50,015 research outputs found

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    Drawing the line: balancing the spatial requirements of customer and contractor in occupied refurbishment

    Get PDF
    In planning the refurbishment of railway stations the spatial needs of the contractor and ofthe ongoing business stakeholders have to be balanced. A particular concern is thedisruptive effect of construction works upon pedestrian movement.RaCMIT (Refurbishment and Customer Movement Integration Tool) is a research projectaimed at addressing this problem through combining the knowledge of the client projectmanager, the construction planner and the pedestrian modelling expert.The objective of the research is to develop a decision protocol (based on problemsencountered in two case studies) facilitating optimisation of overall project value to theclient?s business.Research observations as well as current literature suggest that:? for overall decision-making, opportunities may be lost (under current practice) forminimising joint project cost/revenue disruption and? for spatial decision-making, temporary station configuration during construction(and not just overall pedestrian capacity) is a significant variable for both businessand safety outcomes. In planning the refurbishment of railway stations the spatial needs of the contractor and ofthe ongoing business stakeholders have to be balanced. A particular concern is thedisruptive effect of construction works upon pedestrian movement.RaCMIT (Refurbishment and Customer Movement Integration Tool) is a research projectaimed at addressing this problem through combining the knowledge of the client projectmanager, the construction planner and the pedestrian modelling expert.The objective of the research is to develop a decision protocol (based on problemsencountered in two case studies) facilitating optimisation of overall project value to theclient?s business.Research observations as well as current literature suggest that:? for overall decision-making, opportunities may be lost (under current practice) forminimising joint project cost/revenue disruption and? for spatial decision-making, temporary station configuration during construction(and not just overall pedestrian capacity) is a significant variable for both businessand safety outcomes

    An optimization model for multi-biomass tri-generation energy supply

    Get PDF
    In this paper, a decision support system (DSS) for multi-biomass energy conversion applications is presented. The system in question aims at supporting an investor by thoroughly assessing an investment in locally existing multi-biomass exploitation for tri-generation applications (electricity, heating and cooling), in a given area. The approach followed combines use of holistic modelling of the system, including the multi-biomass supply chain, the energy conversion facility and the district heating and cooling network, with optimization of the major investment-related variables to maximize the financial yield of the investment. The consideration of multi-biomass supply chain presents significant potential for cost reduction, by allowing spreading of capital costs and reducing warehousing requirements, especially when seasonal biomass types are concerned. The investment variables concern the location of the bioenergy exploitation facility and its sizing, as well as the types of biomass to be procured, the respective quantities and the maximum collection distance for each type. A hybrid optimization method is employed to overcome the inherent limitations of every single method. The system is demand-driven, meaning that its primary aim is to fully satisfy the energy demand of the customers. Therefore, the model is a practical tool in the hands of an investor to assess and optimize in financial terms an investment aiming at covering real energy demand. optimization is performed taking into account various technical, regulatory, social and logical constraints. The model characteristics and advantages are highlighted through a case study applied to a municipality of Thessaly, Greece. (C) 2008 Elsevier Ltd. All rights reserved

    Growing Shopping Malls and Behavior of Urban Shoppers

    Get PDF
    Shopping malls contribute to business more significantly than traditional markets which were viewed as simple convergence of supply and demand. Shopping malls attract buyers and sellers, and induce customers providing enough time to make choices as well as a recreational means of shopping. However, competition between malls, congestion of markets and traditional shopping centers has led mall developers and management to consider alternative methods to build excitement with customers. This study examines the impact of growing congestion of shopping mall in urban areas on shopping conveniences and shopping behavior. Based on the survey of urban shoppers, the study analyzes the cognitive attributes of the shoppers towards attractiveness of shopping malls and intensity of shopping. The results of the study reveal that ambiance of shopping malls, assortment of stores, sales promotions and comparative economic gains in the mall attract higher customer traffic to the malls.Shopping malls, traditional markets, sales promotion, market ambiance, leisure shopping, recreational services, retailing, market congestion, customer value, consumer behavior

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Evaluation of e-learning web sites using fuzzy axiomatic design based approach

    Get PDF
    High quality web site has been generally recognized as a critical enabler to conduct online business. Numerous studies exist in the literature to measure the business performance in relation to web site quality. In this paper, an axiomatic design based approach for fuzzy group decision making is adopted to evaluate the quality of e-learning web sites. Another multi-criteria decision making technique, namely fuzzy TOPSIS, is applied in order to validate the outcome. The methodology proposed in this paper has the advantage of incorporating requirements and enabling reductions in the problem size, as compared to fuzzy TOPSIS. A case study focusing on Turkish e-learning websites is presented, and based on the empirical findings, managerial implications and recommendations for future research are offered
    • 

    corecore