5,593 research outputs found

    Factoring Polynomials over Finite Fields using Balance Test

    Get PDF
    We study the problem of factoring univariate polynomials over finite fields. Under the assumption of the Extended Riemann Hypothesis (ERH), (Gao, 2001) designed a polynomial time algorithm that fails to factor only if the input polynomial satisfies a strong symmetry property, namely square balance. In this paper, we propose an extension of Gao's algorithm that fails only under an even stronger symmetry property. We also show that our property can be used to improve the time complexity of best deterministic algorithms on most input polynomials. The property also yields a new randomized polynomial time algorithm

    Character Sums and Deterministic Polynomial Root Finding in Finite Fields

    Full text link
    We obtain a new bound of certain double multiplicative character sums. We use this bound together with some other previously obtained results to obtain new algorithms for finding roots of polynomials modulo a prime pp

    Factorization of Z-homogeneous polynomials in the First (q)-Weyl Algebra

    Full text link
    We present algorithms to factorize weighted homogeneous elements in the first polynomial Weyl algebra and qq-Weyl algebra, which are both viewed as a Z\mathbb{Z}-graded rings. We show, that factorization of homogeneous polynomials can be almost completely reduced to commutative univariate factorization over the same base field with some additional uncomplicated combinatorial steps. This allows to deduce the complexity of our algorithms in detail. Furthermore, we will show for homogeneous polynomials that irreducibility in the polynomial first Weyl algebra also implies irreducibility in the rational one, which is of interest for practical reasons. We report on our implementation in the computer algebra system \textsc{Singular}. It outperforms for homogeneous polynomials currently available implementations dealing with factorization in the first Weyl algebra both in speed and elegancy of the results.Comment: 26 pages, Singular implementation, 2 algorithms, 1 figure, 2 table

    Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

    Full text link
    In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if fF[x1,x2,,xn]f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}] is a polynomial with ss monomials, with individual degrees of its variables bounded by dd, then ff can be deterministically factored in time spoly(d)logns^{\mathrm{poly}(d) \log n}. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of d=1d=1 and d=2d=2, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if ff is an ss-sparse polynomial in nn variables, with individual degrees of its variables bounded by dd, then the sparsity of each factor of ff is bounded by sO(d2logn)s^{O({d^2\log{n}})}. This is the first nontrivial bound on factor sparsity for d>2d>2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials

    The Minimal Resultant Locus

    Full text link
    Let K be a complete, algebraically closed nonarchimedean valued field, and let f(z) in K(z) be a rational function of degree d at least 2. We give an algorithm to determine whether f(z) has potential good reduction over K, based on a geometric reformulation of the problem using the Berkovich Projective Line. We show the minimal resultant is is either achieved at a single point in the Berkovich line, or on a segment, and that minimal resultant locus is contained in the tree in spanned by the fixed points and the poles of f(z). When f(z) is defined over the rationals, the algorithm runs in probabilistic polynomial time. If f(z) has potential good reduction, and is defined over a subfield H of K, we show there is an extension L/H in K with degree at most (d + 1)^2 such that f(z) achieves good reduction over L.Comment: 37 page
    corecore