97 research outputs found

    Fair regression with wasserstein barycenters

    Get PDF
    We study the problem of learning a real-valued function that satisfies the Demographic Parity constraint. It demands the distribution of the predicted output to be independent of the sensitive attribute. We consider the case that the sensitive attribute is available for prediction. We establish a connection between fair regression and optimal transport theory, based on which we derive a close form expression for the optimal fair predictor. Specifically, we show that the distribution of this optimum is the Wasserstein barycenter of the distributions induced by the standard regression function on the sensitive groups. This result offers an intuitive interpretation of the optimal fair prediction and suggests a simple post-processing algorithm to achieve fairness. We establish risk and distribution-free fairness guarantees for this procedure. Numerical experiments indicate that our method is very effective in learning fair models, with a relative increase in error rate that is inferior to the relative gain in fairness

    Fair Regression with Wasserstein Barycenters

    Get PDF
    International audienceWe study the problem of learning a real-valued function that satisfies the Demographic Parity constraint. It demands the distribution of the predicted output to be independent of the sensitive attribute. We consider the case that the sensitive attribute is available for prediction. We establish a connection between fair regression and optimal transport theory, based on which we derive a close form expression for the optimal fair predictor. Specifically, we show that the distribution of this optimum is the Wasserstein barycenter of the distributions induced by the standard regression function on the sensitive groups. This result offers an intuitive interpretation of the optimal fair prediction and suggests a simple post-processing algorithm to achieve fairness. We establish risk and distribution-free fairness guarantees for this procedure. Numerical experiments indicate that our method is very effective in learning fair models, with a relative increase in error rate that is inferior to the relative gain in fairness

    A Sequentially Fair Mechanism for Multiple Sensitive Attributes

    Full text link
    In the standard use case of Algorithmic Fairness, the goal is to eliminate the relationship between a sensitive variable and a corresponding score. Throughout recent years, the scientific community has developed a host of definitions and tools to solve this task, which work well in many practical applications. However, the applicability and effectivity of these tools and definitions becomes less straightfoward in the case of multiple sensitive attributes. To tackle this issue, we propose a sequential framework, which allows to progressively achieve fairness across a set of sensitive features. We accomplish this by leveraging multi-marginal Wasserstein barycenters, which extends the standard notion of Strong Demographic Parity to the case with multiple sensitive characteristics. This method also provides a closed-form solution for the optimal, sequentially fair predictor, permitting a clear interpretation of inter-sensitive feature correlations. Our approach seamlessly extends to approximate fairness, enveloping a framework accommodating the trade-off between risk and unfairness. This extension permits a targeted prioritization of fairness improvements for a specific attribute within a set of sensitive attributes, allowing for a case specific adaptation. A data-driven estimation procedure for the derived solution is developed, and comprehensive numerical experiments are conducted on both synthetic and real datasets. Our empirical findings decisively underscore the practical efficacy of our post-processing approach in fostering fair decision-making

    Mitigating Discrimination in Insurance with Wasserstein Barycenters

    Full text link
    The insurance industry is heavily reliant on predictions of risks based on characteristics of potential customers. Although the use of said models is common, researchers have long pointed out that such practices perpetuate discrimination based on sensitive features such as gender or race. Given that such discrimination can often be attributed to historical data biases, an elimination or at least mitigation is desirable. With the shift from more traditional models to machine-learning based predictions, calls for greater mitigation have grown anew, as simply excluding sensitive variables in the pricing process can be shown to be ineffective. In this article, we first investigate why predictions are a necessity within the industry and why correcting biases is not as straightforward as simply identifying a sensitive variable. We then propose to ease the biases through the use of Wasserstein barycenters instead of simple scaling. To demonstrate the effects and effectiveness of the approach we employ it on real data and discuss its implications

    Fairness in Multi-Task Learning via Wasserstein Barycenters

    Full text link
    Algorithmic Fairness is an established field in machine learning that aims to reduce biases in data. Recent advances have proposed various methods to ensure fairness in a univariate environment, where the goal is to de-bias a single task. However, extending fairness to a multi-task setting, where more than one objective is optimised using a shared representation, remains underexplored. To bridge this gap, we develop a method that extends the definition of \textit{Strong Demographic Parity} to multi-task learning using multi-marginal Wasserstein barycenters. Our approach provides a closed form solution for the optimal fair multi-task predictor including both regression and binary classification tasks. We develop a data-driven estimation procedure for the solution and run numerical experiments on both synthetic and real datasets. The empirical results highlight the practical value of our post-processing methodology in promoting fair decision-making

    Addressing Fairness and Explainability in Image Classification Using Optimal Transport

    Full text link
    Algorithmic Fairness and the explainability of potentially unfair outcomes are crucial for establishing trust and accountability of Artificial Intelligence systems in domains such as healthcare and policing. Though significant advances have been made in each of the fields separately, achieving explainability in fairness applications remains challenging, particularly so in domains where deep neural networks are used. At the same time, ethical data-mining has become ever more relevant, as it has been shown countless times that fairness-unaware algorithms result in biased outcomes. Current approaches focus on mitigating biases in the outcomes of the model, but few attempts have been made to try to explain \emph{why} a model is biased. To bridge this gap, we propose a comprehensive approach that leverages optimal transport theory to uncover the causes and implications of biased regions in images, which easily extends to tabular data as well. Through the use of Wasserstein barycenters, we obtain scores that are independent of a sensitive variable but keep their marginal orderings. This step ensures predictive accuracy but also helps us to recover the regions most associated with the generation of the biases. Our findings hold significant implications for the development of trustworthy and unbiased AI systems, fostering transparency, accountability, and fairness in critical decision-making scenarios across diverse domains

    Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding

    Get PDF
    In this work, we investigate Gaussian Processes indexed by multidimensional distributions. While directly constructing radial positive definite kernels based on the Wasserstein distance has been proven to be possible in the unidimensional case, such constructions do not extend well to the multidimensional case as we illustrate here. To tackle the problem of defining positive definite kernels between multivariate distributions based on optimal transport, we appeal instead to Hilbert space embeddings relying on optimal transport maps to a reference distribution, that we suggest to take as a Wasserstein barycenter. We characterize in turn radial positive definite kernels on Hilbert spaces, and show that the covariance parameters of virtually all parametric families of covariance functions are microergodic in the case of (infinite-dimensional) Hilbert spaces. We also investigate statistical properties of our suggested positive definite kernels on multidimensional distributions, with a focus on consistency when a population Wasserstein barycenter is replaced by an empirical barycenter and additional explicit results in the special case of Gaussian distributions. Finally, we study the Gaussian process methodology based on our suggested positive definite kernels in regression problems with multidimensional distribution inputs, on simulation data stemming both from synthetic examples and from a mechanical engineering test case
    • …
    corecore