759 research outputs found

    Robustness: A New US Cyber Deterrence Strategy

    Get PDF
    The growing trend of computer network attacks provokes the necessity for a comprehensive cyber deterrence strategy to deter aggressors from attacking U.S. critical infrastructure. The current U.S. cyber deterrence strategy based on punishment is ineffective in deterring aggressors as evidenced by the increasing number of computer network attacks against U.S. critical infrastructure. Therefore, the U.S. should look towards an alternative strategy based on robustness to deny enemy objectives and absorb attacks. To identify the superior cyber deterrence strategy, this study uses a qualitative assessment based on open-sourced information to evaluate the effectiveness of each strategy. The findings of this study show that a deterrence strategy centered on robustness can be more effective in deterring aggressors. As a result, the United States would be better served to reform its cyber deterrence strategy by establishing a capability to absorb computer network attacks and deny enemy objectives as a deterrent

    Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid

    Get PDF
    The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and machine-learning techniques for addressing the reliability and security issues residing at multiple layers of the smart grid, including power distribution system reliability forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber attack detection in the Advanced Metering Infrastructure (AMI) and renewable resources. This dissertation first comprehensively investigates the combined effect of various weather parameters on the reliability performance of the smart grid, and proposes a multilayer perceptron (MLP)-based framework to forecast the daily number of power interruptions in the distribution system using time series of common weather data. Regarding evaluating the risk of cyber-physical attacks faced by the smart grid, a stochastic budget allocation game is proposed to analyze the strategic interactions between a malicious attacker and the grid defender. A reinforcement learning algorithm is developed to enable the two players to reach a game equilibrium, where the optimal budget allocation strategies of the two players, in terms of attacking/protecting the critical elements of the grid, can be obtained. In addition, the risk of the cyber-physical attack can be derived based on the successful attack probability to various grid elements. Furthermore, this dissertation develops a multimodal data-driven framework for the cyber attack detection in the power distribution system integrated with renewable resources. This approach introduces the spare feature learning into an ensemble classifier for improving the detection efficiency, and implements the spatiotemporal correlation analysis for differentiating the attacked renewable energy measurements from fault scenarios. Numerical results based on the IEEE 34-bus system show that the proposed framework achieves the most accurate detection of cyber attacks reported in the literature. To address the electricity theft in the AMI, a Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis for initial diagnostics on large smart meter data. A Stackelberg game between utility and multiple electricity thieves is then formulated to model the electricity theft actions. Finally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters

    ICT aspects of power systems and their security

    Get PDF
    This report provides a deep description of four complex Attack Scenarios that have as final goal to produce damage to the Electric Power Transmission System. The details about protocols used, vulnerabilities, devices etc. have been for obvious reasons hidden, and the ones presented have to be understood as mere (even if realistic) simplified versions of possible power systems.JRC.DG.G.6-Security technology assessmen

    A Taxonomy for Risk Assessment of Cyberattacks on Critical Infrastructure (TRACI)

    Get PDF
    Cybercrime against critical infrastructure such as nuclear reactors, power plants, and dams has been increasing in frequency and severity. Recent literature regarding these types of attacks has been extensive but due to the sensitive nature of this field, there is very little empirical data. We address these issues by integrating Routine Activity Theory and Rational Choice Theory, and we create a classification tool called TRACI (Taxonomy for Risk Assessment of Cyberattacks on Critical Infrastructure). We take a Design Science Research approach to develop, evaluate, and refine the proposed artifact. We use mix methods to demonstrate that our taxonomy can successfully capture the characteristics of various cyberattacks against critical infrastructure. TRACI consists of three dimensions, and each dimension contains its own subdimensions. The first dimension comprises of hacker motivation, which can be financial, socio-cultural, thrill-seeking, and/or economic. The second dimension represents the assets such as cyber, physical, and/or cyber-physical components. The third dimension is related to threats, vulnerabilities, and controls that are fundamental to establishing and maintaining an information security posture and overall cyber resilience. Our work is among the first to utilize criminological theories and Design Science to create an empirically validated artifact for improving critical infrastructure risk management

    Evaluating Information Assurance Control Effectiveness on an Air Force Supervisory Control and Data Acquisition (SCADA) System

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are increasingly being connected to corporate networks which has dramatically expanded their attack surface to remote cyber attack. Adversaries are targeting these systems with increasing frequency and sophistication. This thesis seeks to answer the research question addressing which Information Assurance (IA) controls are most significant for network defenders and SCADA system managers/operators to focus on in order to increase the security of critical infrastructure systems against a Stuxnet-like cyber attack. This research applies the National Institute of Science and Technology (NIST) IA controls to an attack tree modeled on a remote Stuxnet-like cyber attack against the WPAFB fuels operation. The probability of adversary success of specific attack scenarios is developed via the attack tree. Then an impact assessment is obtained via a survey of WPAFB fuels operation subject matter experts (SMEs). The probabilities of adversary success and impact analysis are used to create a Risk Level matrix, which is analyzed to identify recommended IA controls. The culmination of this research identified 14 IA controls associated with mitigating an adversary from gaining remote access and deploying an exploit as the most influential for SCADA managers, operators and network defenders to focus on in order to maximize system security against a Stuxnet-like remote cyber attack
    • …
    corecore