7,698 research outputs found

    Optimal Facility Location for Interdependent Infrastructure Network Recovery

    Get PDF
    Modern communities heavily depend on critical infrastructure networks such as power, water, transportation, telecommunications, gas, etc. Since daily life requires these networks to be operational, it is important that they are able to withstand or recover quickly from a disruption, a term known as resilience. These infrastructure networks are often dependent on each other for operation. The interdependency of infrastructure networks makes them more vulnerable to disruptive events such as malevolent attacks, natural disasters, and random failures. The operability of these networks may be compromised following a disruptive event such that demand in any given network is not met. To return the networks to some desired level of resilience, work crews must be scheduled to restore certain disrupted elements. The proposed model is a multi-objective mixed-integer programming model that seeks to minimize the total cost of restoration while maximizing the combined resilience of interdependent infrastructure networks. The model may be used to determine where each work crew should originate from following a disruptive event as well as schedule the work crews to restore disrupted network elements over a finite time horizon. This work demonstrates the use of the model through an illustrative example of two interdependent infrastructure networks. Considering four disruption scenarios, this illustrative example shows how recovery may change by varying the number of facilities established for work crews in each network

    SDN Testbed for Evaluation of Large Exo-Atmospheric EMP Attacks

    Get PDF
    Large-scale nuclear electromagnetic pulse (EMP) attacks and natural disasters can cause extensive network failures across wide geographic regions. Although operational networks are designed to handle most single or dual faults, recent efforts have also focused on more capable multi-failure disaster recovery schemes. Concurrently, advances in software-defined networking (SDN) technologies have delivered highly-adaptable frameworks for implementing new and improved service provisioning and recovery paradigms in real-world settings. Hence this study leverages these new innovations to develop a robust disaster recovery (counter-EMP) framework for large backbone networks. Detailed findings from an experimental testbed study are also presented

    An Analysis of Multiple Layered Networks

    Get PDF
    Current infrastructure network models of single functionality do not typically account for the interdependent nature of infrastructure networks. Infrastructure networks are generally modeled individually, as an isolated network or with minimal recognition of interactions. This research develops a methodology to model the individual infrastructure network types while explicitly modeling their interconnected effects. The result is a formulation built with two sets of variables (the original set to model infrastructure characteristics and an additional set representing cuts of interdependent elements). This formulation is decomposed by variable type using Benders Partitioning and solved to optimality using a Benders Partitioning algorithm. Current infrastructure network models of single functionality do not typically account for the interdependent nature of infrastructure networks, Infrastructure networks are generally modeled individually, as an isolated network or with minimal recognition of interactions, This research develops a methodology to model the individual infrastructure network types while explicitly modeling their interconnected effects, The result is a formulation built with two sets of variables (the original set to model infrastructure characteristics and an additional set representing cuts of interdependent elements) This formulation is decomposed by variable type using Benders\u27 Partitioning and solved to optimality using a Benders\u27 Partitioning algorithm

    Graph Theoretical Analysis of the Dynamic Lines of Collaboration Model for Disruption Response

    Get PDF
    The Dynamic Lines of Collaboration (DLOC) model was developed to address the Network-to-Network (N2N) service challenge found in e-Work networks with pervasive connectivity. A variant of the N2N service challenge found in emerging Cyber-Physical Infrastructures (CPI) networks is the collaborative disruption response (CDR) operation under cascading failures. The DLOC model has been validated as an appropriate modelling tool to aid the design of disruption responders in CPIs by eliciting the dynamic relation among the service team when handling service requests from clients in the CPI network

    Merchant Transmission Investment

    Get PDF
    We examine the performance attributes of a merchant transmission investment framework that relies on �market driven� transmission investment to provide the infrastructure to support competitive wholesale markets for electricity. Under a stringent set of assumptions, the merchant investment model appears to solve the natural monopoly problem and the associated need for regulating transmission companies traditionally associated with electric transmission networks. We expand the model to incorporate imperfection in wholesale electricity markets, lumpiness in transmission investment opportunities, stochastic attributes of transmission networks and associated property rights definition issues, the effects of the behaviour system operators and transmission owners on transmission capacity and reliability, co-ordination and bargaining considerations, forward contract, commitment and asset specificity issues. This significantly undermines the attractive properties of the merchant investment model. Relying primarily on a market driven investment framework to govern investment is likely to lead to inefficient investment decisions and undermine the performance of competitive markets

