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Abstract

We study the problem of learning a real-valued function that satisfies the Demo-
graphic Parity constraint. It demands the distribution of the predicted output to
be independent of the sensitive attribute. We consider the case that the sensitive
attribute is available for prediction. We establish a connection between fair re-
gression and optimal transport theory, based on which we derive a close form
expression for the optimal fair predictor. Specifically, we show that the distribution
of this optimum is the Wasserstein barycenter of the distributions induced by the
standard regression function on the sensitive groups. This result offers an intuitive
interpretation of the optimal fair prediction and suggests a simple post-processing
algorithm to achieve fairness. We establish risk and distribution-free fairness guar-
antees for this procedure. Numerical experiments indicate that our method is very
effective in learning fair models, with a relative increase in error rate that is inferior
to the relative gain in fairness.

1 Introduction

A central goal of algorithmic fairness is to ensure that sensitive information does not “unfairly”
influence the outcomes of learning algorithms. For example, if we wish to predict the salary of
an applicant or the grade of a university student, we would like the algorithm to not unfairly use
additional sensitive information such as gender or race. Since today’s real-life datasets often contain
discriminatory bias, standard machine learning methods behave unfairly. Therefore, a substantial
effort is being devoted in the field to designing methods that satisfy “fairness” requirements, while
still optimizing prediction performance, see for example [5, 10, 13, 16, 18, 21, 23, 25, 26, 28, 32, 45–
47, 49] and references therein.

In this paper we study the problem of learning a real-valued regression function which among
those complying with the Demographic Parity fairness constraint, minimizes the mean squared error.
Demographic Parity requires the probability distribution of the predicted output to be independent
of the sensitive attribute and has been used extensively in the literature, both in the context of
classification and regression [1, 12, 20, 24, 34]. In this paper we consider the case that the sensitive
attribute is available for prediction. Our principal result is to show that the distribution of the optimal
fair predictor is the solution of a Wasserstein barycenter problem between the distributions induced
by the unfair regression function on the sensitive groups. This result builds a bridge between fair
regression and optimal transport, [see e.g., 38, 41].

We illustrate our result with an example. Assume that X represents a candidate’s skills, S is a
binary attribute representing two groups of the population (e.g., majority or minority), and Y is
the current market salary. Let f∗(x, s) = E[Y |X=x, S=s] be the regression function, that is, the
optimal prediction of the salary currently in the market for candidate (x, s). Due to bias present in the
underlying data distribution, the induced distribution of market salary predicted by f∗ varies across

Preprint. Under review.



the two groups. We show that the optimal fair prediction g∗ transforms the regression function f∗ as

g∗(x, s) = psf
∗(x, s) + (1− ps)t∗(x, s) ,

where ps is the frequency of group s and the correction t∗(x, s) is determined so that the ranking
of f∗(x, s) relative to the distribution of X|S = s for group s (e.g., minority) is the same as the
ranking of t∗(x, s) relative to the distribution of the group s′ 6= s (e.g., majority). We elaborate on
this example after Theorem 2.3 and in Figure 1. The above expression of the optimal fair predictor
naturally suggests a simple post-processing estimation procedure, where we first estimate f∗ and then
transform it to get an estimator of g∗. Importantly, the transformation step involves only unlabeled
data since it requires estimation of cumulative distribution functions.

Contributions and organization. In summary we make the following contributions. First, in
Section 2 we derive the expression for the optimal function which minimizes the squared risk
under Demographic Parity constraints (Theorem 2.3). This result establishes a connection between
fair regression and the problem of Wasserstein barycenters, which allows to develop an intuitive
interpretation of the optimal fair predictor. Second, based on the above result, in Section 3 we
propose a post-processing procedure that can be applied on top of any off-the-shelf estimator for
the regression function, in order to transform it into a fair one. Third, in Section 4 we show that
this post-processing procedure yields a fair prediction independently from the base estimator and
the underlying distribution (Proposition 4.1). Moreover, finite sample risk guarantees are derived
under additional assumptions on the data distribution provided that the base estimator is accurate
(Theorem 4.4). Finally, Section 5 presents a numerical comparison of the proposed method w.r.t. the
state-of-the-art.

Related work. Unlike the case of fair classification, fair regression has received limited attention
to date; we are only aware of few works on this topic that are supported by learning bounds or
consistency results for the proposed estimator [1, 34]. Connections between algorithmic fairness and
Optimal Transport, and in particular the problem of Wasserstein barycenters, has been studied in
[12, 20, 24, 43] but mainly in the context of classification. These works are distinct from ours, in that
they do not show the link between the optimal fair regression function and Wasserstein barycenters.
Moreover, learning bounds are not addressed therein. Our distribution-free fairness guarantees share
similarities with contributions on prediction sets [30, 31] and conformal prediction literature [42, 48]
as they also rely on results on rank statistics. Meanwhile, the risk guarantee that we derive, combines
deviation results on Wasserstein distances in one dimension [7] with peeling ideas developed in [3],
and classical theory of rank statistics [40].

Notation. For any positive integer N ∈ N we denote by [N ] the set {1, . . . , N}. For a, b ∈ R
we denote by a ∧ b (resp. a ∨ b) the minimum (resp. the maximum) between a and b. For two
positive real sequences an, bn we write an . bn to indicate that there exists a constant c such that
an ≤ cbn for all n. For a finite set S we denote by |S| its cardinality. The symbols E and P
stand for generic expectation and probability. For any univariate probability measure µ, we denote
by Fµ its Cumulative Distribution Function (CDF) and by Qµ : [0, 1] → R its quantile function
(a.k.a. generalized inverse of Fµ) defined for all t ∈ (0, 1] as Qµ(t) = inf {y ∈ R : Fµ(y)≥t} with
Qµ(0) = Qµ(0+). For a measurable set A ⊂ R we denote by U(A) the uniform distribution on A.

2 The problem

In this section we introduce the fair regression problem and present our derivation for the optimal
fair regression function alongside its connection to Wasserstein barycenter problem. We consider the
general regression model

Y = f∗(X,S) + ξ , (1)

where ξ ∈ R is a centered random variable, (X,S) ∼ PX,S on Rd × S, with |S| < ∞, and
f∗ : Rd × S → R is the regression function minimizing the squared risk. Let P be the joint
distribution of (X,S, Y ). For any prediction rule f : Rd×S → R, we denote by νf |s the distribution
of f(X,S)|S = s, that is, the Cumulative Distribution Function (CDF) of νf |s is given by

Fνf|s(t) = P(f(X,S) ≤ t|S = s) , (2)

to shorten the notation we will write Ff |s and Qf |s instead of Fνf|s and Qνf|s respectively.
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f∗(x, 1)=t∗(x̄, 2) g∗(x, 1)=g∗(x̄, 2) t∗(x, 1)=f∗(x̄, 2)

Fair optimal prediction g∗ with p1 = 2/5 and p2 = 3/5

density of f∗|S=1

density of f∗|S=2

density of g∗

Figure 1: For a new point (x, 1), the value t∗(x, 1) is chosen such that the shaded Green Area (//) =
P(f∗(X,S) ≤ t∗(x, 1)|S = 2) equals to the shaded Blue Area (\\) = P(f∗(X,S) ≤ f∗(x, 1)|S = 1).
The final prediction g∗(x, 1) is a convex combination of f∗(x, 1) and t∗(x, 1). The same is done for (x̄, 2).

Definition 2.1 (Wasserstein-2 distance). Let µ and ν be two univariate probability measures. The
squared Wasserstein-2 distance between µ and ν is defined as

W2
2 (µ, ν) = inf

γ∈Γµ,ν

∫
|x− y|2 dγ(x, y) ,

where Γµ,ν is the set of distributions (couplings) on R × R such that for all γ ∈ Γµ,ν and all
measurable sets A,B ⊂ R it holds that γ(A× R) = µ(A) and γ(R×B) = ν(B).

In this work we use the following definition of (strong) Demographic Parity, which was previously
used in the context of regression by [1, 12, 24].
Definition 2.2 (Demographic Parity). A prediction (possibly randomized) g : Rd × S → R is fair if,
for every s, s′ ∈ S

sup
t∈R

∣∣∣P(g(X,S) ≤ t|S = s)−P(g(X,S) ≤ t|S = s′)
∣∣∣ = 0 .

Demographic Parity requires the Kolmogorov-Smirnov distance between νg|s and νg|s′ to vanish for
all s, s′. Thus, if g is fair, νg|s does not depend on s and to simplify the notation we will write νg .

