4 research outputs found

    Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care

    Get PDF
    The observed physiological dynamics of an infant receiving intensive care are affected by many possible factors, including interventions to the baby, the operation of the monitoring equipment and the state of health. The Factorial Switching Kalman Filter can be used to infer the presence of such factors from a sequence of observations, and to estimate the true values where these observations have been corrupted. We apply this model to clinical time series data and show it to be effective in identifying a number of artifactual and physiological patterns

    Visual motion estimation and tracking of rigid bodies by physical simulation

    Get PDF
    This thesis applies knowledge of the physical dynamics of objects to estimating object motion from vision when estimation from vision alone fails. It differentiates itself from existing physics-based vision by building in robustness to situations where existing visual estimation tends to fail: fast motion, blur, glare, distractors, and partial or full occlusion. A real-time physics simulator is incorporated into a stochastic framework by adding several different models of how noise is injected into the dynamics. Several different algorithms are proposed and experimentally validated on two problems: motion estimation and object tracking. The performance of visual motion estimation from colour histograms of a ball moving in two dimensions is improved considerably when a physics simulator is integrated into a MAP procedure involving non-linear optimisation and RANSAC-like methods. Process noise or initial condition noise in conjunction with a physics-based dynamics results in improved robustness on hard visual problems. A particle filter applied to the task of full 6D visual tracking of the pose an object being pushed by a robot in a table-top environment is improved on difficult visual problems by incorporating a simulator as a dynamics model and injecting noise as forces into the simulator.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore