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We present an incremental Bayesian model that resolves key issues of crowd size and data quality for
consensus labeling. We evaluate our method using data collected from a real-world citizen science program,
BEEWATCH, which invites members of the public in the United Kingdom to classify (label) photographs
of bumblebees as one of 22 possible species. The biological recording domain poses two key and hitherto
unaddressed challenges for consensus models of crowdsourcing: (1) the large number of potential species
makes classification difficult, and (2) this is compounded by limited crowd availability, stemming from both
the inherent difficulty of the task and the lack of relevant skills among the general public. We demonstrate
that consensus labels can be reliably found in such circumstances with very small crowd sizes of around
three to five users (i.e., through group sourcing). Our incremental Bayesian model, which minimizes crowd
size by re-evaluating the quality of the consensus label following each species identification solicited from
the crowd, is competitive with a Bayesian approach that uses a larger but fixed crowd size and outperforms
majority voting. These results have important ecological applicability: biological recording programs such as
BEEWATCH can sustain themselves when resources such as taxonomic experts to confirm identifications by
photo submitters are scarce (as is typically the case), and feedback can be provided to submitters in a timely
fashion. More generally, our model provides benefits to any crowdsourced consensus labeling task where
there is a cost (financial or otherwise) associated with soliciting a label.
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1. INTRODUCTION

The term crowdsourcing is often used in citizen science to refer to models of data
collection or annotation that involve the general public so that initiatives can be
scaled up beyond what a small number of experts could achieve among themselves.
In the biological recording domain, key success stories tend to come from ornithology,
a scene that can rely on a large number of observers with high skills and strong self-
motivation [Greenwood 2007]. For example, Cornell University’s eBird has become a
huge volunteer-based biological data gathering program with bird records now being
submitted from all over North America and beyond [Hochachka et al. 2012]. Given the
importance of data reliability, various data validation routines were developed for this
large program, including those where an expert could request additional information
about sightings interactively to confirm unusual records [Bonter and Cooper 2012].

An increasingly common method to improve data reliability in crowdsourcing is to
frame the exercise as a consensus task, with the goal to identify a hidden state of
the world by aggregating assessments from multiple participants [Kamar et al. 2012].
Arguably, the most successful example of this is Galaxy Zoo [Lintott et al. 2008], where
amateur astronomy groups worldwide classified galaxies in photos taken by the Hubble
telescope as either spiral or elliptical. Advances in digital photography and widespread
societal adoption thereof have led to a rapidly growing interest in using the consensus
model for biological recording, where volunteer recorders (or even camera traps) upload
photographs taken of specimens to have these subsequently identified by a crowd of
other volunteers. For example, the Snapshot Serengeti (www.snapshotserengeti.org)
project invites lay people to identify large mammals from photographs taken with
camera traps from across this biodiversity hotspot.

Applications of crowdsourcing in consensus tasks typically assume (1) the availability
of a large crowd and (2) a relatively straightforward classification task. When these
assumptions hold, simple voting models (such as majority vote) can be used to combine
crowd assessments; that way, large amounts of data can be annotated with limited
involvement of experts. Where these assumptions do not hold, however, there is a need
for validated methods that minimize the required crowd size and estimate certainties
of consensus identifications. This is particularly pertinent when there are time or
cost constraints—for instance, obligations to provide prompt feedback to or financially
compensate those who have submitted data or annotations.

In this article, we make the following methodological and applied contributions:

(1) We present an incremental formulation of a Bayesian consensus model and demon-
strate that it is as accurate as multinomial naive Bayes with a fixed crowd size. Our
method requires much smaller crowd sizes, with clear benefits to any consensus
task where there is a cost (financial or otherwise) to soliciting a crowd label.

(2) We present, and make available for research, a novel dataset collected from a real-
world citizen science program in the biological recording realm, BEEWATCH, which
is challenging in two key respects. First, there is a large set of labels (22 possible
species of bumblebee), and second, the task is relatively difficult for humans, which
leads to a high level of noise (average accuracy of a crowdsourced label is 59%). The
dataset includes expert labels to facilitate supervised machine learning.

(3) We show that reliable consensus identifications can be achieved for this dataset
through employing incremental Bayesian methods, requiring very small crowd
sizes of around three to five users (i.e., group sourcing). This has important eco-
logical applicability: biological recording programs such as BEEWATCH can sustain
themselves without major additional resources (including taxonomic experts to
confirm identifications, who have become increasingly scarce), and feedback can be
provided to submitters in a timely fashion.
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2. RELATED WORK

Empirical aspects of crowdsourcing models have only recently emerged as topics of
investigation. Studies have shown that increasing crowd size results in improved ac-
curacy of the consensus label for both majority voting and Bayesian models [Sheng
et al. 2008; Loni et al. 2014]. Building on these, several other papers have focused on
identifying the subset of a crowd with the best skills for the task at hand [Li et al. 2014;
Karger et al. 2014], often in the context of active learning, a semisupervised machine
learning approach where labels are sought selectively for the examples most likely to
boost machine learning performance [Donmez and Carbonell 2008; Yan et al. 2011;
Ipeirotis et al. 2014]. Others have modeled crowd member retention to predict when
a worker would disengage from his or her assigned tasks [Mao et al. 2013]. For bio-
logical recording, iSpot (www.ispot.org.uk) modeled the reputation of users [Clow and
Makriyannis 2011; Silvertown et al. 2015], taking into account both the activity of a
user (e.g., numbers of records posted and identifications made) and their accuracy (e.g.,
agreement with expert users). Although these studies show that repeated labeling and
soliciting better skilled workers improves accuracy, they do not address the problem of
minimizing crowd size.

Indeed, published work on the aggregation of crowd labels have typically used a pre-
determined crowd size. For instance, the TurKit toolkit [Little et al. 2009] for creating
and managing tasks in Amazon’s Mechanical Turk provides an implementation of a
voting function for binary classification. It recruits workers until the number of votes
for one of the (two) options is greater than a specified threshold (e.g., 8/10). Other mod-
els have been developed for binary classification. For instance, the generative model
of labels, abilities, and difficulties (GLAD) was developed for classifying an image of a
face as smiling or not smiling [Whitehill et al. 2009]. GLAD simultaneously infers the
expertise of each “labeler,” the difficulty of each image, and the most probable label for
each image. However, since it performs joint estimation of consensus labels and model
parameters, it can only be run after the completion of the program, and consequently
(1) it cannot be used to determine crowd size or consensus label likelihood incremen-
tally, and (2) recorders cannot be provided with feedback on their submission until the
end of the program.