Recall the model in Eq. (1). Since the noise has zero mean, the minimization of E(Y − g(X,S))2

over g is equivalent to the minimization of E(f∗(X,S)− g(X,S))2 over g. The next theorem shows
that the optimal fair predictor for an input (x, s) is obtained by a nonlinear transformation of the
vector (f∗(x, s))|S|s=1 that is linked to a Wasserstein barycenter problem [2].
Theorem 2.3 (Characterization of fair optimal prediction). Assume, for each s ∈ S, that the
univariate measure νf∗|s has a density and let ps = P(S = s). Then,

min
g is fair

E(f∗(X,S)− g(X,S))2 = min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) .

Moreover, if g∗ and ν∗ solve the l.h.s. and the r.h.s. problems respectively, then ν∗ = νg∗ and

g∗(x, s) =

(∑
s′∈S

ps′Qf∗|s′

)
◦ Ff∗|s (f∗(x, s)) . (3)

The proof of Theorem 2.3 relies on the classical characterization of optimal coupling in one dimension
(stated in Theorem A.1 in the appendix) of the Wasserstein-2 distance. We show that a minimizer
g∗ of the L2-risk can be used to construct ν∗ and vice-versa, given ν∗, we leverage a well-known
expression for one dimensional Wasserstein barycenter (see e.g., [2, Section 6.1] and Lemma A.2 in
the appendix) and construct g∗.

The case of binary protected attribute. Let us unpack Eq. (3) in the case that S = {1, 2}, assuming
w.l.o.g. that p2 ≥ p1. Theorem 2.3 states that the fair optimal prediction g∗ is defined for all
individuals x ∈ Rd in the first group as
g∗(x, 1) = p1f

∗(x, 1) + p2t
∗(x, 1), with t∗(x, 1) = inf

{
t ∈ R : Ff∗|2(t) ≥ Ff∗|1(f∗(x, 1))

}
,
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and likewise for the second group. This form of the optimal fair predictor, and more generally Eq. (3),
allows us to understand the decision made by g∗ at individual level. If we interpret (x, s) as the
candidate’s CV and candidate’s group respectively, and f∗(x, s) as the current market salary (which
might be discriminatory), then the fair optimal salary g∗(x, s) is a convex combination of the market
salary f∗(x, s) and the adjusted salary t∗(x, s), which is computed as follows. ebgin If say s=1, we
first compute the fraction of individuals from the first group whose market salary is at most f∗(x, 1),
that is, we compute P(f∗(X,S) ≤ f∗(x, 1)|S=1). Then, we find a candidate x̄ in group 2, such
that the fraction of individuals from the second group whose market salary is at most f∗(x̄, 2) is the
same, that is, x̄ is chosen to satisfy P(f∗(X,S) ≤ f∗(x̄, 2)|S=2) = P(f∗(X,S) ≤ f∗(x, 1)|S=1).
Finally, the market salary of x̄ is exactly the adjustment for x, that is, t∗(x, 1) = f∗(x̄, 2). This idea
is illustrated in Figure 1 and leads to the following philosophy: if candidates (x, 1) and (x̄, 2) share
the same group-wise market salary ranking, then they should receive the same salary determined by
the fair prediction g∗(x, 1) = g∗(x̄, 2) = p1f

∗(x, 1) + p2f
∗(x̄, 2). At last, note that Eq. (3) allows

to understand the (potential) amount of extra money that we need to pay in order to satisfy fairness.
While the unfair decision made with f∗ costs f∗(x, 1)+f∗(x̄, 2) for the salary of (x, 1) and (x̄, 2),
the fair decision g∗ costs 2(p1f

∗(x, 1)+p2f
∗(x̄, 2)). Thus, the extra (signed) salary that we pay is

∆ = (p2−p1)(f∗(x̄, 2)−f∗(x̄, 1)). Since, p2≥p1, ∆ will be positive whenever the candidate x̄ from
the majority group gets higher salary according to f∗, and negative otherwise. We believe that the
expression Eq. (3) could be the starting point for further more applied work on algorithmic fairness.

3 General form of the estimator

In this section we propose an estimator of the optimal fair predictor g∗ that relies on the plug-in
principle. The expression (3) of g∗ suggests that we only need estimators for the regression function
f∗, the proportions ps, as well as the CDF Ff∗|s and the quantile function Qf∗|s, for all s ∈ S.
While the estimation of f∗ needs labeled data, all the other quantities rely only on PS , PX|S and f∗,
therefore unlabeled data with an estimator of f∗ suffices. Thus, given a base estimator of f∗, our
post-processing algorithm will require only unlabeled data.
For each s ∈ S let Us={Xs

i }Nsi=1
i.i.d.∼ PX|S=s be a group-wise unlabeled sample. In the following for

simplicity we assume thatNs are even for all s ∈ S1. Let Is0 , Is1 ⊂ [Ns] be any fixed partition of [Ns]
such that |Is0 |=|Is1 |=Ns/2 and Is0∪Is1=[Ns]. For each j ∈ {0, 1}we let Usj=

{
Xs
i ∈ Us : i ∈ Isj

}
be the restriction of Us to Isj . We use Us0 to estimate Qf |s and Us1 to estimate Ff |s. For each
f : Rd×S → R and each s ∈ S, we estimate νf |s by

ν̂0
f |s =

1

|Is0 |
∑
i∈Is0

δ
(
f(Xs

i , s) + εis − ·
)

and ν̂1
f |s =

1

|Is1 |
∑
i∈Is1

δ
(
f(Xs

i , s) + εis − ·
)
, (4)

where δ is the Dirac measure and all εis
i.i.d.∼ U([−σ, σ]), for some positive σ set by the user. Using

the estimators in Eq. (4), we define for all f : Rd×S → R estimators of Qf |s and of Ff |s as

Q̂f |s ≡ Qν̂0
f|s

and F̂f |s ≡ Fν̂1
f|s

. (5)

That is, F̂f |s and Q̂f |s are the empirical CDF and empirical quantiles of (f(X,S)+ε)|S=s based
on {f(Xs

i , s)+εis}i∈Is1 and {f(Xs
i , s)+εis}i∈Is0 respectively. The noise εis serves as a smooth-

ing random variable, since for all s ∈ S and i ∈ [Ns] the random variables f(Xs
i , s)+εis are

i.i.d. continuous for any P and f . In contrast, f(Xs
i , s) might have atoms resulting in a non-zero

probability to observe ties in {f(Xs
i , s)}i∈Isj . This step is also known as jittering, often used for data

visualization [11] for tie-breaking. It plays a crucial role in the distribution-free fairness guarantees
that we derive in Proposition 4.1; see the discussion thereafter.

Finally, letA={Si}Ni=1
i.i.d.∼ PS and for each s ∈ S let p̂s be the empirical frequency of S=s evaluated

onA. Given a base estimator f̂ of f∗ constructed from n labeled samples L={(Xi, Si, Yi)}ni=1
i.i.d.∼ P,

we define the final estimator ĝ of g∗ for all (x, s) ∈ Rd×S mimicking Eq. (3) as

ĝ(x, s) =

(∑
s′∈S

p̂s′Q̂f̂ |s′

)
◦ F̂f̂ |s

(
f̂(x, s) + ε

)
, (6)

1Since we are ready to sacrifice a factor 2 in our bounds, this assumption is without loss of generality.
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Algorithm 1: Procedure to evaluate estimator in Eq. (6)

Input: new point: (x, s); base estimator f̂ ; unlabeled data U1, . . . ,U |S|;
jitter parameter σ; empirical frequencies p̂1, . . . , p̂|S|
Output :fair prediction ĝ(x, s) for the point (x, s)
for s′ ∈ S do // data structure for Eq.(4)
Us′0 ,Us

′

1 ← split_in_two(Us′) // split unlabeled data into two equal parts

ars
′

0 ←
{
f̂(X, s′)+U([−σ, σ])

}
X∈Us′0

, ars
′

1 ←
{
f̂(X, s′)+U([−σ, σ])

}
X∈Us′1

ars
′

0 ← sort
(
ars

′

0

)
, ars

′

1 ← sort
(
ars

′

1

)
// for fast evaluation of Eq.(5)

end
ks ← position

(
f̂(x, s)+U([−σ, σ]), ars1

)
// evaluate F̂f̂ |s

(
f̂(x, s) + ε

)
in Eq.(6)

ĝ(x, s)←∑
s′∈S p̂s′ × ars

′

0

[
dNs′ks/Nse

]
// evaluation of Eq.(6)

where ε ∼ U([−σ, σ]) is assumed to be independent from every other random variables.
Remark 3.1. In practice one should use a very small value for σ (e.g., σ=10−5), which does not
alter the statistical quality of the base estimator f̂ as indicated in Theorem 4.4.

