224 research outputs found

    GAINE - A Portable Framework for the Development of Edutainment Applications Based on Multitouch and Tangible Interaction

    Get PDF
    In the last few years, Multitouch and Tangible User Interfaces have emerged as a powerful tool to integrate interactive surfaces and responsive spaces that embody digital information. Besides providing a natural interaction with digital contents, they allow the interaction of multiple users at the same time, thus promoting collaborative activities and information sharing. In particular, these characteristics have opened new exploration possibilities in the edutainment context, as witnessed by the many applications successfully developed in different areas, from children’s collaborative learning to interactive storytelling, cultural heritage and medical therapy support. However, due to the availability of different multitouch and tangible interaction technologies and of different target computing platforms, the development and deployment of such applications can be challenging. To this end, in this paper we present GAINE (tanGible Augmented INteraction for Edutainment), a software framework that enables rapid prototyping and development of tangible augmented applications for edutainment purposes. GAINE has two main features. First, it offers developers high-level context specific constructs that significantly reduces the implementation burden. Second, the framework is portable on different operating systems and offers independence from the underlying hardware and tracking technology. In this paper, we also discuss several case studies to show the effectiveness of GAINE in simplifying the development of entertainment and edutainment applications based on multitouch and tangible interaction

    Toward emotional interactive videogames for children with autism spectrum disorder

    Get PDF
    Technology and videogames have been proven as motivating tools for working attention and complex communication skills, especially in children with autism spectrum disorder (ASD). In this work, we present two experiences that used interactive games for promoting communication and attention. The first game considers emotions in order to measure children’s attention, concentration and satisfaction, while the second uses tangible tabletops for fostering cognitive planning. The analysis of the results obtained allows to propose a new study integrating both, in which the tangible interactive game is complemented with the emotional trainer in a way that allows identifying and classifying children’s emotion with ASD when they collaborate to solve cognitively significant and contextualized challenges. The first application proposed is an emotional trainer application in which the child can work out the seven basic emotions (happiness, sadness, fear, disgust, anger, surprise and neutral). Further, a serious videogame is proposed: a 3D maze where the emotions can be captured. The second case study was carried out in a Special Education Center, where a set of activities for working cognitive planning was proposed. In this case, a tangible interactive tabletop was used to analyze, in students with ASD, how the communication processes with these interfaces affect to the attention, memory, successive and simultaneous processing that compose cognitive planning from the PASS model. The results of the first study, suggest that the autistic children did not act with previous planning, but they used their perception to adjust their actions a posteriori (that explains the higher number of collisions). On the second case study, the successive processing was not explored. The inclusion of the mazes of case study 1 to a semantic rich scenario could allow us to measure the prior planning and the emotions involved in the maze game. The new physiological sensors will also help to validate the emotions felt by the children. The first study has as objective the capability to imitate emotions and resolve a maze without semantic context. The second study organized all the actions from a semantic context close to users. The attention results presented by the second study are coherent with the first study and complement it showing that attention can be receptive or selective. In the first study case, the receptive attention was the focus of analysis. In the second case, both contributed to explain and understand how it can be developed from a videogame

    GAINE - tanGible Augmented INteraction for Edutainment

    Get PDF
    Interactive tabletops are gaining an increasing interest since they provide a more natural interaction with digital contents and allow the interaction of multiple users at a time promoting face-to-face collaboration, information sharing and the raise of social experiences. Given the potentialities offered by these devices, several entertainment-edutainment applications based on interactive tabletops have been successfully developed in different areas, from medical therapy support to children’s collaborative learning, interactive storytelling and cultural heritage. However, the development of such applications often requires complex technical and implementation skills. Taking this into consideration, in this paper we present GAINE (tanGible Augmented INteraction for Edutainment), a software framework aimed at the rapid prototyping and development of interactive tabletop games. GAINE offers developers context specific high-level constructs and a simple scripting language that simplifies the implementation task. The framework is portable on different operating systems and offers independence from the underlying hardware. Two practical case studies are thoroughly discussed to show how GAINE can simplify the development of interactive tabletop applications in the entertainment and edutainment contexts

    Subjective User Experience and Performance with Active Tangibles on a Tabletop Interfaces