In this article, we present a model that addresses the key crowdsourcing constraints
that arise when using consensus models for biological recording. Our approach in-
tegrates new information (a crowdsourced species identification) in an incremental
fashion, thereby allowing a recalculation of the likelihood of the consensus being cor-
rect every time an identification is submitted. This is used to inform the solicitation of
additional identifications and facilitates the delivery of prompt feedback to the photo
submitter where required. We base our work on the naive Bayesian family of methods,
which have been shown to be effective for modeling and correcting bias in consensus
labeling tasks [Dawid and Skene 1979; Snow et al. 2008; Sheshadri and Lease 2013].
The novelty of the work presented here is the iterative application of the Bayesian
method (i.e., the re-evaluation of the quality of the crowd consensus after each solicited
label to minimize crowd size) and the demonstration of the effectiveness of the method
for biological recording, which typically involves a large numbers of labels (22 species
of bumblebees in this work).

3. MATERIALS AND METHODS

3.1. BEEWATCH as a Test Platform

We conducted our research through developing, with the Bumblebee Conservation
Trust (BBCT; www.bumblebeeconservation.org), an online photo submission and iden-
tification platform called BEEWATCH (www.abdn.ac.uk/research/beewatch).
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BEEWATCH allows members of the general public (henceforth, recorders) to submit
photos of bumblebees, along with a location and date of sighting (i.e., the basic infor-
mation required for a biological record). The recorder is then encouraged to identify
the specimen in the photograph as one of the 22 species of bumblebee present in the
United Kingdom1 using an online identification guide. Through the interface shown in
Figure 1(a), the recorder can select visual features of the bumblebee (e.g., color patterns
on thorax and abdomen; shape of head and tail) to narrow down the possible species,
select a species identification, and then submit the record.

To ensure data quality, each submitted photo record is verified by a taxonomic expert
at either the BBCT or the University of Aberdeen. These experts communicate the
correct identification to the recorder by email, along with textual feedback aimed at
helping the recorder improve his or her identification skills. In previous work [Blake
et al. 2012], we described how the provision of this feedback could be automated using
natural language generation technology, through implementing influential ideas on for-
mative feedback in learning. Automating the provision of feedback to recorders allowed
BEEWATCH to scale up as a recording program, from handling 200 photo records in 2011
to more than 4,000 in 2014, and also led to an improvement in the identification skills
of citizen scientists [Blake et al. 2012]. By December 2014, BEEWATCH had collected
more than 10,000 verified photo records of bumblebees from across the United King-
dom; these were shown to display more extensive geographical spread than traditional
biological recording schemes [Van der Wal et al. 2015].

Further scaling up of BEEWATCH is prevented by limited availability of taxonomic
experts to review each photo record. Addressing this bottleneck—common to many bio-
logical recording programs—has been the prime motivation for developing a consensus
model through which a large proportion of photo records can be verified using other
BEEWATCH users. This required BEEWATCH to be extended such that users could also
provide an identification for photo records submitted by others. Figure 1(b) shows the
interface of this “consensus extension,” through which users, after providing an iden-
tification for a photo record, can see how others have identified the same photo record.
The system was set up such that new photo submissions were automatically sent to
the consensus extension, where they were allowed to each accumulate up to 10 crowd-
sourced identifications before being replaced by a new photo submission. Recorders
could only identify their submission as one of the 22 bumblebee species (as these
are the focus of the recording scheme), but both expert identifiers and those users
identifying photo records of others through the consensus module had access to two
additional labels: “not a bumblebee” and “not identifiable,” to categorize the entirety of
submissions.

3.2. The BEEWATCH Consensus Dataset

Through the consensus extension to BEEWATCH, and including the identification pro-
vided by the photo submitter when available, we collected 8,844 independent identi-
fications by 763 users of 1,613 photo submissions between May 5, 2013 and May, 24,
2014. This amounted to an average of 5.48 (8,844/1,613) independent identifications
per photo. To obtain data for this supervised learning study, we only chose photographs
for which an expert identification existed and left photo submissions on the consensus

1There are 25 species of bumblebee in the United Kingdom, but three of these (Bombus lucorum L. sensu
strictu, Bombus cryptarum Fabricius, and Bombus magnus Vogt) cannot be reliably distinguished from each
other based on visual characteristics alone. These form a species complex that, for the purposes of BEEWATCH,
is treated as one species (Bombus lucorum sensu lato, the white-tailed bumblebee). The extinct species
Bombus subterraneus L., the short-haired bumblebee, is also excluded despite an ongoing reintroduction
attempt, because of the extremely low likelihood of recording it.
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Fig. 1. Screenshots from the BEEWATCH biological recording Web interface. (a) Interface for identifying a
specimen in a photograph as one of 22 species of bumblebee, and (b) interface to provide feedback to user
following their identification of a photograph using the consensus module, by tabulating identifications by
other users.

extension until they accumulated 10 independent identifications; however, given that
there were an average of only 5.48 identifications per photo submission, only 594 of
the possible 1,613 managed to accumulate 10 crowd identifications. This data collec-
tion exercise already indicates some of the key challenges for applying crowdsourcing
methods for biological recording:

(1) Crowd availability: Although the pool of users was substantial (763 different in-
dividuals contributed identifications to the study), they on average generated only
5.48 crowdsourced identifications per submitted photo. This highlights the require-
ment to work with as small as possible crowd sizes (i.e., group sourcing).
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(2) Differing user engagement and skills: Of the 763 users, 314 only contributed a
single identification each, 130 users contributed at least 10 identifications, 83 users
contributed at least 20, 40 users contributed at least 50, and 14 contributed at
least 100. Thus, although there were an average of 11.6 identifications (of different
photos) per user, there were large differences in the level of engagement with our
crowdsourcing tool. The accuracy of individual identifications (averaged over all
users and photos) in the dataset was 59.2%. Among users who had identified at
least 10 photos, user accuracy ranged between 18% and 90%.

(3) Differing difficulty by species: Accuracy also varied by species, from 22% for Bombus
jonellus Kirby (heath bumblebee), which is similar in appearance to more common
species such as Bombus hortorum L. (garden bumblebee), to 86% for Bombus hyp-
norum L. (tree bumblebee), a common and distinctive species. Later, Figure 5(a)
shows how the species identifications by BEEWATCH users related to those by our
experts.