A pseudo-code implementation of ĝ in Eq. (6) is reported in Algorithm 1. It requires two primitives:
sort(ar) sorts the array ar in an increasing order; position(a, ar) which outputs the index k
such that the insertion of a into k’th position in ar preserves ordering (i.e., ar[k−1] ≤ a < ar[k]).
Algorithm 1 consists of two for parts: in the for-loop we perform a preprocessing which takes∑

s∈S O(Ns logNs) time2 since it involves sorting; then, the evaluation of ĝ on a new point (x, s) is
performed in (maxs∈S logNs) time since it involves an element search in a sorted array. Note that
the for-loop of Algorithm 1 needs to be performed only once as this step is shared for any new (x, s).

4 Statistical analysis

In this section we provide a statistical analysis of the proposed algorithm. We first present in
Proposition 4.1 distribution-free finite sample fairness guarantees for post-processing of any base
learner with unlabeled data and then we show in Theorem 4.4 that if the base estimator f̂ is a good
proxy for f∗, then under mild assumptions on the distribution P, the processed estimator ĝ in Eq. (6)
is a good estimator of g∗ in Eq. (3).

Distribution free post-processing fairness guarantees. We derive two distribution-free results in
Proposition 4.1, the first in Eq. (7) shows that the fairness definition is satisfied as long as we take
the expectation over the data inside the supremum in Definition 2.2, while the second one in Eq. (8)
bounds the expected violation of Definition 2.2.
Proposition 4.1 (Fairness guarantees). For any joint distribution P of (X,S, Y ), any base estimator
f̂ constructed on labeled data, and for all s, s′ ∈ S, the estimator ĝ defined in Eq. (6) satisfies

sup
t∈R
|P(ĝ(X,S) ≤ t|S=s)−P(ĝ(X,S) ≤ t|S=s′)| ≤ 2 (Ns∧Ns′ + 2)

−1
1{Ns 6=Ns′} (7)

E sup
t∈R
|P(ĝ(X,S) ≤ t|S=s,D)−P(ĝ(X,S) ≤ t|S=s′,D)| ≤ 6 (Ns∧Ns′ + 1)

−1/2
. (8)

where D = L ∪ A ∪s∈S Us is the union of all available datasets.

Let us point out that this result does not require any assumption on the distribution P as well as on
the base estimator f̂ . This is achieved thanks to the jittering step in the definition of ĝ in Eq. (6),
which artificially introduces continuity. Continuity allows us to use results from the theory of rank
statistics of exchangeable random variables to derive Eq. (7) as well as the classical inverse transform
(see e.g., [40, Sections 13 and 21]) combined with the Dvoretzky-Kiefer-Wolfowitz inequality [33]

2It is assumed in this discussion that the time complexity to evaluate f̂ is O(1).
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to derive Eq. (8). Since basic results on rank statistics and inverse transform are distribution-free
as long as the underlying random variable is continuous, the guarantees in Eqs. (7)–(8) are also
distribution-free and can be applied on top of any base estimator f̂ .
The bound in Eq. (7) might be surprising to the reader. Yet, let us emphasize that this bound holds
because the expectation w.r.t. the data distribution is taken inside the supremum (since P stands for
the joint distribution of all random variables involved in ĝ(X,S)). Similar proof techniques are also
used in randomization inference via permutations [19, 22], conformal prediction [30, 42], knockoff
estimation [4] to name a few. However, unlike the aforementioned contributions, the problem of
fairness requires a non-trivial adaptation of these techniques. In contrast, Eq. (8) might be more
appealing to the machine learning community as it controls the expected (over data) violation of the
fairness constraint with standard parametric rate.

Estimation guarantee with accurate base estimator. In order to prove non-asymptotic risk
bounds we require the following assumption on the distribution P of (X,S, Y ) ∈ Rd × S × R.

Assumption 4.2. For each s ∈ S the univariate measure νf∗|s admits a density qs, which is lower
bounded by λs > 0 and upper-bounded by λs ≥ λs.

Although the lower bound on the density assumption is rather strong and might potentially be violated
in practice, it is still reasonable in certain situations. We believe that it can be replaced by the
assumption that f∗(X,S) conditionally on S=s for all s∈S admits 2+εmoments. We do not explore
this relaxation in our work as it significantly complicates the proof of Theorem 4.4. At the same
time, our empirical study suggests that the lower bound on the density is not intrinsic to the problem,
since the estimator exhibits a good performance across various scenarios. In contrast, the milder
assumption that the density is upper bounded is crucial for our proof and seems to be necessary.

Apart from the assumption on the density of νf∗|s, the actual rate of estimation depends on the quality
of the base estimator f̂ . We require the following assumption, which states that f̂ approximates f∗

point-wise with rate b−1/2
n and a standard sub-Gaussian concentration for f̂ can be derived.

Assumption 4.3. There exist positive constants c and C independent from n, N , N1, . . . , N|S|, and
a positive sequence bn : N→ R+ such that for all δ > 0 it holds that

P
(
|f∗(x, s)− f̂(x, s)| ≥ δ

)
≤ c exp

(
−Cbnδ2

)
for almost all (x, s) w.r.t. PX,S .

We refer to [3, 15, 29, 30, 39] for various examples of estimators and additional assumptions such
that the bound in Assumption 4.3 is satisfied. It includes local polynomial estimators, k-nearest
neighbours, and linear regression, to name just a few.

Under these assumptions we can prove the following finite-sample estimation bound.

Theorem 4.4 (Estimation guarantee). Let Assumptions 4.2 and 4.3 be satisfied, and set σ .
mins∈S N

−1/2
s ∧b−1/2

n , then the estimator ĝ defined in Eq. (6) satisfies

E |g∗(X,S)− ĝ(X,S)| . b−1/2
n

∨(∑
s∈S

psN
−1/2
s

)∨√
|S|
N

,

where the leading constant depends only on λs, λs, C, c from Assumptions 4.2 and 4.3.

The proof of this result combines expected deviation of empirical measure from the real measure in
terms of Wasserstein distance on real line [7] with the already mentioned rank statistics and classical
peeling argument of [3].
The first term of the derived bound corresponds to the estimation error of f∗ by f̂ , the second term is
the price to pay for not knowing conditional distributions X|S = s while the last term correspond to
the price of unknown marginal probabilities of each protected attribute. Notice that if Ns = psN ,
which corresponds to the standard i.i.d. sampling from PX,S of unlabeled data, the second and the
third term are of the same order. Moreover, if N is sufficiently large, which in most scenarios3 is

3One can achieve it by splitting the labeled dataset L artificially augmenting the unlabeled one, which ensures
that N > n. In this case if b−1/2

n = O(n−1/2), then the first term is always dominant in the derived bound.
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w.l.o.g., then the rate is dominated by b−1/2
n . Notice that one can find a collection of joint distributions

P, such that f∗ satisfies demographic parity. Hence, if b−1/2
n is the minimax optimal estimation rate

of f∗, then it is also optimal for g∗ ≡ f∗.

5 Empirical study

In this section, we present numerical experiments4 with the proposed fair regression estimator defined
in Section 3. In all experiments, we collect statistics on the test set T = {(Xi, Si, Yi)}ntest

i=1. The
empirical mean squared error (MSE) is defined as

MSE (g) =
1

ntest

∑
(X,S,Y )∈T

(Y − g(X,S))2 .

We also measure the violation of fairness constraint imposed by Definition 2.2 via the empirical
Kolmogorov-Smirnov (KS) distance,

KS (g) = max
s,s′∈S

sup
t∈R

∣∣∣∣ 1

|T s|
∑

(X,S,Y )∈T s
1{g(X,S)≤t} −

1

|T s′ |
∑

(X,S,Y )∈T s′
1{g(X,S)≤t}

∣∣∣∣ ,
where for all s∈S we define the set T s= {(X,S, Y ) ∈ T : S=s}. For all datasets we split the
data in two parts (70% train and 30% test), this procedure is repeated 30 times, and we report the
average performance on the test set alongside its standard deviation. We employ the 2-steps 10-fold
CV procedure considered by [17] to select the best hyperparameters with the training set. In the
first step, we shortlist all the hyperparameters with MSE close to the best one (in our case, the
hyperparameters which lead to 10% larger MSE w.r.t. the best MSE). Then, from this list, we select
the hyperparameters with the lowest KS.