    Design of regenerative supply networks

    Get PDF
    The strategy of environmental impact minimisation has not been effective enough to revert the damage caused to the environment by production systems; a shift is needed towards promoting environmental benefits. These production systems must also cope with disturbances, while ensuring that their function is fulfilled - a capability known as Resilience - to deploy environmental benefits in the long term. Initiatives in the field of Supply Network Design - a specific type of production system - have focused on improving eco-efficiency, proposing eco-effective networks, or enhancing their Resilience. However, it could not be found in the literature any initiative that merge these three approaches, with a focus on environmental regeneration. This thesis aims to contribute in this direction, proposing a procedure to design supply networks that regenerate the environment as it simultaneously fulfil its function. This procedure is approached as an artefact, and Design Science Research Methodology (DSRM) is used for its development. The scientific progress of Sustainable Design (SD) in the context of Operations Management (OM) is mapped through a holistic literature review, based in the ProKnow-C - a methodology to perform bibliometrics and systemic analysis. The Regenerative Supply Network is characterised through the concepts of transdisciplinarity, eco-effectiveness, eco-efficiency and resilience. A definition for the RSND process is proposed, and the RSND procedure is designed, consisting of four stages: (i) description of the network surroundings and identification of a regenerative purpose; (ii) redesign of outputs, inputs and transformation processes; (iii) system conceptualisation, where interactions are depicted using the SocioTechnical and the Socio-Ecological System views, and resilience principles are addressed. (iv), the network environmental and economic performance are optimised, and resilience is quantitatively checked using the Ecosystem Network Analysis. The activities of Demonstration and Evaluation are described in Chapter Four, where the RSND procedure is used to design a household waste management network which regenerates the environment. The regenerative purpose was identified after scrutiny of the Norte Pioneiro region. Twenty-three sites degraded from improper waste disposal were identified; the primary purpose of the waste management network is to regenerate these sites into solar farms, recreational parks or reforested areas. Inputs are identified and outputs are redefined, according to waste recovery options of recyclables sorting, aerobic composting, anaerobic digestion and gasification. Two models were developed: first, a system dynamics model to forecast waste generation, disposal and collection for a 21-year period (2018-2038). Second, a Multi-Scenario, Multi-Period, Multi-Objective, Mixed Integer Linear Programming (MS-MP-MO-MILP) model was developed to solve the capacitated facility location-allocation problem, producing network configurations through two optimisation strategies: maximisation of profit and maximisation of net greenhouse gas (GHG) savings. Economic, environmental and social performance of the solutions obtained for each of the four scenarios are presented and discussed. The main contribution of this research is to show the potential of supply networks to contribute with the regeneration of ecosystems inthe long term, with a sustainable performance in the three dimensions. Limitations and future research are also presented.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)A estratégia de minimização de impactos ambientais não tem sido efetiva suficiente para reverter os danos causados ao meio ambiente por sistemas de produção. É necessário ir além, maximizando os benefícios e engajando-se ativamente na regeneração de ecossistemas degradados. Estes sistemas de produção também devem ser capazes de se adaptar a distúrbios, garantindo o cumprimento da sua função - habilidade denominada de Resiliência - e a manutenção destes benefícios ambientais no longo prazo. Iniciativas voltadas para o projeto de redes de fornecimento - um tipo específico de sistemas de produção - tem focado em melhorar sua eco eficiência, propor definições mais eco-efetivas para estas redes, ou melhorar sua Resiliência. No entanto, nenhuma iniciativa que conjugue estas três abordagens, com enfoque em regeneração ambiental, pode ser encontrada na literatura. Esta tese tem como objetivo contribuir nesta direção, propondo um procedimento para a realização de projeto de redes de fornecimento que promovam a regeneração do meio ambiente enquanto cumprem sua função operacional. Este procedimento foi elaborado utilizando a metodologia de Design Science Research (DSRM). O progresso científico do Projeto Sustentável no contexto da Gestão de Operações foi mapeado em uma revisão de literatura realizada utilizando-se a metodologia ProKnow-C. A Rede de Fornecimento Regenerativa é caracterizada, e o processo de Projeto de Redes de Fornecimento Regenerativas (PRFR) é definido a partir dos conceitos de Redes de Fornecimento Sustentáveis, Projeto de Cadeias de Fornecimento, Abordagem Sistêmica e Projeto Regenerativo. O procedimento PRFR é definido em quatro etapas: (i) descrever os entornos da rede e identificar um propósito regenerativo; (ii) reprojetar as saídas, entradas e processos de transformação; (iii) executar o projeto conceitual do sistema, onde as interações são decompostas, e princípios de resiliência são adotados. No quarto estágio, o desempenho da rede é otimizado, e a resiliência é quantificada e verificada por meio do Ecosystem Network Analysis. O procedimento PRFR é utilizado para projetar uma rede de gestão de resíduos domésticos, cuja função de dar disposição aos resíduos é cumprida, enquanto o meio ambiente é regenerado. O propósito de regeneração é identificado após escrutínio da região do Norte Pioneiro, Paraná. Vinte e três áreas degradadas por descarte inadequado de resíduos foram identificadas; o propósito regenerativo da rede é recuperar estas áreas. Entradas são identificadas e saídas redefinidas, de acordo com os processos de recuperação: seleção, compostagem aeróbica, digestão anaeróbica e gaseificação. Um modelo de sistema dinâmico que prevê o volume de resíduos gerados, descartados e coletados para um período de vinte e um anos (2018-2038) e um modelo de programação linear multi-cenário, multi-período, multiobjetivo, inteira mista (MC-MP-MO-PLIM) foram desenvolvidos, produzindo configurações para a rede por meio da maximização do lucro e da economia líquida na emissão de gases de efeito estufa. Os desempenhos econômico, ambiental e social das soluções obtidas para os quatro cenários são apresentados e discutidos. A principal contribuição desta pesquisa é demonstrar o potencial que redes de fornecimento possuem de regenerar ecossistemas no longoprazo, apresentando um desempenho sustentável nas dimensões econômica, ambiental e social. Limitações e pesquisas futuras também são apresentadas