The goal of this article is to develop and evaluate an efficient consensus model for
combining independent identifications of the same photo record by different users,
which minimizes crowd size by taking into account characteristics of both users and
species. Although crowdsourcing generally is used to solicit labels from nonexperts
as an inexpensive alternative to recruiting experts, in practice limited amounts of
expert labels are often available to facilitate supervised learning [Tang and Lease
2011; Sheshadri and Lease 2013]. This is also the case for biological recording, and the
dataset described here includes expert labels. Our model, described next, is therefore
fully supervised.

3.3. Incremental Bayesian Models for Evaluating Consensus

The Bayesian framework provides a straightforward means of using new evidence (in
our case, a new identification by a user of a photo submitted by another user) to update
an existing estimate of the likelihood of a hypothesis (also sometimes referred to as
a proposition) being correct; in our case, a hypothesis is a possible species identity
compatible with the collective identifications of the crowd so far.

The Bayesian framework is particularly well suited to a classification task with large
numbers of categories (22 bumblebee species in our case). Intuitively, the likelihood
of multiple users selecting the same species by chance is very low; therefore, when
independent identifications of a specimen in a photo agree, there is a strong likelihood
that this consensus identification is correct. The Bayesian framework gives us a means
to directly estimate the likelihood that a photographed specimen is of a certain identity
(the hypothesis, H) given the independent identifications by users (the evidence, Ei).
We model two components of the evidence: (1) the ease of identification of a species (as
some species are visually more distinctive than others and thus easier to identify) and
(2) the identification skills of a user (as some users are better at the task than others).

We first present a model that only takes into account the ease of identification of a
species (hereafter coined the “species model”) and subsequently extend this by including
the user identification skill level (i.e., “user+species model”) to further improve our
ability to derive an accurate species identification.

Consider Bayes’ rule in odds notation (see Appendix A in the online appendix for a
full explanation of the odds notation and its derivation from the definitions of joint and
conditional probabilities):

O(H|E1, . . . , En) = O(H) × �(H|E1) × · · · × �(H|En), (1)
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Fig. 2. Schematic representation of Figure 5(a), showing the counts used in the estimation of prior odds and
� terms from data. Each cell count(Si, Sj ) is the count of how frequently a photo record identified as species
Si by the expert has been identified as species Sj by BEEWATCH users. The total number of times users have
identified any submission as species Sj is calculated by summing all cells in that column (C j ). The total
number of records in the database for species Si (as identified by the expert) is calculated by totaling all
cells in that row (Ri). Totaling all cells in every row and column gives N, the number of user submitted
identifications in the dataset.

where, �(H|Ei) = P(Ei|H)
P(Ei|¬H)

. (2)

These are the conditional odds O for a hypothesis H, given independent evidence E1
to En. The hypothesis H in this context is a possible species identity. Each evidence Ei
comes from a crowdsourced identification by a user of BEEWATCH. The odds depend on
O(H), the prior odds of the hypothesis H (as not all species are equally abundant, a
priori some are more likely than others before we have seen any user identifications),
and � terms, each of which updates the existing odds for H based on the incoming
evidence Ei, E2, to En. Intuitively, the conditional odds for a hypothesis H increase
when the numerator of the � term in (2), the likelihood of seeing this evidence Ei for
the hypothesis H, is high and the denominator, the likelihood of seeing this evidence
Ei for alternative hypotheses, is low.

We estimate the prior odds and the � terms from a confusion matrix of species identi-
fications of BEEWATCH users versus taxonomic experts. This is schematically presented
in Figure 2, where each cell count(Si, Sj) is the count of how frequently a photo record
identified as species Si by the expert (the hypothesis) has been identified as species
Sj by BEEWATCH users (the evidence). Later, Figure 5(a) shows this confusion matrix
with actual counts generated from the dataset. The expert identification is the correct
hypothesis, for which user identifications provide evidence. The diagonal represents
cases where the user identification matches that of the expert, whereas off-diagonal
cells represent cases where the user identification is providing evidence for a different
species.

Referring again to Figure 2, the prior probability P for each species Si can be esti-
mated as the relative abundance of the species in the records:

P(H = Si) = Ri

N
. (3)

The prior odds O that a submission has species identity Si is by definition the ratio
of the prior probability of the submission having identity Si to not having identity Si:

O(H = Si) = P(H = Si)
1 − P(H = Si)

= Ri

N − Ri
. (4)

With reference to Figure 2, each � term is estimated from the data as follows. The
possibilities where the expert has identified a submission as Si are represented by the
corresponding row total Ri. The conditional probability that an identification by a user
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is Sj is then estimated as the proportion of this row that intersects with column Sj :

P(E = Sj |H = Si) = count(Si, Sj)
Ri

. (5)

Similarly, the possibilities where the real species is not Si are represented by every
row but the ith row (i.e., N − Ri). The conditional probability that an identification by a
user is Sj in this event is then estimated as the proportion of these rows that intersect
with column Sj . Thus,

P(E = Sj |H �= Si) = Cj − count(Si, Sj)
N − Ri

. (6)

Finally, substituting ((5) and (6)) into the definition of a � term (2), we obtain

�(H = Si|E = Sj) = count(Si, Sj)
Ri

× N − Ri

Cj − count(Si, Sj)
. (7)

One such � term is computed for each of the possible hypothesis/evidence pairs.
As each user identifies the photo independently to the others, the odds can be updated

each time new evidence (En+1) comes in just by multiplying the existing odds (calculated
from evidence E1 to En) with the appropriate � term. This follows directly from (1) and
is derived in Appendix A:

O(H = Sj |E1, . . . , En+1 = Si) = O(H = Sj |E1, . . . , En) × �(H = Sj |En+1 = Si). (8)

The model that we have described takes into account differences in the ease of
identification of species by capturing the likelihoods of specific kinds of errors made
by users so that odds for each species can be updated based on any incoming user
identification. However, the model as it stands averages over the behavior of all users
and fails to specifically model characteristics of individual users. We will refer to this
as MODEL 1, the “species model.” Instead of creating a single Figure 2 aggregating data
from all users, we could instead create separate tables of counts from identifications by
individual users. This would allow us to model the specific species identification errors
made by individual users—for instance, take into account both the ease of identification
of species and the abilities of different user. In practice, this requires the computation
of separate �k(H = Si|E = Sj) terms for each user k, by only considering identifications
made by user k. We will refer to this as MODEL 2, the “species+user model.” For MODEL 2,
we compute the prior odds as before (as these are computed from species abundance and
are user independent), but as each identification Sj by a user k comes in, we multiply
the odds for each hypothesis H = Si by the user-specific �k(H = Si|E = Sj), in contrast
to MODEL 1, where we would have used the user-averaged �(H = Si|E = Sj).

