303 research outputs found

    Fages' Theorem and Answer Set Programming

    Full text link
    We generalize a theorem by Francois Fages that describes the relationship between the completion semantics and the answer set semantics for logic programs with negation as failure. The study of this relationship is important in connection with the emergence of answer set programming. Whenever the two semantics are equivalent, answer sets can be computed by a satisfiability solver, and the use of answer set solvers such as smodels and dlv is unnecessary. A logic programming representation of the blocks world due to Ilkka Niemelae is discussed as an example

    Fages\u27 Theorem and Answer Set Programming

    Get PDF
    We generalize a theorem by François Fages that describes the relationship between the completion semantics and the answer set semantics for logic programs with negotiation as failure. The study of this relationship is important in connection with the emergence of answer set programming. Whenever the two semantics are equivalent, answer sets can be computed by a satisfiability solver, and the use of answer set solvers such as SMODELS and DLV is unnecessary. A logic programming representation of the blocks world due to Ilkka Niemelä is discussed as an example

    Tight Logic Programs

    Full text link
    This note is about the relationship between two theories of negation as failure -- one based on program completion, the other based on stable models, or answer sets. Francois Fages showed that if a logic program satisfies a certain syntactic condition, which is now called ``tightness,'' then its stable models can be characterized as the models of its completion. We extend the definition of tightness and Fages' theorem to programs with nested expressions in the bodies of rules, and study tight logic programs containing the definition of the transitive closure of a predicate.Comment: To appear in Special Issue of the Theory and Practice of Logic Programming Journal on Answer Set Programming, 200

    On finitely recursive programs

    Full text link
    Disjunctive finitary programs are a class of logic programs admitting function symbols and hence infinite domains. They have very good computational properties, for example ground queries are decidable while in the general case the stable model semantics is highly undecidable. In this paper we prove that a larger class of programs, called finitely recursive programs, preserves most of the good properties of finitary programs under the stable model semantics, namely: (i) finitely recursive programs enjoy a compactness property; (ii) inconsistency checking and skeptical reasoning are semidecidable; (iii) skeptical resolution is complete for normal finitely recursive programs. Moreover, we show how to check inconsistency and answer skeptical queries using finite subsets of the ground program instantiation. We achieve this by extending the splitting sequence theorem by Lifschitz and Turner: We prove that if the input program P is finitely recursive, then the partial stable models determined by any smooth splitting omega-sequence converge to a stable model of P.Comment: 26 pages, Preliminary version in Proc. of ICLP 2007, Best paper awar

    Backdoors to Normality for Disjunctive Logic Programs

    Full text link
    Over the last two decades, propositional satisfiability (SAT) has become one of the most successful and widely applied techniques for the solution of NP-complete problems. The aim of this paper is to investigate theoretically how Sat can be utilized for the efficient solution of problems that are harder than NP or co-NP. In particular, we consider the fundamental reasoning problems in propositional disjunctive answer set programming (ASP), Brave Reasoning and Skeptical Reasoning, which ask whether a given atom is contained in at least one or in all answer sets, respectively. Both problems are located at the second level of the Polynomial Hierarchy and thus assumed to be harder than NP or co-NP. One cannot transform these two reasoning problems into SAT in polynomial time, unless the Polynomial Hierarchy collapses. We show that certain structural aspects of disjunctive logic programs can be utilized to break through this complexity barrier, using new techniques from Parameterized Complexity. In particular, we exhibit transformations from Brave and Skeptical Reasoning to SAT that run in time O(2^k n^2) where k is a structural parameter of the instance and n the input size. In other words, the reduction is fixed-parameter tractable for parameter k. As the parameter k we take the size of a smallest backdoor with respect to the class of normal (i.e., disjunction-free) programs. Such a backdoor is a set of atoms that when deleted makes the program normal. In consequence, the combinatorial explosion, which is expected when transforming a problem from the second level of the Polynomial Hierarchy to the first level, can now be confined to the parameter k, while the running time of the reduction is polynomial in the input size n, where the order of the polynomial is independent of k.Comment: A short version will appear in the Proceedings of the Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI'13). A preliminary version of the paper was presented on the workshop Answer Set Programming and Other Computing Paradigms (ASPOCP 2012), 5th International Workshop, September 4, 2012, Budapest, Hungar

    Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms

    Full text link
    In this paper, we present two alternative approaches to defining answer sets for logic programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches generalize the fixpoint-based and the level mapping based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of c-atoms. The results are four different answer set definitions which are equivalent when applied to normal logic programs. The standard fixpoint-based semantics of logic programs is generalized in two directions, called answer set by reduct and answer set by complement. These definitions, which differ from each other in the treatment of negation-as-failure (naf) atoms, make use of an immediate consequence operator to perform answer set checking, whose definition relies on the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other two definitions, called strongly and weakly well-supported models, are generalizations of the notion of well-supported models of normal logic programs to the case of programs with c-atoms. As for the case of fixpoint-based semantics, the difference between these two definitions is rooted in the treatment of naf atoms. We prove that answer sets by reduct (resp. by complement) are equivalent to weakly (resp. strongly) well-supported models of a program, thus generalizing the theorem on the correspondence between stable models and well-supported models of a normal logic program to the class of programs with c-atoms. We show that the newly defined semantics coincide with previously introduced semantics for logic programs with monotone c-atoms, and they extend the original answer set semantics of normal logic programs. We also study some properties of answer sets of programs with c-atoms, and relate our definitions to several semantics for logic programs with aggregates presented in the literature

    On Relation between Constraint Answer Set Programming and Satisfiability Modulo Theories

    Full text link
    Constraint answer set programming is a promising research direction that integrates answer set programming with constraint processing. It is often informally related to the field of satisfiability modulo theories. Yet, the exact formal link is obscured as the terminology and concepts used in these two research areas differ. In this paper, we connect these two research areas by uncovering the precise formal relation between them. We believe that this work will booster the cross-fertilization of the theoretical foundations and the existing solving methods in both areas. As a step in this direction we provide a translation from constraint answer set programs with integer linear constraints to satisfiability modulo linear integer arithmetic that paves the way to utilizing modern satisfiability modulo theories solvers for computing answer sets of constraint answer set programs.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Towards a unified theory of logic programming semantics: Level mapping characterizations of selector generated models

    Full text link
    Currently, the variety of expressive extensions and different semantics created for logic programs with negation is diverse and heterogeneous, and there is a lack of comprehensive comparative studies which map out the multitude of perspectives in a uniform way. Most recently, however, new methodologies have been proposed which allow one to derive uniform characterizations of different declarative semantics for logic programs with negation. In this paper, we study the relationship between two of these approaches, namely the level mapping characterizations due to [Hitzler and Wendt 2005], and the selector generated models due to [Schwarz 2004]. We will show that the latter can be captured by means of the former, thereby supporting the claim that level mappings provide a very flexible framework which is applicable to very diversely defined semantics.Comment: 17 page
    • …
    corecore