Methods. We compare our method (see Section 3) to different fair regression approaches for both
linear and non-linear regression. In the case of linear models we consider the following methods:
Linear RLS plus [6] (RLS+Berk), Linear RLS plus [34] (RLS+Oneto), and Linear RLS plus Our
Method (RLS+Ours), where RLS is the abbreviation of Regularized Least Squares.
In the case of non-linear models we compare to the following methods. i) For Kernel RLS
(KRLS): KRLS plus [34] (KRLS+Oneto), KRLS plus [35] (KRLS+Perez), KRLS plus Our Method
(KRLS+Ours); ii) For Random Forests (RF): RF plus [36] (RF+Raff), RF plus [1]5 (RF+Agar), and
RF plus Our Method (RF+Ours).
The hyperparameters of the methods are set as follows. For RLS we set the regularization hyperparam-
eters λ ∈ 10{−4.5,−3.5,··· ,3} and for KRLS we set λ ∈ 10{−4.5,−3.5,··· ,3} and γ ∈ 10{−4.5,−3.5,··· ,3}.
Finally, for RF we set to 1000 the number of trees and for the number of features to select during the
tree creation we search in {d1/4, d

1/2, d
3/4}.

Datasets. In order to analyze the performance of our methods and test it against the state-of-the-art
alternatives, we consider five benchmark datasets, CRIME, LAW, NLSY, STUD, and UNIV, which
are briefly described below:
Communities&Crime (CRIME) contains socio-economic, law enforcement, and crime data about
communities in the US [37] with 1994 examples. The task is to predict the number of violent crimes
per 105 population (normalized to [0, 1]) with race as the protected attribute. Following [9], we made
a binary sensitive attribute s as to the percentage of black population, which yielded 970 instances of
s=1 with a mean crime rate 0.35 and 1024 instances of s=−1 with a mean crime rate 0.13.
Law School (LAW) refers to the Law School Admissions Councils National Longitudinal Bar Passage
Study [44] and has 20649 examples. The task is to predict a students GPA (normalized to [0, 1]) with
race as the protected attribute (white versus non-white).
National Longitudinal Survey of Youth (NLSY) involves survey results by the U.S. Bureau of Labor
Statistics that is intended to gather information on the labor market activities and other life events of
several groups [8]. Analogously to [27] we model a virtual company’s hiring decision assuming that
the company does not have access to the applicants’ academic scores. We set as target the person’s
GPA (normalized to [0, 1]), with race as sensitive attribute
Student Performance (STUD), approaches 649 students achievement (final grade) in secondary

4The source of our method can be found at https://www.link-anonymous.link.
5We thank the authors for sharing a prototype of their code.
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CRIME LAW NLSY STUD UNIV

Method MSE KS MSE KS MSE KS MSE KS MSE KS

RLS .033±.003 .55±.06 .107±.010 .15±.02 .153±.016 .73±.07 4.77±.49 .50±.05 2.24±.22 .14±.01

RLS+Berk .037±.004 .16±.02 .121±.013 .10±.01 .189±.019 .49±.05 5.28±.57 .32±.03 2.43±.23 .05±.01

RLS+Oneto .037±.004 .14±.01 .112±.012 .07±.01 .156±.016 .50±.05 5.02±.54 .23±.02 2.44±.26 .05±.01

RLS+Ours .041±.004 .12±.01 .141±.014 .02±.01 .203±.019 .09±.01 5.62±.52 .04±.01 2.98±.32 .02±.01

KRLS .024±.003 .52±.05 .040±.004 .09±.01 .061±.006 .58±.06 3.85±.36 .47±.05 1.43±.15 .10±.01

KRLS+Oneto .028±.003 .19±.02 .046±.004 .05±.01 .066±.007 .06±.01 4.07±.39 .18±.02 1.46±.13 .04±.01

KRLS+Perez .033±.003 .25±.02 .048±.005 .04±.01 .065±.007 .08±.01 3.97±.38 .14±.02 1.50±.15 .06±.01

KRLS+Ours .034±.004 .09±.01 .056±.005 .01±.01 .081±.008 .03±.01 4.46±.43 .03±.01 1.71±.16 .02±.01

RF .020±.002 .45±.04 .046±.005 .11±.01 .055±.006 .55±.06 3.59±.39 .45±.05 1.31±.13 .10±.01

RF+Raff .030±.003 .21±.02 .058±.006 .06±.01 .066±.006 .08±.01 4.28±.40 .09±.01 1.38±.12 .02±.01

RF+Agar .029±.003 .13±.01 .050±.005 .04±.01 .065±.006 .07±.01 3.87±.41 .07±.01 1.40±.13 .02±.01

RF+Ours .033±.003 .08±.01 .064±.006 .02±.01 .070±.007 .03±.01 4.18±.38 .02±.01 1.49±.14 .01±.01

Table 1: Results for all the datasets and all the methods concerning MSE and KS.

education of two Portuguese schools using 33 attributes [14], with gender as the protected attribute.
University Anonymous (UNIV) is a proprietary and highly sensitive dataset containing all the data
about the past and present students enrolled at the University of Anonymous. In this study we take
into consideration students who enrolled, in the academic year 2017-2018. The dataset contains 5000
instances, each one described by 35 attributes (both numeric and categorical) about ethnicity, gender,
financial status, and previous school experience. The scope is to predict the average grades at the end
of the first semester, with gender as the protected attribute.

Comparison w.r.t. state-of-the-art. In Table 1, we present the performance of different methods on
various datasets described above. One can notice that LAW and UNIV datasets have a least amount
of disciminatory bias (quantified by KS), since the fairness unaware methods perform reasonably
well in terms of KS. Furthermore, on these two datasets, the difference in performance between
all fairness aware methods is less noticeable. In contrast, on CRIME, NLSY, and STUD, fairness
unaware methods perform poorly in terms of KS. More importantly, our findings indicate that the
proposed method is competitive with state-of-the-art methods and is the most effective in imposing the
fairness constraint. In particular, in all except two considered scenarios (CRIME+RLS, CRIME+RF)
our method improves fairness by 50% (and up to 80% in some cases) over the closest fairness aware
method. In contrast, the accuracy of our method decreases by 1% up to 30% when compared to
the most accurate fairness aware method. However, let us emphasize that the relative decrease in
accuracy is much smaller than the relative improvement in fairness across the considered scenarios.
For example, on NLSY+RLS the most accurate fairness aware method is RLS+Oneto with mean
MSE=.156 and mean KS=.50, while RLS+Ours yields mean MSE=.203 and mean KS=.09. That
is, compared to RLS+Oneto our method drops about 30% in accuracy, while gains about 82% in
fairness. With RF, which is a more powerful estimator, the average drop in accuracy across all datasets
compared to RF+Agar is about 12% while the average improvement in fairness is about 53%.

6 Conclusion and perspectives

In this work we investigated the problem of fair regression with Demographic Parity constraint
assuming that the sensitive attribute is available for prediction. We derived a closed form solution
for the optimal fair predictor which offers a simple and intuitive interpretation. Relying on this
expression, we devised a post-processing procedure, which transforms any base estimator of the
regression function into a nearly fair one, independently of the underlying distribution. Moreover, if
the base estimator is accurate, our post-processing method yields an accurate estimator of the optimal
fair predictor as well. Finally, we conducted an empirical study indicating the effectiveness of our
method in imposing fairness in practice. In the future it would be valuable to extend our methodology
to the case when we are not allowed to use the sensitive feature as well as to other notions of fairness.
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Broader impact

This work investigates the problem of fair regression with multiple sensitive groups using tools
from statistical learning theory and optimal transport theory. Our results lead to an efficient learning
algorithm that we show empirically and theoretically to be very effective to impose fairness according
to the notion of Demographic Parity. Our approach is directly designed to mitigate potential bias
present in the data. Hence, even though the work is primarily theoretical, we anticipate that our
results could be used in the future by practitioners in order to specialize our methodology to real-life
scenarios involving individuals, and to potentially help making decision which help people with
disadvantages or minority groups.

We believe that the most important positive impact of our work is the intuitive interpretation of the
optimal fair prediction, which should help to reason as to why a given prediction was made for a given
individual. At the same time, this interpretation allows to understand the weaknesses of the notion of
Demographic Parity: if f∗ does not adequately reflect the group-wise ordering of individuals, the
optimal fair prediction g∗ might not lead to a fair prediction from individuals’ perspective. In other
words, returning to the salary example considered above, the notion of Demographic Parity reflects
the principle: more qualified individuals get higher salary within their respective groups.
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Supplementary material
The supplementary material is organized as follows. In Appendix A we provide the proof of
Theorem 2.3, in Appendix B we provide the proof of Proposition 4.1, and in Appendix C we prove
Theorem 4.4. For reader’s convenience all the results are repeated in this supplementary material and
a short overview of classical results is provided.