3.4. Model Smoothing

The critical issue for statistical models trained on a dataset is generalization: how
accurate will the models’ predictions be on previously unseen data? This is a particular
concern for models with a large number of parameters, as these are difficult to estimate
reliably from limited amounts of data. Consider again (7), which is the calculation of a �
term. The numerator contains the term count(Si, Sj), the number of times a submission
identified by the expert as Si is identified by users (a particular user for MODEL 2) as Sj .
If this is zero, then the lambda term �(H = Si, E = Sj) will be zero. Whenever this is
used in the calculations for a submission to be identified (8), the odds for Si will become
zero (and no matter what later user identifications are made, the odds for Si will remain
at zero). In other words, if a user makes a mistake that has not been encountered in the
dataset used for building the model, the correct identification can never be achieved.
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Similarly, the denominator in (7) contains the term Cj − count(Si, Sj). If a species Si
has only ever been identified by users as Sj in the dataset (most likely, when Si = Sj ,
i.e., a species has never been misidentified by a user, but also if Si �= Sj , if a species
is always misidentified as the same other species), then Cj − count(Si, Sj) = 0 and
hence �(H = Si, E = Sj) becomes infinity, meaning that the consensus identification
Si is now unbeatable. Now, it might be that two species are impossible to confuse,
or that a particular species is impossible to misidentify, or indeed that a particular
species is always misidentified the same way. However, it is more likely that certain
“expert/evidence combinations” have simply not been observed in the dataset and that
both very low and very high � values need to be moderated to assign small likelihoods
to previously unseen events. This process is called smoothing.

We implemented Laplace smoothing, also called add-one smoothing [Simonoff 1995],
by adding a count of 1 in each cell in Figure 2 and the corresponding tables for MODEL 2.
This served to give a small probability to unseen evidence/hypothesis combinations
and moderated the size of the � terms—for example, preventing values of zero or
infinity for �. For MODEL 2, generalization is an even more critical issue. As reported
in Section 3.2, most users submitted fewer than 10 identifications, but even regular
users might only have covered a small subset of species, meaning that the unsmoothed
lambda term �k(H = Si|E = Sj) was zero for most combinations of k (the user), Si and
Sj . Thus, in addition to the smoothing described earlier, we further moderated MODEL 2
by combining it with the smoothed MODEL 1 in the ratio 3 : 1 (i.e., the smoothed values
for MODEL 2 were 1

4�(H = Si|E = Sj) + 3
4�k(H = Si|E = Sj)). We preferred this to the

alternative community-based Bayesian label aggregation model [Venanzi et al. 2014],
which creates confusion matrices for communities of similar users, because we had no
evidence for the presence of such communities within BEEWATCH.

3.5. Model Application

We applied both models by incrementally accepting crowdsourced identifications for a
photo submission and updating the odds for each of the categories (hypotheses) until
either (1) the odds for a category exceeded 9 (a probability of 9/(9 + 1) = 0.90 of the
identification being correct; see Section 5.2 for a discussion of why this is an appropriate
threshold to adopt) or (2) we ran out of user provided identifications, in which case the
model failed to derive a consensus identification.

3.6. Model Evaluation

The utility of the previously described consensus models in the biological recording
arena was evaluated on the basis of three dimensions: (1) the size of the crowd needed
to reach such consensus identifications (i.e., average number of identifications needed
per photograph); (2) the proportion of photographs for which the model succeeded in
producing a consensus identification; and (3) the proportion of consensus identifications
made by the model that were correct, in total and on a by-species basis. We compared
these models to two standard baselines: (1) a commonly used non-Bayesian consensus
model, majority voting (MV), which accepts all crowd identifications for a photo, treats
these as votes, and selects the species that has collected the maximum number of
votes from the crowd, and (2) the standard multinomial naive Bayes (MNB) classifier,
as implemented in the Weka toolkit [Hall et al. 2009], which was found to outperform
the default naive Bayes classifier (based on a multivariate Bernoulli event model) for
this task.

Having set out the evaluation dimensions, we are interested in two different ques-
tions about the Bayesian models that we described. First, how good are the models at
classifying photo submissions as one of the 22 species of bumblebees when it is known
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Table I. Results Table for Classification as One 22 Bumblebee Species in the United Kingdom
Using 10-Fold Cross Validation

No. of Majority Vote Naive Bayes MODEL 1 MODEL 2
Species Records Rec Prec Rec Prec Rec Prec Rec Prec
B. pascuorum (common carder) 106 0.95 0.99 0.99 0.99 0.99 0.97 0.99 0.98
B. pratorum (early) 67 0.78 0.98 0.85 0.95 0.86 0.93 0.90 0.95
B. terrestris (buff-tailed) 58 0.87 0.80 0.77 0.80 0.86 0.75 0.91 0.76
B. hypnorum (tree) 56 0.98 0.96 0.98 0.98 0.96 0.98 0.96 0.98
B. lapidarius (red-tailed) 36 0.92 0.97 0.94 0.92 0.94 0.86 0.97 0.92
B. lucorum (white-tailed) 26 0.75 0.62 0.81 0.58 0.65 0.65 0.65 0.71
B. hortorum (garden) 23 0.78 1.00 0.95 0.91 0.87 0.91 0.83 0.95
B. monticola (bilberry) 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B. vestalis (southern cuckoo) 2 0.50 1.00 0.00 — 0.50 0.50 0.50 1.00
B. jonellus (heath) 2 0.00 — 0.00 — 0.00 — 0.00 —
B. bohemicus (gypsy cuckoo) 2 1.00 0.67 1.00 0.33 0.50 0.33 1.00 0.67
B. rupestris (red-tailed cuckoo) 2 1.00 1.00 0.00 — 0.00 — 0.00 —
B. ruderarius (red-shanked carder) 2 0.50 1.00 0.00 — 0.00 — 0.50 1.00
B. distinguendus (great yellow) 1 0.00 — 0.00 — 0.00 — 0.00 —
B. sylvestris (forest cuckoo) 1 1.00 1.00 0.00 — 0.00 — 0.00 —

Average no. of IDs needed per photo 10.66 10.66 2.58 3.22
Average accuracy over dataset 0.88 0.90 0.88 0.91

Proportion for which consensus was achieved 0.97 0.97 0.98 0.97

Note: For each bumblebee species (column 1, as IDed by the expert), Rec is the recall of that species, defined as the
proportion of records of that species (as IDed by the expert) that are correctly identified by the model, and Prec is
the precision for the species, defined as the proportion of records identified as that species by the model that are
indeed that species (as IDed by the expert).

that such a classification is possible? Second, how good are the models when the dataset
contains photo submissions that are too poor in quality to be identified to species level
or concern species outside the target group (e.g., a hoverfly of solitary bee instead of a
species of bumblebee), as is typically the case in citizen science initiatives? We shall
consider the two cases separately in Sections 4.1 and 4.2.

