fifth metric, proposed by the authors, is an ad-hoc context-based measure which is based on key aspects of distribution strategies. The sixth metric, finally, is machine learned via ranking support vector machines (SVMs) on the crowdsourced human perceptions of fairness. Results suggest that all ad-hoc designed metrics correlate well with the human notion of fairness, and the context-based metrics we propose appear to have a predictability advantage over the other ad-hoc metrics. On the other hand, the normalised entropy and fairness index metrics appear to be the most expressive and generic for measuring fairness for the scenario adopted in this study and beyond. The SVM model can automatically model fairness more accurately than any ad-hoc metric examined (with an accuracy of 81.86%) but it is limited by its expressivity and generalisability.Being able to effectively measure the notion of fairness is of vital importance as it can provide insight into the formation and evolution of complex patterns and phenomena, such as social preferences, collaboration, group structures and social conflicts. This paper presents a comparative study for quantitatively modelling the notion of fairness in one-to-many resource allocation scenarios - i.e. one provider agent has to allocate resources to multiple receiver agents. For this purpose, we investigate the efficacy of six metrics and cross-validate them on crowdsourced human ranks of fairness annotated through a computer game implementation of the one-to-many resource allocation scenario. Four of the fairness metrics examined are well-established metrics of data dispersion, namely standard deviation, normalised entropy, the Gini coefficient and the fairness index. The fifth metric, proposed by the authors, is an ad-hoc context-based measure which is based on key aspects of distribution strategies. The sixth metric, finally, is machine learned via ranking support vector machines (SVMs) on the crowdsourced human perceptions of fairness. Results suggest that all ad-hoc designed metrics correlate well with the human notion of fairness, and the context-based metrics we propose appear to have a predictability advantage over the other ad-hoc metrics. On the other hand, the normalised entropy and fairness index metrics appear to be the most expressive and generic for measuring fairness for the scenario adopted in this study and beyond. The SVM model can automatically model fairness more accurately than any ad-hoc metric examined (with an accuracy of 81.86%) but it is limited by its expressivity and generalisability.peer-reviewe

    Crowdsourcing Without a Crowd: Reliable Online Species Identification Using Bayesian Models to Minimize Crowd Size

    Get PDF
    We present an incremental Bayesian model that resolves key issues of crowd size and data quality for consensus labeling. We evaluate our method using data collected from a real-world citizen science program, BeeWatch, which invites members of the public in the United Kingdom to classify (label) photographs of bumblebees as one of 22 possible species. The biological recording domain poses two key and hitherto unaddressed challenges for consensus models of crowdsourcing: (1) the large number of potential species makes classification difficult, and (2) this is compounded by limited crowd availability, stemming from both the inherent difficulty of the task and the lack of relevant skills among the general public. We demonstrate that consensus labels can be reliably found in such circumstances with very small crowd sizes of around three to five users (i.e., through group sourcing). Our incremental Bayesian model, which minimizes crowd size by re-evaluating the quality of the consensus label following each species identification solicited from the crowd, is competitive with a Bayesian approach that uses a larger but fixed crowd size and outperforms majority voting. These results have important ecological applicability: biological recording programs such as BeeWatch can sustain themselves when resources such as taxonomic experts to confirm identifications by photo submitters are scarce (as is typically the case), and feedback can be provided to submitters in a timely fashion. More generally, our model provides benefits to any crowdsourced consensus labeling task where there is a cost (financial or otherwise) associated with soliciting a label
    • …
    corecore