    Resilience-Driven Post-Disruption Restoration of Interdependent Critical Infrastructure Systems Under Uncertainty: Modeling, Risk-Averse Optimization, and Solution Approaches

    Get PDF
    Critical infrastructure networks (CINs) are the backbone of modern societies, which depend on their continuous and proper functioning. Such infrastructure networks are subjected to different types of inevitable disruptive events which could affect their performance unpredictably and have direct socioeconomic consequences. Therefore, planning for disruptions to CINs has recently shifted from emphasizing pre-disruption phases of prevention and protection to post-disruption studies investigating the ability of critical infrastructures (CIs) to withstand disruptions and recover timely from them. However, post-disruption restoration planning often faces uncertainties associated with the required repair tasks and the accessibility of the underlying transportation network. Such challenges are often overlooked in the CIs resilience literature. Furthermore, CIs are not isolated from each other, but instead, most of them rely on one another for their proper functioning. Hence, the occurrence of a disruption in one CIN could affect other dependent CINs, leading to a more significant adverse impact on communities. Therefore, interdependencies among CINs increase the complexity associated with recovery planning after a disruptive event, making it a more challenging task for decision makers. Recognizing the inevitability of large-scale disruptions to CIs and their impacts on societies, the research objective of this work is to study the recovery of CINs following a disruptive event. Accordingly, the main contributions of the following two research components are to develop: (i) resilience-based post-disruption stochastic restoration optimization models that respect the spatial nature of CIs, (ii) a general framework for scenario-based stochastic models covering scenario generation, selection, and reduction for resilience applications, (iii) stochastic risk-related cost-based restoration modeling approaches to minimize restoration costs of a system of interdependent critical infrastructure networks (ICINs), (iv) flexible restoration strategies of ICINs under uncertainty, and (v) effective solution approaches to the proposed optimization models. The first research component considers developing two-stage risk-related stochastic programming models to schedule repair activities for a disrupted CIN to maximize the system resilience. The stochastic models are developed using a scenario-based optimization technique accounting for the uncertainties of the repair time and travel time spent on the underlying transportation network. To assess the risks associated with post-disruption scheduling plans, a conditional value-at-risk metric is incorporated into the optimization models through the scenario reduction algorithm. The proposed restoration framework is illustrated using the French RTE electric power network. The second research component studies the restoration problem for a system of ICINs following a disruptive event under uncertainty. A two-stage mean-risk stochastic restoration model is proposed to minimize the total cost associated with ICINs unsatisfied demands, repair tasks, and flow. The model assigns and schedules repair tasks to network-specific work crews with consideration of limited time and resources availability. Additionally, the model features flexible restoration strategies including a multicrew assignment for a single component and a multimodal repair setting along with the consideration of full and partial functioning and dependencies between the multi-network components. The proposed model is illustrated using the power and water networks in Shelby County, Tennessee, United States, under two hypothetical earthquakes. Finally, some other topics are discussed for possible future work