To evaluate our models, we seek evidence about whether in general if they are
“trained” on one set of data (i.e., model parameters are estimated from this data), then
they will perform well (when “tested”) on other data, which have not been used to
build the models. To address this, we evaluated our models by performing 10-fold cross
validation, with the data repeatedly (i.e., 10×) partitioned into two subsets: a larger
set being used for training (estimating the parameters in the model) and a smaller one
for testing (evaluating the performance of the model). By repeating the partitioning
multiple times and averaging results over the different partitionings, we reduced the
variability of testing on small amounts of data in any single partitioning. To obtain
a testing set in each “fold,” 10% of the photo submissions for which the full set of 10
crowdsourced identifications had accumulated were sampled in such a manner that
each of these submissions appeared in the test set in exactly one fold out of 10. In each
fold, the remaining 90% of the photo records with a full set of crowdsourced identifica-
tion, as well as all photo records with fewer than 10 crowdsourced identifications, were
then used to train the model.

4. RESULTS

4.1. Categorization as One of the 22 Species of Bumblebee

We filtered the dataset described in Section 3.2 to only contain photo submissions that
the expert had positively identified as a bumblebee species and for which the full set of
10 crowdsourced identifications had accumulated. This left 387 records of 15 bumblebee
species (as identified by the expert) from a possible 22.

Table I shows the results for MODEL 1 and MODEL 2, as well as the MV and MNB
baselines. Across all species, MODEL 1 succeeded in reaching consensus identification
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for 98% of photo submissions and MODEL 2 for 97%, comparable to MV (97%). The MV
algorithm failed to make a prediction in cases where no species managed a simple
majority—for instance, when the top two species have the same number of votes.
The Weka implementation of MNB by default makes predictions in all cases. For a fair
comparison of accuracies in the table, we assigned a probability threshold for accepting
an MNB prediction such that consensus was achieved for the same proportion of records
as MODEL 2 (i.e., 97%).

It was striking how efficient the incremental Bayesian models were in reaching a
consensus. On average, MODEL 1 needed only 2.6 identifications, and for MODEL 2 this
was 3.2. Both baselines (MV and MNB) used all identifications available.

Both MODEL 1 and MODEL 2 fared well compared to the nonincremental baselines in
terms of accuracy, despite requiring crowds that were a fraction of the size (measured
by average number of identifications needed per photo record). MODEL 2, which takes
into account differences between both users and species, achieved the highest accuracy
of 0.91, a value in excess of the set threshold for accepting a consensus identification
(an odds of 9, which is equivalent to a probability of 9/(9 + 1) = 0.90). The quality of
the fit is further discussed in Section 5.1.

In the table, recall refers to the detectability of a species, whereas precision expresses
how reliable a record of a certain species is. For example, MODEL 2 recall of B. terrestris
was 0.91 (Table I), meaning that this algorithm managed to detect 91% of the records
identified as that species by an expert (i.e., 9% of B. terrestris records were mislabeled).
MODEL 2 precision for this species was 0.76, meaning that whenever the algorithm
concluded B. terrestris, this was actually correct in 76% of the cases (i.e., 24% of records
identified by the algorithm as B. terrestris were incorrect).

Both of our models also proved robust to the order in which individual identifications
were processed. When the order of processing identifications was randomized 10 times,
the average number of identifications needed per photo for MODEL 1 ranged between
2.58 and 2.76, and the average accuracy between 0.87 and 0.90. For MODEL 2, the
respective ranges were 3.20 to 3.43 and 0.89 to 0.92. The proportion of photos attempted
ranged between 0.98 and 0.99 for MODEL 1 and was consistently 0.97 for MODEL 2.

4.2. Ability of the Models to Filter Out Unusable Records

As discussed earlier, one peculiarity of photo-based citizen science initiatives is that
submitted photos may not contain the target species group, or, if they do, images may
be too poor in quality to be identifiable to the species level. Indeed, in our case, a con-
siderable number of photo submissions (13.6%) did not concern bumblebees (but often
hoverflies, flower flies, and solitary bees), and a further 21.2% of photo submissions
were of insufficient quality for reliable identification of the species of bumblebee, even
by taxonomic experts. Our dataset therefore also contains records labeled with one
of two additional categories, namely “not a bumblebee” and “not identifiable.” If such
records cannot be filtered out before submission to the consensus module, then the
consensus module would need to handle such records as well.

Table II shows the performance of the four models for classifying images as either
one of the 22 focal species or as one of “not a bumblebee” or “not identifiable” using
the dataset of 594 photo submissions containing at least 10 crowd identifications as
described in Section 3.2. MODEL 1 needed an average of only 3.9 identifications to
arrive at a consensus, whereas MODEL 2 required 4.3 identifications. The MV and MNB
baselines again used all identifications available.