A Characterization of the optimal

Before providing the proof of Theorem 2.3, let us give a brief overview of classical results in the
Optimal transport theory with one dimensional measures; all the results can be found in [38, 41]
Definition 2.1 (Wasserstein-2 distance). Let µ and ν be two univariate probability measures. The
squared Wasserstein-2 distance between µ and ν is defined as

W2
2 (µ, ν) = inf

γ∈Γµ,ν

∫
|x− y|2 dγ(x, y) ,

where Γµ,ν is the set of distributions (couplings) on R × R such that for all γ ∈ Γµ,ν and all
measurable sets A,B ⊂ R it holds that γ(A× R) = µ(A) and γ(R×B) = ν(B).

The coupling γ which achieves the infimum in the definition of the Wasserstein-2 distance is called
the optimal coupling.

Also let us mention that the Wasserstein-2 distance between two univariate probability measures ν, µ,
defined in Definition 2.1, can be expressed as

W2
2 (µ, ν) = inf

γ
E(Zµ,Zν)∼γ(Zν − Zµ)2 ,

where Zν ∼ ν and Zµ ∼ µ and the infimum is taken over all joint distributions γ of (Zν , Zµ) which
preserve marginals.

The next result establishes that as long as one of the measures in the definition of the Wasserstein-2
distance admits a density, then the optimal coupling in the infimum in Definition 2.1 is deterministic
(see e.g., [41, Theorem 2.18] or [38, Theorems 2.5 and 2.9]).
Theorem A.1. Let ν, µ be two univariate measures such that ν has a density and let X ∼ ν. Then
there exists a mapping T : R→ R such

W2
2 (µ, ν) = E(X − T (X))2 ,

that is (X,T (X)) ∼ γ̄ ∈ Γµ,ν where γ̄ is an optimal coupling. Moreover, the transport map is given
by T = Qµ ◦ Fν .

By the abuse of notation, for an increasing real-valued univariate function F we will use F← to
denote its generalized inverse. For instance, if F : R → [0, 1] is a CDF, then F← is the quantile
function that was defined in the introduction.

The next result is standard and can be found for instance in [2, Section 6.1] or [38, Section 5.5.5]. It
states that for one dimensional Wasserstein barycenter problem, the optimal measure admits a closed
form solution.
Lemma A.2. Let ν1, . . . , ν|S| be |S| univariate probability measures admitting densities, for all
p1, . . . , p|S| ≥ 0 such that p1 + . . .+ p|S| = 1 define

ν∗ ∈ arg min
ν

|S|∑
s=1

psW2
2 (νs, ν) .

Then, the cumulative distribution of ν∗ is given by

Fν∗(·) =

 |S|∑
s=1

psQνs

← (·) .

Theorem A.1 and Lemma A.2 are the two main ingredients that are used in the proof of Theorem 2.3.
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Theorem 2.3 (Characterization of fair optimal prediction). Assume, for each s ∈ S, that the
univariate measure νf∗|s has a density and let ps = P(S = s). Then,

min
g is fair

E(f∗(X,S)− g(X,S))2 = min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) .

Moreover, if g∗ and ν∗ solve the l.h.s. and the r.h.s. problems respectively, then ν∗ = νg∗ and

g∗(x, s) =

(∑
s′∈S

ps′Qf∗|s′

)
◦ Ff∗|s (f∗(x, s)) . (3)

Proof of Theorem 2.3. We want to show that

min
g is fair

E(f∗(X,S)− g(X,S))2 = min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) .

Let ḡ : Rd×S → R be a minimizer of the l.h.s. of the above equation and define by νḡ the distribution
of ḡ. Since νf∗|s admits density, using Theorem A.1 for each s ∈ S there exists Ts = Qνḡ ◦ Ff∗|s
such that ∑

s∈S
psW2

2 (νf∗|s, νḡ) =
∑
s∈S

ps

∫
R

(z − Ts(z))2
dνf∗|s(z)

=
∑
s∈S

ps

∫
Rd

(f∗(x, s)− Ts ◦ f∗(x, s))2
dPX|S=s(x)

=
∑
s∈S

psE
[
(f∗(X, s)− (Ts ◦ f∗) (X, s))

2 |S = s
]

= E(f∗(X,S)− g̃(X,S))2 ,

where we defined g̃ for all (x, s) ∈ Rd × S as

g̃(x, s) = (Ts ◦ f∗) (x, s) =
(
Qνḡ ◦ Ff∗|s ◦ f∗

)
(x, s) .

The cumulative distribution of g̃ can be expressed as

P(g̃(X,S) ≤ t) =
∑
s∈S

psPX|S=s

(
Qνḡ ◦ Ff∗|s ◦ f∗(X, s) ≤ t

)
=
∑
s∈S

psPX|S=s

(
f∗(X, s) ≤ Qf∗|s ◦ Fνḡ (t)

)
= Fνḡ (t) ,

where the last equality is due to the fact that νf∗|s admits a density for all s ∈ S. The above implies
that g̃ is fair, thus on the one hand by optimality of ḡ we have

E(f∗(X,S)− g̃(X,S))2 ≥ E(f∗(X,S)− ḡ(X,S))2 ,

on the other hand we have for each s ∈ S
W2

2 (νf∗|s, νḡ) ≤ E
[
(f∗(X,S)− ḡ(X,S))

2 |S = s
]
.

Thus we showed that∑
s∈S

psW2
2 (νf∗|s, νḡ) = min

g is fair
E(f∗(X,S)− g(X,S))2 . (9)

This implies that

min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) ≤ min

g is fair
E(f∗(X,S)− g(X,S))2 . (10)

Now we want to show that the opposite inequality also holds. To this end define ν∗ as

ν∗ ∈ arg min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) .
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Set T ∗s as optimal transport maps from νf∗|s to ν∗ of the form T ∗s = Qν∗ ◦ Ff∗|s (provided by
Theorem A.1 and our assumption on the density of νf∗|s) and define g∗ for all (x, s) ∈ Rd × S as

g∗(x, s) =
(
Qν∗ ◦ Ff∗|s ◦ f∗

)
(x, s) . (11)

By the definition of g∗ in Eq. (11) and Theorem A.1 we clearly have

min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) = E(f∗(X,S)− g∗(X,S))2 . (12)

Moreover since ν∗ is independent from S, using similar argument as above one can show that g∗
satisfies the Demographic Parity constraint in Definition 2.2 and thus, Eq. (12) yields

min
ν

∑
s∈S

psW2
2 (νf∗|s, ν) ≥ min

g is fair
E(f∗(X,S)− g(X,S))2 . (13)

Eqs. (10) and (13) yield the first assertion of the result. Notice that thanks to Eq. (12) we have also
shown that

E(f∗(X,S)− g∗(X,S))2 = E(f∗(X,S)− ḡ(X,S))2 ,

and since g∗ is fair we can put ḡ = g∗. Finally, using Lemma A.2 we derive an explicit form of ν∗
and conclude using Eq. (11).

B Proof of Proposition 4.1

Let us first recall the well-known Dvoretzky–Kiefer–Wolfowitz inequality [33, Corollary 1].
Theorem B.1 (Dvoretzky–Kiefer–Wolfowitz inequality). Let Z1, . . . , Zn be i.i.d. real valued ran-
dom variables with cumulative distribution F . Let F̂ be the empirical cumulative distribution of
Z1, . . . , Zn, then

E‖F − F̂‖∞ := E sup
t∈R
|F (t)− F̂ (t)| ≤

√
π

2n
.

Proposition 4.1 (Fairness guarantees). For any joint distribution P of (X,S, Y ), any base estimator
f̂ constructed on labeled data, and for all s, s′ ∈ S, the estimator ĝ defined in Eq. (6) satisfies

sup
t∈R
|P(ĝ(X,S) ≤ t|S=s)−P(ĝ(X,S) ≤ t|S=s′)| ≤ 2 (Ns∧Ns′ + 2)

−1
1{Ns 6=Ns′} (7)

E sup
t∈R
|P(ĝ(X,S) ≤ t|S=s,D)−P(ĝ(X,S) ≤ t|S=s′,D)| ≤ 6 (Ns∧Ns′ + 1)

−1/2
. (8)

where D = L ∪ A ∪s∈S Us is the union of all available datasets.

Proof of Proposition 4.1. The proof of Eq. (7) is based on standard results in the theory of rank
statistics (see e.g. [40, Sec. 13]). Meanwhile, the proof of Eq. (8) is built upon the well-known
Dvoretzky–Kiefer–Wolfowitz inequality [33, Corollary 1].

