1,236 research outputs found

    Factoring variations in natural images with deep Gaussian mixture models

    Get PDF
    Generative models can be seen as the swiss army knives of machine learning, as many problems can be written probabilistically in terms of the distribution of the data, including prediction, reconstruction, imputation and simulation. One of the most promising directions for unsupervised learning may lie in Deep Learning methods, given their success in supervised learning. However, one of the cur- rent problems with deep unsupervised learning methods, is that they often are harder to scale. As a result there are some easier, more scalable shallow meth- ods, such as the Gaussian Mixture Model and the Student-t Mixture Model, that remain surprisingly competitive. In this paper we propose a new scalable deep generative model for images, called the Deep Gaussian Mixture Model, that is a straightforward but powerful generalization of GMMs to multiple layers. The parametrization of a Deep GMM allows it to efficiently capture products of vari- ations in natural images. We propose a new EM-based algorithm that scales well to large datasets, and we show that both the Expectation and the Maximization steps can easily be distributed over multiple machines. In our density estimation experiments we show that deeper GMM architectures generalize better than more shallow ones, with results in the same ballpark as the state of the art

    Generative Image Modeling Using Spatial LSTMs

    Full text link
    Modeling the distribution of natural images is challenging, partly because of strong statistical dependencies which can extend over hundreds of pixels. Recurrent neural networks have been successful in capturing long-range dependencies in a number of problems but only recently have found their way into generative image models. We here introduce a recurrent image model based on multi-dimensional long short-term memory units which are particularly suited for image modeling due to their spatial structure. Our model scales to images of arbitrary size and its likelihood is computationally tractable. We find that it outperforms the state of the art in quantitative comparisons on several image datasets and produces promising results when used for texture synthesis and inpainting

    A note on the evaluation of generative models

    Full text link
    Probabilistic generative models can be used for compression, denoising, inpainting, texture synthesis, semi-supervised learning, unsupervised feature learning, and other tasks. Given this wide range of applications, it is not surprising that a lot of heterogeneity exists in the way these models are formulated, trained, and evaluated. As a consequence, direct comparison between models is often difficult. This article reviews mostly known but often underappreciated properties relating to the evaluation and interpretation of generative models with a focus on image models. In particular, we show that three of the currently most commonly used criteria---average log-likelihood, Parzen window estimates, and visual fidelity of samples---are largely independent of each other when the data is high-dimensional. Good performance with respect to one criterion therefore need not imply good performance with respect to the other criteria. Our results show that extrapolation from one criterion to another is not warranted and generative models need to be evaluated directly with respect to the application(s) they were intended for. In addition, we provide examples demonstrating that Parzen window estimates should generally be avoided

    Deep Gaussian Mixture Models

    Get PDF
    Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture thus resulting in deep mixtures of factor analysers.Comment: 19 pages, 4 figure
    • …
    corecore