MODEL 2, which took into account differences between species and users, achieved
the highest average accuracy of 0.80, although it arrived at consensus for fewer photos
than MV. As before, for a fair comparison of accuracies, we set a probability threshold
for accepting an MNB prediction in a manner that consensus was achieved for the
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Table II. Results Table for Classification as “Not a Bumblebee,” “Not Identifiable,” or One
of the 22 Species Using 10-Fold Cross Validation

No. of Majority Vote Naive Bayes MODEL 1 MODEL 2
Species Records Rec Prec Rec Prec Rec Prec Rec Prec
B. pascuorum (common carder) 106 0.95 0.86 0.98 0.86 0.99 0.83 0.98 0.84
B. pratorum (early) 67 0.78 0.93 0.87 0.89 0.86 0.89 0.89 0.89
B. terrestris (buff-tailed) 58 0.87 0.61 0.76 0.67 0.79 0.58 0.88 0.64
B. hypnorum (tree) 56 0.98 0.90 0.96 0.95 0.96 0.93 0.96 0.93
B. lapidarius (red-tailed) 36 0.92 0.89 0.94 0.85 0.97 0.82 0.97 0.85
B. lucorum (white-tailed) 26 0.75 0.44 0.77 0.48 0.65 0.44 0.69 0.62
B. hortorum (garden) 23 0.78 0.55 0.90 0.54 0.91 0.54 0.86 0.61
B. monticola (bilberry) 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B. jonellus (heath) 2 0.00 — 0.00 — 0.00 — 0.00 —
B. bohemicus (gypsy cuckoo) 2 1.00 0.50 1.00 0.20 1.00 0.50 0.50 1.00
B. vestalis (southern cuckoo) 2 0.50 0.20 0.00 — 0.50 0.20 1.00 0.20
B. rupestris (red-tailed cuckoo) 2 1.00 1.00 0.00 — 0.00 — 0.00 —
B. ruderarius (red-shanked carder) 2 0.50 1.00 0.00 — 0.00 — 0.50 1.00
B. sylvestris (forest cuckoo) 1 1.00 0.50 0.00 — 1.00 1.00 0.00 —
B. distinguendus (great yellow) 1 0.00 — 0.00 — 0.00 — 0.00 —
Not a bumblebee 81 0.85 0.91 0.92 0.88 0.87 0.87 0.89 0.88
Not identifiable 126 0.34 0.67 0.32 0.75 0.26 0.90 0.39 0.83

Average no. of IDs needed per photo 10.57 10.57 3.89 4.31
Average accuracy over dataset 0.76 0.78 0.76 0.80

Proportion for which consensus was achieved 0.97 0.94 0.94 0.94

Note: For each class (column 1, as IDed by the expert), Rec is the recall of that species, defined as the proportion of
records of that species (as IDed by the expert) that are correctly identified by the model, and Prec is the precision for
the species, defined as the proportion of records identified as that species by the model that are indeed that species
(as IDed by the expert).

same proportion of records as MODEL 2 (i.e., 94%). (For a fairer comparison of the
models, we will later discuss the trade-off between accuracy and the proportion for
which consensus was reached, and how dependent performance is on the identification
skills of individual participants.)

In line with this being a more difficult (but realistic) task, all four models presented
lower values for individual species (Table II) than we were seeing previously (Table I),
and as a consequence, the average accuracy for each model was also lower than before.
This indicates, unsurprisingly, that the submission of photo material that is of insuf-
ficient quality considerably hampers crowdsourced identification. The reasons for this
drop in accuracy (for MODEL 2, from 91% for the 22 category case to 80% for the 24
category case) are discussed next.

5. DISCUSSION OF RESULTS

5.1. Quality of Parameter Fitting Within the Models

Underfitting, which results from insufficient data to obtain good estimates for all model
parameters, and overfitting, where the model learns statistical patterns with no va-
lidity (often called noise) from the data as well as valid patterns, are well studied
in statistical modeling. The consequence of both is that performance of the model on
unseen data is lower than it would be on the data used to build the models.

In the first evaluation, which assumed a clean dataset where it is possible to identify
each photo submission as one of the 22 species of bumblebee, we do not see evidence
of over- or underfitting. The accuracy of MODEL 2 is 91% on unseen data, comparable
to the 90% likelihood threshold that we used to accept a record. This suggests that our
model (the Bayesian reasoning together with the smoothing procedures) is estimating
the model parameters (prior odds and lambda terms) accurately.

However, the accuracies that we observe for the second statement of the problem,
where the dataset additionally contains photo submissions that are not identifiable
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even by the experts, are lower than expected (80% for MODEL 2). To explore this further,
Figure 5(b) shows the confusion matrix between expert identifications and those made
by MODEL 2 with an odds threshold of 9. As can be seen, much of the noise in individual
identifications (Figure 5(a)) is eliminated, leaving few cases of misclassification (i.e.,
away from the diagonal) other than those concerning confusion between a bumblebee
species and the “not identifiable” category. Confusions between two species or a species
and “not a bumblebee” occur rarely (5% of records).

As is clear from Figure 5(b), the drop in accuracy of the model is mostly due to
mislabeling one of the 22 species as “not identifiable” or vice versa. Intuitively, users
might misidentify one bumblebee species as another bumblebee species because there
are visual similarities between the species. Such patterns of misclassification when
learned can generalize to new photographs of the species involved. One reason our
parameter estimates involving the “not identifiable” are poor is that the categorization
of a photo as not identifiable has to do with the quality of the photograph, not on the
visual similarity of some prototypical “not identifiable” category to a bumblebee species.
Thus, the patterns learned by the models for misclassifications between a species and
the “not identifiable” category do not generalize well to new data. For these reasons,
we have to accept that for datasets with potentially unidentifiable records, the models
deliver accuracies below those expected from the odds thresholds that we set.

5.2. Quality Assurance

The nature of crowdsourcing is that there is unfortunately no consensus model guaran-
teeing perfect identification. It could be argued that scientific recording cannot tolerate
any errors, but on the other hand, because human error is inevitable in any system,
it is clear that no existing recording program can guarantee this. Indeed, even taxo-
nomic experts do not always agree on the correct classification of a species in a photo
record. We invited two bumblebee experts from the Bumblebee Conservation Trust to
independently identify 47 randomly selected photo records using our interface. Their
accuracies on the task were 85.1% and 87.2% (when evaluated against the official BEE-
WATCH record validated by a taxonomic expert for the program). That the identification
accuracy of even experts in that trial was not 100% illustrates the difficulty of identifi-
cation from photographs alone, with no means of investigating ID features out of shot
or too small to see clearly in the photographs provided. We will discuss the implications
for biological recording later, but first we will discuss the performance of the models
when their parameters are adjusted to achieve differing levels of accuracy.

5.2.1. Increasing the Confidence in Consensus Identification. All four models contain pa-
rameters that can be adjusted to increase or decrease the confidence in the consensus
identification. For the Bayesian models, we can adjust the odds or probability threshold
at which a consensus identification is accepted. For the majority vote baseline, we can
specify a threshold for the “margin of victory”—that is, the difference in the number
of votes between the majority identification and its nearest competitor. Figure 3 shows
how increasing the threshold for consensus results in higher accuracy but smaller
proportion of photos for which consensus was reached. The performance of MODEL 2
is comparable to MNB and performs consistently better than the other two; for any
accuracy level specified, MODEL 2 and MNB achieved consensus for a greater proportion
of photos than the other two models. For instance, if required to have an accuracy of
90%, MODEL 2 and MNB can identify 61% of records compared to 51% for MV, a relative
increase of 20%.