Notice that if Xs ∼ PX|S=s and Xs is independent from labeled, unlabeled data, and the noise
variables εis, ε, then it holds that

P(ĝ(X,S) ≤ t|S = s) = P(ĝ(Xs, s) ≤ t), ∀t ∈ R .

Proof of Eq. (7): We have for all s, s′ ∈ S that

sup
t∈R

∣∣∣P(ĝ(Xs, s) ≤ t)−P(ĝ(Xs′ , s′) ≤ t)
∣∣∣

≤ sup
t∈(0,1)

∣∣∣P(F̂f̂ |s (f̂(Xs, s) + ε
)
≤ t
)
−P

(
F̂f̂ |s′

(
f̂(Xs′ , s′) + ε

)
≤ t
)∣∣∣ ,

where, thanks to the form of ĝ in Eq. (6), the inequality follows from the fact that for all s ∈ S(∑
s̃∈S

p̂s̃Q̂f̂ |s̃

)
◦ F̂f̂ |s

(
f̂(x, s) + ε

)
≤ t ⇔ F̂f̂ |s

(
f̂(x, s) + ε

)
≤
(∑
s̃∈S

p̂s̃Q̂f̂ |s̃

)←
(t) .
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Fix some t ∈ (0, 1) and let ks(t) ∈ {1, . . . , |Is1 |} be such that ks(t)−1
|Is1 |

≤ t < ks(t)
|Is1 |

, then by the

definition of F̂f̂ |s(·) we have

F̂f̂ |s

(
f̂(x, s) + ε

)
≤ t ⇔

∑
i∈Is1

1{f̂(Xsi ,s)+εis≤f̂(x,s)+ε} ≤ ks(t)− 1 .

Notice that the random variables {f̂(Xs, s) + ε} ∪ {f̂(Xs
i , s) + εis}i∈Is1 conditionally on

labeled data L are i.i.d. and continuous. Thus, conditionally on L the random variable∑
i∈Is1 1{f̂(Xsi ,s)+εis≤f̂(Xs,s)+ε} is distributed uniformly on {0, . . . , |Is1 |} (see e.g., [40, Lemma

13.1]), so that

P
(
F̂f̂ |s

(
f̂(Xs, s) + ε

)
≤ t
)

=
ks(t)

|Is1 |+ 1
.

Repeating the same argument for s′ and recalling that |Is1 | = Ns/2 and |Is′1 | = Ns′/2, we get

sup
t∈R

∣∣∣P(ĝ(Xs, s) ≤ t)−P(ĝ(Xs′ , s′) ≤ t)
∣∣∣ ≤ sup

t∈(0,1)

∣∣∣∣ ks(t)

Ns/2 + 1
− ks′(t)

Ns′/2 + 1

∣∣∣∣
= 2 (Ns ∧Ns′ + 2)

−1
1{Ns 6=Ns′} .

Proof of Eq. (8): Similarly, as in the proof of Eq. (7) we can write

(∗) = sup
t∈R

∣∣∣P(ĝs(X
s) ≤ t

∣∣D)−P(ĝs′(X
s′) ≤ t

∣∣D)
∣∣∣

≤ sup
t∈(0,1)

∣∣∣P(F̂f̂ |s (f̂(Xs, s) + ε
)
≤ t
∣∣D)−P

(
F̂f̂ |s′

(
f̂(Xs′ , s′) + ε

)
≤ t
∣∣D)∣∣∣ .

Moreover, thanks to the triangle inequality we have

(∗) ≤ sup
t∈(0,1)

∣∣∣P(F̂f̂ |s (f̂(Xs, s) + ε
)
≤ t
∣∣D)−P

(
Fν̄f̂|s

(
f̂(Xs, s) + ε

)
≤ t
∣∣D)∣∣∣

+ sup
t∈(0,1)

∣∣∣P(F̂f̂ |s′ (f̂(Xs′ , s′) + ε
)
≤ t
∣∣D)−P(Fν̄f̂|s′ (f̂(Xs′ , s′) + ε

)
≤ t
∣∣D)∣∣∣

= sup
t∈(0,1)

As(t) + sup
t∈(0,1)

As′(t) , (14)

where for all t ∈ R and all s ∈ S we defined

Fν̄f̂|s(t) = P
(
f̂(Xs, s) + ε ≤ t

∣∣D) ,

and we used the fact that f̂(Xs, s) + ε is continuous conditionally on all the available data D, then
the random variable Fν̄f̂|s

(
f̂(Xs, s) + ε

)
is distributed uniformly on (0, 1) (see e.g., [40, Lemma

21.1]), which means that for all t ∈ (0, 1) and all s, s′ ∈ S

t = P
(
Fν̄f̂|s

(
f̂(Xs, s) + ε

)
≤ t
∣∣D) = P

(
Fν̄f̂|s′

(
f̂(Xs′ , s′) + ε

)
≤ t
∣∣D) .

We bound the first term in Eq. (14) and the bound for the second terms follows the same arguments.
Fix some t ∈ (0, 1), then we can write

As(t) ≤ P

(∣∣∣Fν̄f̂|s (f̂(Xs, s) + ε
)
− t
∣∣∣ ≤ ∣∣∣Fν̄f̂|s (f̂(Xs, s) + ε

)
− F̂f̂ |s

(
f̂(Xs, s) + ε

)∣∣∣ ∣∣∣∣D)
≤ P

(∣∣∣Fν̄f̂|s (f̂(Xs, s) + ε
)
− t
∣∣∣ ≤ ∥∥∥Fν̄f̂|s − F̂f̂ |s∥∥∥∞

∣∣∣∣D) ≤ 2
∥∥∥Fν̄f̂|s − F̂f̂ |s∥∥∥∞ .

Taking supremum on both sides and repeating the same argument for s′, we get

(∗) ≤ 2E
∥∥∥Fν̄f̂|s − F̂f̂ |s∥∥∥∞ + 2E

∥∥∥Fν̄f̂|s′ − F̂f̂ |s′∥∥∥∞ ,

we conclude applying Dvoretzky–Kiefer–Wolfowitz inequality, recalled in Theorem B.1, condition-
ally on L.
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C Proof of Theorem 4.4

Let us first recall the assumptions that we require in order to prove Theorem 4.4.

Assumption 4.2. For each s ∈ S the univariate measure νf∗|s admits a density qs, which is lower
bounded by λs > 0 and upper-bounded by λs ≥ λs.
Assumption 4.3. There exist positive constants c and C independent from n, N , N1, . . . , N|S|, and
a positive sequence bn : N→ R+ such that for all δ > 0 it holds that

P
(
|f∗(x, s)− f̂(x, s)| ≥ δ

)
≤ c exp

(
−Cbnδ2

)
for almost all (x, s) w.r.t. PX,S .

The next simple result states that Assumption 4.3 yields a bound in L1-norm between f∗ and f̂ .

Lemma C.1. Let Assumption 4.3 be satisfied, then for all s ∈ S it holds that

E
[
|f∗(X,S)− f̂(X,S)||S = s

]
≤ Ab−1/2

n ,

with A = c
2

√
π
C .

Proof. Applying Fubini’s theorem we can write

E
[
|f∗(X,S)− f̂(X,S)||S = s

]
=

∫
x∈Rd

E|f∗(x, s)− f̂(x, s)|PX|S=s(dx)

=

∫
x∈Rd

(∫ +∞

0

P(|f∗(x, s)− f̂(x, s)| > t)dt

)
PX|S=s(dx)

(a)

≤
∫
x∈Rd

(∫ +∞

0

c exp
(
−Cbnt2

)
dt

)
PX|S=s(dx)

= c

∫ +∞

0

exp
(
−Cbnt2

)
dt .

where (a) follows from Assumption 4.3. Making change of variables we get

c

∫ +∞

0

exp
(
−Cbnt2

)
dt = c(Cbn)−1/2

∫ +∞

0

exp
(
−t2

)
dt = c(Cbn)−1/2

√
π

2
.

We also need to define Wasserstein 1 and∞ distances.

Definition C.2. Let µ and ν be two univariate probability measures, then Wasserstein 1 and ∞
distance between µ and ν are defined as

W1(µ, ν) =

∫ 1

0

|Qµ(t)−Qν(t)| dt and W∞(µ, ν) = sup
t∈[0,1]

|Qµ(t)−Qν(t)| ,

respectively.

Remark C.3. The definitions ofW1 andW∞ can be stated in terms of couplings as it is done in
Definition 2.1. However, for our purposes it is more convenient to use their equivalent formulation
stated in Definition C.2. We refer to [7] and in particular to their Theorem 2.10 for further details.