    Infrastructured: Opportunistic Infrastructure, Urban Revitalization, and Socioeconomic Reconciliation at Boundaries in Downtown Syracuse, NY.

    Get PDF
    The contention of this thesis is that large-scale infrastructures, such as highway systems, energy networks, or water supply complexes – as well as more abstract infrastructures, such as the infrastructures of capitalism or mercantilism – have, as the ‘harbingers’ of Modernity, an indelible impact upon the lives of the human beings who exist under their influence. Eradicating the traditional way of life that preceded them, these structures provide only one point of reference: the unknown future, in which the human struggles to find an identity. Recent recuperations of infrastructures illustrate how the transformation of former agents of alienation can build community and foster the growth of a vibrant, humane city. In world cities such as Manhattan, Los Angeles, Seoul, as well as smaller cities such as Poughkeepsie, NY, abandoned industrial rail systems, or underused highways, have been transformed into vibrant public spaces, causing the neighboring communities to take on a renewed character and vitality. Syracuse, NY presents an unusually clear illustration of the crippling effects of infrastructure on various urban constituencies. Examples range from the industrial destruction of the city’s waterfront; the isolation of housing projects from food sources; and the use of highways to eradicate or exclude “unfavorable” communities from Syracuse’s urban core. A prime example of the accumulative effect of these malignant strategies lies in an interstitial zone between the Downtown and emergent Near Westside neighborhoods. In this area, an unusual density of infrastructure (namely a rail line, intersection of three main roads, and the Onondaga Creek) exist in close proximity, yet also in complete isolation. Their combined effect is one of a series of barriers, cutting Downtown off from the Near Westside. The specific focus of this project will be to explore how these massive infrastructures could be repurposed/redeployed to transform this marginalized urban zone into a vibrant part of the city, through complex and multi-layered reprogramming, the restoration of public space, and the creation of a pedestrian-traversable landscape. Specifically speaking, I will provide a hypothetical, speculative vision for what the redevelopment of this zone, and the retooling of its definitive barriers, might yield in terms of design, and what the results of such a renewal might have on the broader urban context, while also developing means by which real, small- scale interventions and/or events might occur on the site, yielding real or tangible effects in the immediate term. Meanwhile, through my participation in the “Crisis City” thesis collaborative, I will continue to publicize the issues surrounding my thesis via the group’s blog, and participate in dialogues on challenging the typical academic architectural thesis process. The design manifests itself as a “thick landscape” which has active, remedial properties in terms of rainwater treatment and creek ecology. Instead of the channelized creek, a series of locks, pools, and tanks return the Onondaga Creek, at this portion, closer to the borders it occupied as the Mill Pond as late as 1920. This landscape is organized through a series of horizontal bands, which through different densities of remedial plants organize different paths and zones of activity. Traversing the site and its three barriers (West Street, Onondaga Creek, and the elevated rail line) are four bar-buildings, which are structured as bridges. The programs of the four buildings are as follows: a water filtration and combined-sewer-overflow facility (the “Clinton CSO facility”); a public forum building of auditoria and meeting rooms; a recreational building with a series of seven open-air courtyards which can be flexibly combined or reprogrammed to host playgrounds, basketball courts, musical concerts, film screenings, or farmers markets; and a new facility for the Rescue Mission which provides direct access to a new light rail station at the intersection of Onondaga Avenue and Gifford Street. Finally, I will continue to promote the issues investigated by my thesis, and reach out to community constituents, through my involvement with The Storefront for Syracuse initiative, at http://aias.syr.edu/front a project to bring the research and ideas developed on campus out into the public that they are designed for, to stimulate conversation and debate about the role and obligations of architecture in the urban context
    corecore