5.2.2. Handling Crowds of Different Quality. Since the Bayesian models take into account
specific types of errors, we would expect their power to be greater (relative to MV) as
the quality of the crowd gets worse. Indeed, it has been reported previously for tasks
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Fig. 3. Plots showing the trade-off between accuracy and proportion for which consensus was reached, as the
threshold for consensus (odds threshold (OT) for incremental Bayesian models, probability threshold (PT) for
MNB, and margin of victory (MoV) for the majority vote) is increased. The rightmost point for each model was
obtained by labeling all photos for which no consensus was achieved with the label “not identifiable,” which
resulted in each model making a prediction for every photo. MODEL 2 and MNB consistently outperform the
other two; for any accuracy level specified, they achieve consensus for a greater proportion of photos than
the other two models.

with two to four labels [Sheshadri and Lease 2013] that MV shows little resilience to
even modest noise levels of 25% and is thus unsuited for many consensus tasks.

Figure 4 plots the proportion of photos for which consensus was achieved when the
threshold for consensus (odds/probability thresholds for Bayesian models and margin
of victory for MV) is adjusted to achieve two different quality guarantees (80% and 90%
accuracy) as a function of crowd quality. In this plot, the accuracy of individual labels
is varied by introducing errors at random to the left of the vertical dotted line, which
marks the average label accuracy for our dataset, and correcting errors at random to
the right of the vertical dotted line. As expected, when the accuracy of individual labels
reduces, the Bayesian models outperform the majority vote by increasing margins. In
contrast, as individual labels get more accurate, the models converge. When individual
label accuracy is greater than 55%, there is little to separate MODEL 2 from MNB; how-
ever, MNB is more robust to deteriorating crowd quality at the point where individual
label accuracy drops to 10% points below that observed in BEEWATCH. These graphs
confirm that MODEL 2 provides similar performance to MNB for the individual label
accuracies that we expect in biological recording, even while minimizing crowd size.
They also confirm that MODEL 2 outperforms the commonly used majority vote model,
which we conclude, like Sheshadri and Lease [2013], is not well suited to consensus
tasks with moderate to heavy noise.

5.2.3. Error Reduction Through Consensus. Figure 5(a) shows how users have identified
photo records compared to the expert, showing a considerable number of misidentifi-
cations by users (i.e., counts off the diagonal). Figure 5(b) illustrates how our Bayesian
MODEL 2 (with default odds threshold of 9) eliminates much of the noise in Figure 5(a),
leaving few cases of misclassification (i.e., away from the diagonal) other than those
concerning confusion between a bumblebee species and the “not identifiable” category.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 45, Publication date: May 2016.



Crowdsourcing Without a Crowd 45:15

Fig. 4. Plots showing how the performance of the models deteriorates with lower identification accuracies
by individual users. The x-axis varies the accuracy of individual identifications in the dataset by randomly
introducing or correcting (to the left or right, respectively, of the vertical dotted line that represents the
individual label accuracy in our dataset) 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40% errors in individual
labels. The y-axis shows the proportion of records for which consensus was achieved when the threshold for
consensus (OT, PT, or MoV) has been adjusted to give an accuracy of 80% (a) and 90% (b) for the dataset.

The rightmost column (excluding the bottom most cell) depicts instances where the
model fails to make a species identification, when it was possible for the expert to do
so (1.6% of records). The bottom row (excluding the rightmost cell) depicts instances
where the model makes a species identification even though the expert has decided that
the specimen is not identifiable (11.3% of records). Confusions between two species or
a species and “not a bumblebee” occur rarely (5% of records). Figure 5(c) shows how
further error reduction can be achieved by increasing the odds threshold to 9999. Now,
confusions between two species occur for only 1.6% of records, with the remaining er-
rors (8.3% of records) involving confusion between a bumblebee species and the “not
identifiable” category.

5.3. The Need for Consensus Models in Biological Recording

Environmental concern, enforced by international policy obligations, has raised the
demand for species distribution (and abundance) data well beyond the capacity of pro-
fessional biologists to deliver this [Danielsen et al. 2005]. Hence, the general public are
increasingly encouraged to act as biological recorders, particularly for species groups
such as pollinating insects that are important to society, but for which few expert
recorders exist.

The growth in camera ownership (e.g., in mobile phones) has meant that citizen
science initiatives increasingly rely on citizen recorders submitting photos, which are
then verified by relatively few experts able to reliably identify the species. If popular,
such initiatives are put at immediate risk of collapsing under the large number of
submissions due to a lack of available expert time, especially if short response times
are required to keep recorders engaged. Numerous biological recording schemes are
administered by very few staff, notably when dealing with charismatic species groups.
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Fig. 5. Confusion matrices. (a) The accuracy of individual identifications is 59%, resulting in a wide distri-
bution of errors (off-diagonal cells). (b) For an odds threshold of OT = 9, the accuracy of MODEL 2 is 80%,
resulting in visible error correction (fewer counts in off-diagonal cells), but consensus was achieved for only
94% of photos. (c) For an odds threshold of OT = 9999, MODEL 2 shows greater capacity to reduce the errors
made by individual users (89% accuracy) but achieves consensus for a smaller proportion of photos (62%).

As an example, as many as 1,613 photos were submitted to BEEWATCH over a single
20-day period, with only two experts at hand who were employed part-time to handle
photo submissions.

There is a growing demand for citizen science data that can be used in scientific
research [Danielsen et al. 2005; Comont et al. 2012; Roy et al. 2012] and to influence
policy [Science Communication Unit 2013], which means that scale, timeliness, and
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accuracy are all important. Many of the techniques used to date to alleviate the problem
of a lack of expert time have traded one of these in favor of one of the others. For exam-
ple, Friends of the Earth’s Great British Bee Count (http://greatbritishbeecount.co.uk/)
accumulated 820,000 sightings in 3 months but with no attempt at species-level identi-
fication or verification, thus severely limiting the use of such data for scientific purposes.