The final ingredient is [7, Theorem 5.11].

Theorem C.4. Let Z1, . . . , Zn be i.i.d. real valued random variables from some probability measure
µ and let µ̂ be the empirical measure based on Z1, . . . , Zn. Assume that µ admits density which is
lower-bounded by some constant L > 0, then

E[W∞(µ, µ̂)] ≤ L−1

√
2π

n
.
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Theorem 4.4 (Estimation guarantee). Let Assumptions 4.2 and 4.3 be satisfied, and set σ .
mins∈S N

−1/2
s ∧b−1/2

n , then the estimator ĝ defined in Eq. (6) satisfies

E |g∗(X,S)− ĝ(X,S)| . b−1/2
n

∨(∑
s∈S

psN
−1/2
s

)∨√
|S|
N

,

where the leading constant depends only on λs, λs, C, c from Assumptions 4.2 and 4.3.

Proof of Theorem 4.4. In the proof a > 0 is going to denote an absolute constant independent from
the size of data, which can differ from line to line. First of all, define the random variable

∆(ĝ) = E |ĝ(X,S)− g∗(X,S)| =
∑
s∈S

psE [|ĝ(X, s)− g∗(X, s)| |S = s] ,

where E stands for the expectation w.r.t. the joint distribution of (X,S, Y ). Recall that

g∗(x, s) =
∑
s′∈S

ps′Qf∗|s′
(
Ff∗|s (f∗(x, s))

)
and ĝ(x, s) =

∑
s′∈S

p̂s′Q̂f̂ |s′
(
F̂f̂ |s

(
f̂(x, s) + ε

))
.

Considering g∗(x, s) first, we can state that∣∣∣∣∣g∗(x, s)−∑
s′∈S

p̂s′Qf∗|s′
(
Ff∗|s (f∗(x, s))

)∣∣∣∣∣ ≤∑
s′∈S
|ps′ − p̂s′ | ×

∣∣Qf∗|s′ ◦ Ff∗|s ◦ f∗(x, s)∣∣ .
It is clear that if we can find a bound on |f∗(x, s′)| which holds for almost all x w.r.t. PX|S=s′ , it
would imply an upper bound on |Qf∗|s′(t)| for all t ∈ [0, 1]. Fix some a > 0, then on the one hand
for all s′ ∈ S

P(|f∗(X,S)| ≤ a|S = s′) ≤ 1 ,

on the other hand under Assumption 4.2 we can write for all s′ ∈ S

P(|f∗(X,S)| ≤ a|S=s′) =

∫
|f∗(x,s′)|≤a

PX|S=s′(dx) =

∫
|t|≤a

qs′(t)dt ≥ λs′
∫
|t|≤a

dt = 2aλs′ ,

which implies that a ≤ 1/(2λs′) and therefore |f∗(x, s′)| ≤ 1/(2λs′) for almost all x ∈ Rd
w.r.t. PX|S=s′ . Hence, we can write for all (x, s) ∈ Rd × S∣∣∣∣∣g∗(x, s)−∑

s′∈S
p̂s′Qf∗|s′

(
Ff∗|s (f∗(x, s))

)∣∣∣∣∣ ≤ 1

2

∑
s′∈S

λ−1
s′ |ps′ − p̂s′ | .

The above implies that

∆(ĝ) ≤
∑
s∈S

ps
∑
s′∈S

p̂s′E
[∣∣∣Qf∗|s′ (Ff∗|s (f∗(X,S))

)
− Q̂f̂ |s′

(
F̂f̂ |s

(
f̂(X, s) + ε

))∣∣∣ |S = s
]

+
1

2

∑
s∈S

λ−1
s |ps − p̂s| .

Taking the total expectation we arrive at

E[∆(ĝ)] ≤
∑
s,s′∈S

psps′E
[∣∣∣Qf∗|s′ (Ff∗|s (f∗(X,S))

)
− Q̂f̂ |s′

(
F̂f̂ |s

(
f̂(X,S) + ε

))∣∣∣ |S = s
]

+
1

2

∑
s∈S

λ−1
s E |ps − p̂s| ,

where we used the fact that p̂s is an unbiased estimator of ps. For all s ∈ S let Xs ∼ PX|S=s be
independent from everything, for all s′, s ∈ S set the shorthand notation

ass′ = E
∣∣∣Qf∗|s′ (Ff∗|s (f∗(Xs, s))

)
− Q̂f̂ |s′

(
F̂f̂ |s

(
f̂(Xs, s) + ε

))∣∣∣ .
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Notice that

ass′ = E
[∣∣∣Qf∗|s′ (Ff∗|s (f∗(X,S))

)
− Q̂f̂ |s′

(
F̂f̂ |s

(
f̂(X,S) + ε

))∣∣∣ |S = s
]
,

and therefore we can write

E |ĝ(X,S)− g∗(X,S)| = E[∆(ĝ)] ≤
∑
s,s′∈S

psps′ass′ +
1

2

∑
s∈S

λ−1
s E |ps − p̂s| .

Notice that the term E |ps − p̂s| = N−1E|Nps − V |, where V is the binomial random variable
with parameters (N, ps), thus using the Cauchy–Schwarz inequality we can write E |ps − p̂s| ≤
N−1

√
Var(V ) =

√
ps(1− ps)/N and the above bound reads as

E |ĝ(X,S)− g∗(X,S)| ≤
∑
s,s′∈S

psps′ass′ +
1

2

∑
s∈S

λ−1
s

√
ps(1− ps)

N

≤
∑
s,s′∈S

psps′ass′ +
N−1/2

2
max
s∈S

λ−1
s

∑
s∈S

√
ps(1− ps) . (15)

It remains to bound ass′ for each s, s′ ∈ S. Fix some s, s′ ∈ S (they can be equal), then

ass′ ≤E
∣∣∣Q̂f∗|s′ (F̂f̂ |s (f̂(Xs, s) + ε

))
− Q̂f̂ |s′

(
F̂f̂ |s

(
f̂(Xs, s) + ε

))∣∣∣︸ ︷︷ ︸
a

1
ss′

+ E
∣∣∣Qf∗|s′ (F̂f̂ |s (f̂(Xs, s) + ε

))
− Q̂f∗|s′

(
F̂f̂ |s

(
f̂(Xs, s) + ε

))∣∣∣︸ ︷︷ ︸
a

2
ss′

(16)

+ E
∣∣∣Qf∗|s′ (Ff∗|s (f∗(Xs, s))

)
−Qf∗|s′

(
F̂f̂ |s

(
f̂(Xs, s) + ε

))∣∣∣︸ ︷︷ ︸
a

3
ss′

.

We bound each of the three terms separately.

First term (a1
ss′): Notice that F̂f̂ |s

(
f̂(Xs, s) + ε

)
is distributed uniformly on

{0, 1/|Is1 |, 2/|Is1 |, . . . , 1} conditionally on labeled data L (see e.g., [40, Lemma 13.1]).
Thus, we have

a
1
ss′ =

1

|Is1 |+ 1

|Is1 |∑
j=0

E

∣∣∣∣Q̂f∗|s′ ( j

|Is1 |

)
− Q̂f̂ |s′

(
j

|Is1 |

)∣∣∣∣ . (17)

Notice that for all j ∈ {1, . . . , |Is1 |} and all α ∈ ((j − 1)/|Is1 |, j/|Is1 |] it holds that

Q̂f∗|s′

(
j

|Is1 |

)
= Q̂f∗|s′ (α) .