Inviting lay people to not only submit photographs but also take part in the identi-
fication process can be a way to reduce the burden on the few experts, freeing them to
prioritize rare species (for which crowdsourcing with random sampling does not pro-
vide many records) or difficult photographs (where the crowd does not agree). This will
allow the initiative to flourish if procedures are in place to swiftly and effectively derive
at consensus identification of photographed specimens. Consensus models are in this
sense a new practical tool to be added to the armory of techniques having to be adopted
by current recording programs. However, consensus models require the recruitment
of a “crowd” of people able to make relevant identification decisions. A crowdsourcing
program will itself be limited by the size of crowd required and the quality and volume
of work that the crowd members can offer.

The Bayesian models developed here address this situation head-on. As a new iden-
tification by a user comes in, a decision is made on whether to accept the consensus
identification or solicit further identifications by users, based on the accuracy required.
The power of our models is threefold. First, they account for species-specific differences
in the ease of identification (MODELS 1 & 2) and differential skill level among users
(MODEL 2). Second, the existence of common identification mistakes allows a crowd-
sourced identification for one species to provide varying levels of evidence for one or
more other species. Thus, mistakes by users are effectively harnessed by the models to
arrive at consensus: an important attribute for programs that rely on members of the
public with varying identification skills. Third, the models re-evaluate the consensus
identification with every new identification coming in; this minimizes the number of
users to be consulted. Both incremental Bayesian models, but particularly MODEL 2,
outperform a traditional majority vote approach, both in terms of the quality of the
results and the size of the crowd required.

Reducing crowd size and thus our Bayesian approach is of utmost importance to
the sustainability of photo submission–based recording schemes. For BEEWATCH to run
without experts, every time a participant submits a new photo, he or she would, with
MODEL 2, also need to help identify bumblebees for three to four photos submitted by
others, in addition to his or her own submission, for there to be a balance between
photo submissions and consensus labeling. As we reported in Section 3.2, BEEWATCH

averaged 5.48 identifications per photo. This indicates the great importance of models
such as ours that make efficient use of the scarce resource that is the “crowdsourcer.”

5.4. Handling Imperfect Data Within a Biological Recording Scheme

In practice, a biological recording scheme has to accept that there will be some errors in
the data it collects—it is simply a matter of what level of error is acceptable. This has
to be balanced against the level of resources available and issues such as the value of
the data for informing policy (e.g., in our case, the UK’s National Pollinator Strategy).
In many situations, it may be better to have more data, or even any data at all, with
a quantified level of inaccuracy rather than to insist on unreasonably high levels of
accuracy and have no data to work with.

It is worth discussing the quality of data generated by the consensus model in this
context. Our results indicate that Bayesian consensus models can produce data that
is as reliable as identification by experts, for the vast majority of submissions, without
expert involvement (85% accuracy for identifying 72% of submissions; see Figure 3). It
is possible with our models to specify a desired level of accuracy over a dataset. Figure 4
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showed how this affects the proportion of photos that can be identified by consensus as
a function of crowd quality. Bayesian models outperform MV by a wider margin when
the quality of the crowd is worse. They are therefore particularly suited to initiatives
that solicit records of species groups where knowledge among members of the general
public is relatively low or where species are relatively difficult to identify.

Although our crowdsourcing methods derive highly likely identifications in the over-
whelming number of cases, recording schemes are likely to want to apply more stringent
rules for certain species, such as rarities or particularly difficult species. Crowdsourc-
ing can also help to identify these priority records. For example, all photos where the
crowd consensus was a rare species, or even those where at least one of the crowd
had identified the specimen as a rare or difficult-to-identify species, could be priori-
tized for cross checking by dedicated experts, easing the strain by essentially removing
easy-to-identify, common species from the expert’s workload.

6. CONCLUSIONS

We have unfolded an incremental Bayesian method for obtaining consensus on crowd-
sourcing tasks that takes into account both individual users’ identification skills and
the level of difficulty associated with identifying individual species. The model is suit-
able for classification tasks with many categories and also for relatively difficult tasks
where participants exhibit a variety of skill levels. When testing our model on real-
world citizen science data, it outperformed the traditional majority vote approach both
in terms of the accuracy of obtained consensus identifications and the size of the crowd
required. It also achieved similar accuracy to the nonincremental naive Bayes model
despite requiring smaller crowd sizes. Our findings demonstrate that a relatively com-
plex identification task can be performed reliably through employing Bayesian methods
with very small crowd sizes of around three to five users (i.e., through group sourc-
ing). As the data collection exercise reported in Section 3.2 achieves an average of 5.48
crowdsourced identifications per submission, we can conclude that Bayesian methods
are well suited for such applications, and indeed that such efficiency is required.

Crowdsourcing has to be planned within a wider environment in which the crowd
participates. In BEEWATCH, although we are asking members of the public to carry out
a nontrivial classification task, we are providing support for that activity in terms of an
interactive online identification guide and automatically generated feedback on their
identifications. We also provide an online training tool where users can practice and
links to further online resources. All of this helps users improve their identification
skills, which further motivates them to participate.

It should be recognized that for much of science, the dichotomy between “expert”
and “lay” is essentially false. For biological recording, identification skills are on a
continuum, and schemes such as BEEWATCH by definition attract those members of
the general public interested in the subject matter. In particular, there is considerable
scope for explicit training of recorders (e.g., the training tool) as well as passive learning
through feedback and practice. The advantage of the models presented here is that
they can take this spectrum of identification ability into account when constructing
a consensus ID, as well as the per-species level of identification difficulty. All users
can contribute toward building consensus on a species, irrespective of the quality of
their identification skills. As users become more experienced in identification, the
performance of the consensus model can be expected to improve (see Figure 4).

To conclude, crowdsourcing does not have to be used as an “all or nothing” approach.
Consensus models such as those presented here allow for the setting of parameters that
balance the accuracy of the results against the size of crowd required, thus providing
a system for the triage of records to prioritize the use of limited quantities of expert
time. For biological recording tasks, Bayesian models estimate bias accurately because

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 45, Publication date: May 2016.



Crowdsourcing Without a Crowd 45:19

mistakes are not random: participants are typically motivated and participate because
they care about nature and want to increase their knowledge. Therefore, mistakes
involve genuinely confusable species and can thus be modeled, or poor photo quality,
resulting in confusion with the “not identifiable” label. In other domains, there can be
the risk of users acting maliciously, who do not attempt the task with the intention of
helping, and further research is needed to explore whether incremental models can be
robust to such users.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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