The above implies that

1

|Is1 |
Q̂f∗|s′

(
j

|Is1 |

)
=

∫ (j+1)/|Is1 |

j/|Is1 |
Q̂f∗|s′ (α) dα , (18)

and the same argument repeated for Q̂f̂ |s′ implies that

1

|Is1 |
Q̂f̂ |s′

(
j

|Is1 |

)
=

∫ (j+1)/|Is1 |

j/|Is1 |
Q̂f̂ |s′ (α) dα . (19)

Substituting Eqs. (18)-(19) in Eq. (17) and using Definition C.2 we get

a
1
ss′ ≤ 2E

∫ 1

0

∣∣∣Q̂f∗|s′ (α)− Q̂f̂ |s′ (α)
∣∣∣ dα = 2EW1(ν̂0

f∗|s′ , ν̂
0
f̂ |s′) ,

18



where for j = 0 in Eq. (17) we used the fact that 1
|Is1 |

E|Q̂f∗|s′ (0)− Q̂f̂ |s′ (0)| ≤ E
∫ 1

0
|Q̂f∗|s′ (α)−

Q̂f̂ |s′ (α)|dα. Using the coupling definition of the Wasserstein distance and the way we have defined
ν̂0
f |s′ , we can write

W1(ν̂0
f∗|s′ , ν̂

0
f̂ |s′) ≤

1

|Is′0 |
∑
i∈Is′0

∣∣∣f∗(Xs′

i , s
′) + εis′ − (f̂(Xs′

i , s
′) + εis′)

∣∣∣ ,
almost surely. Since {Xs′

i }i∈Is′0 are i.i.d. from PX|S=s′ , then conditionally on L the random variables

{|f∗(Xs′

i , s)− f̂(Xs′

i , s
′)|}i∈Is′0 are i.i.d. . Furthermore, using Lemma C.1 we can write

a
1
ss′ ≤ 2EW1(ν̂0

f∗|s′ , ν̂
0
f̂ |s′) ≤ 2E

[∣∣∣f∗(X,S)− f̂(X,S)
∣∣∣ ∣∣S = s′

] Lemma C.1
≤ 2Ab−1/2

n . (20)

Second term (a2
ss′ ): Note that under Assumption 4.2, the Lipschitz constant of Qf∗|s′ is upper

bounded by λ−1
s′ . Then, taking supremum and using Definition C.2 we apply Theorem C.4 to get

a
2
ss′ ≤ EW∞

(
νf∗|s′ , ν̂

0
f∗|s′

)
≤ aλ−1

s′ N
−1/2
s′ . (21)

where a is an absolute positive constant (a = 2
√

2π is sufficient).

Third term (a3
ss′ ): We can write, using Assumption 4.2 that

a
3
ss′ ≤λ−1

s′ E
∣∣∣Ff∗|s (f∗(Xs, s))− F̂f̂ |s

(
f̂(Xs, s) + ε

)∣∣∣
≤λ−1

s′ E
∣∣∣Ff∗|s (f∗(Xs, s))−Fν̄f̂|s

(
f̂(Xs, s)+ε

)∣∣∣+ λ−1
s′ E‖Fν̄f̂|s(t)− F̂f̂ |s (t)‖∞ , (22)

with Fν̄f̂|s defined for all s ∈ S and all t ∈ R as

Fν̄f̂|s(t) = P
(
f̂(Xs, s) + ε ≤ t

∣∣L) . (23)

The second term in Eq. (22) is bounded by . 2λ−1
s′ N

−1/2
s thanks to the Dvoretzky–Kiefer–Wolfowitz

inequality recalled in Theorem B.1. Thus, it remains to bound the first term in Eq. (22). We introduce
the following shorthand notation for the first term in Eq. (22)

(∗) = E
∣∣∣Ff∗|s (f∗(Xs, s))− Fν̄f̂|s

(
f̂(Xs, s) + ε

)∣∣∣ .
Let X̃s ∼ PX|S=s and ε̃ ∼ U [−σ, σ] be independent from ε,Xs, L and each other. Based on this
notation we can write

(∗)=E

∣∣∣∣P(f∗(X̃s, s)−f∗(Xs, s)≤0
∣∣ε,Xs,L

)
︸ ︷︷ ︸

H0

−P
(
f̂(X̃s, s)+ε̃≤f̂(Xs, s)+ε

∣∣ε,Xs,L
)

︸ ︷︷ ︸
H1

∣∣∣∣ . (24)

Furthermore, if ∆(Xs) = f∗(Xs, s)− f̂(Xs, s), ∆(X̃s) = f∗(X̃s, s)− f̂(X̃s, s), and ∆ε = ε− ε̃,
then simple algebra yields

H1 = P
(
f∗(X̃s, s)− f∗(Xs, s) ≤ ∆ε + ∆(X̃s)−∆(Xs)

∣∣ε,Xs,L
)
.

For all a, b ∈ R it holds that |1{a≤0} − 1{a≤b}| ≤ 1{0∧b≤a≤0∨b} ≤ 1{−|b|≤a≤|b|} = 1{|a|≤|b|}.
Applying this fact to Eq. (24) with a = f∗(X̃s, s)− f∗(Xs, s) and b = ∆ε + ∆(X̃s)−∆(Xs) we
get

(∗) ≤P
(∣∣∣f∗(X̃s, s)− f∗(Xs, s)

∣∣∣ ≤ ∣∣∆ε

∣∣+
∣∣∆(X̃s)

∣∣+
∣∣∆(Xs)

∣∣)
≤P

(∣∣∣f∗(X̃s, s)− f∗(Xs, s)
∣∣∣ ≤ 3

∣∣∆ε

∣∣)+ P
(∣∣∣f∗(X̃s, s)− f∗(Xs, s)

∣∣∣ ≤ 3
∣∣∆(X̃s)

∣∣)
+ P

(∣∣∣f∗(X̃s, s)− f∗(Xs, s)
∣∣∣ ≤ 3

∣∣∆(Xs)
∣∣) .
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By definition of X̃s the random variables Xs, X̃s are exchangeable, hence

P(|f∗(X̃s, s)− f∗(Xs, s)| ≤ 3|∆(X̃s)|) = P(|f∗(X̃s, s)− f∗(Xs, s)| ≤ 3|∆(Xs)|) .

Furthermore, using the fact that |ε− ε̃| ≤ 2σ almost surely we get

(∗) ≤ P
(∣∣∣f∗(X̃s, s)−f∗(Xs, s)

∣∣∣ ≤ 6σ
)

+ 2P
(∣∣∣f∗(X̃s, s)−f∗(Xs, s)

∣∣∣ ≤ 3
∣∣∆(Xs)

∣∣) . (25)

Thanks to Assumption 4.2 we have the following bound on the first term in Eq. (25)

P
(
|f∗(X̃s, s)− f∗(Xs, s)| ≤ 6σ

)
≤ E

[
P
(
|f∗(X̃s, s)− f∗(Xs, s)| ≤ 6σ|Xs

)]
≤ 12λsσ .

For the second term in Eq. (25), we observe that Assumption 4.2 yields almost surely

P
(
|f∗(X̃s, s)− f∗(Xs, s)| ≤ 3

∣∣∆(Xs)
∣∣∣∣L, Xs

)
≤ 6λs

∣∣∆(Xs)
∣∣ .

Thus, taking the total expectation on both sides of this inequality we get

P
(
|f∗(X̃s, s)− f∗(Xs, s)| ≤ 3

∣∣∆(Xs)
∣∣) ≤ 6λsE

∣∣∆(Xs)
∣∣ Lemma C.1
≤ 6λsAb

−1/2
n .

Since σ . b
−1/2
n , then we have demonstrated that (∗) . λsb

−1/2
n . Substituting this bound into

Eq. (22), we derive that

a
3
ss′ . λ−1

s′ λsb
−1/2
n + λ−1

s′ N
−1/2
s . (26)

Gathering three terms together: Finally, substituting Eqs. (20), (21), (26) into Eq. (16) we get

ass′ . b−1/2
n + λ−1

s′ λsb
−1/2
n + λ−1

s′ N
−1/2
s′ + λ−1

s′ N
−1/2
s .

Finally, substituting the bound above into Eq. (15) we arrive at

E |ĝ(X,S)− g∗(X,S)| .b−1/2
n +

(∑
s∈S

psλ
−1
s

)(∑
s∈S

psλs

)
b−1/2
n

+
∑
s∈S

psλ
−1
s N−1/2

s +

(∑
s∈S

psλ
−1
s

)(∑
s∈S

psN
−1/2
s

)
+N−1/2 max

s∈S
λ−1
s

∑
s∈S

√
ps(1− ps)

.b−1/2
n +

∑
s∈S

psN
−1/2
s +

√
|S|N−1/2 ,

where in the last inequality we used the fact that∑
s∈S

√
ps(1− ps) ≤

∑
s∈S

√
ps ≤

√
|S|
√∑
s∈S

ps =
√
|S| .

This ends the proof.

Remark C.5. Notice that the exact constant in front of the rate of convergence in Theorem 4.4 can
be recovered following the proof. Furthermore, this proof can be extended to control Lp norm

(E|g∗(X,S)− ĝ(X,S)|p)1/p
,

for all p ∈ [1,∞) (the current proof deals only with p = 1). To achieve it one only needs to extend
Lemma C.1 while the rest of the proof follows line-by-line using deviation results on Wasserstein-p
distance on the real line [7]. Finally, it is possible to extend this result under the same assumptions
to control E ‖g∗ − ĝ‖∞, which induces an extra multiplicative polylogarithmic factor in b−1/2

n .
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