    Get PDF
    We developed active tangibles (Sensators) that can be used in combination with multitouch tabletops and that can provide multisensory (visual, auditory, and vibrotactile) feedback. For spatial alignment and rotation tasks we measured subjective user experience and objective performance with these Sensators. We found that active feedback increased accuracy in both tasks, for all feedback modalities. Active visual feedback yielded the highest overall subjective user experience and preference scores. Our contribution is that active feedback improves subjectively perceived performance and reduces perceived mental workload. Additionally, our findings indicate that users prefer to be guided by visual signs over auditory and vibrotactile signs

    RoboTable: An Infrastructure for Intuitive Interaction with Mobile Robots in a Mixed-Reality Environment

    Get PDF
    This paper presents the design, development, and testing of a tabletop interface called RoboTable, which is an infrastructure supporting intuitive interaction with both mobile robots and virtual components in a mixed-reality environment. With a flexible software toolkit and specifically developed robots, the platform enables various modes of interaction with mobile robots. Using this platform, prototype applications are developed for two different application domains: RoboPong investigates the efficiency of the RoboTable system in game applications, and ExploreRobot explores the possibility of using robots and intuitive interaction to enhance learning

    Practical, appropriate, empirically-validated guidelines for designing educational games

    Get PDF
    There has recently been a great deal of interest in the potential of computer games to function as innovative educational tools. However, there is very little evidence of games fulfilling that potential. Indeed, the process of merging the disparate goals of education and games design appears problematic, and there are currently no practical guidelines for how to do so in a coherent manner. In this paper, we describe the successful, empirically validated teaching methods developed by behavioural psychologists and point out how they are uniquely suited to take advantage of the benefits that games offer to education. We conclude by proposing some practical steps for designing educational games, based on the techniques of Applied Behaviour Analysis. It is intended that this paper can both focus educational games designers on the features of games that are genuinely useful for education, and also introduce a successful form of teaching that this audience may not yet be familiar with

    Playful User Interfaces:Interfaces that Invite Social and Physical Interaction

    Get PDF

    Exploring the Multi-touch Interaction Design Space for 3D Virtual Objects to Support Procedural Training Tasks

    Get PDF
    Multi-touch interaction has the potential to be an important input method for realistic training in 3D environments. However, multi-touch interaction has not been explored much in 3D tasks, especially when trying to leverage realistic, real-world interaction paradigms. A systematic inquiry into what realistic gestures look like for 3D environments is required to understand how users translate real-world motions to multi-touch motions. Once those gestures are defined, it is important to see how we can leverage those gestures to enhance training tasks. In order to explore the interaction design space for 3D virtual objects, we began by conducting our first study exploring user-defined gestures. From this work we identified a taxonomy and design guidelines for 3D multi-touch gestures and how perspective view plays a role in the chosen gesture. We also identified a desire to use pressure on capacitive touch screens. Since the best way to implement pressure still required some investigation, our second study evaluated two different pressure estimation techniques in two different scenarios. Once we had a taxonomy of gestures we wanted to examine whether implementing these realistic multi-touch interactions in a training environment provided training benefits. Our third study compared multi-touch interaction to standard 2D mouse interaction and to actual physical training and found that multi-touch interaction performed better than 2D mouse and as well as physical training. This study showed us that multi-touch training using a realistic gesture set can perform as well as training on the actual apparatus. One limitation of the first training study was that the user had constrained perspective to allow for us to focus on isolating the gestures. Since users can change their perspective in a real life training scenario and therefore gain spatial knowledge of components, we wanted to see if allowing users to alter their perspective helped or hindered training. Our final study compared training with Unconstrained multi-touch interaction, Constrained multi-touch interaction, or training on the actual physical apparatus. Results show that the Unconstrained multi-touch interaction and the Physical groups had significantly better performance scores than the Constrained multi-touch interaction group, with no significant difference between the Unconstrained multi-touch and Physical groups. Our results demonstrate that allowing users more freedom to manipulate objects as they would in the real world benefits training. In addition to the research already performed, we propose several avenues for future research into the interaction design space for 3D virtual objects that we believe will be of value to researchers and designers of 3D multi-touch training environments

    Tablet for two: How do children collaborate around single player tablet games?

    Get PDF
    Tablet computers are increasingly used in school classrooms. However, despite the fact that these devices are conceived as single-user devices, and most games or apps developed for them are designed for single-users, pairs or groups of students usually use these devices. Surprisingly little research has been done to explore the ways in which these devices support or not children’s collaboration – instead research has focused on larger tabletop computers, or on collaboration around configurations of multiple tablet computers. In this paper we present a case-study analysis of pairs of children playing single player tablet games together. We use a combination of temporal video analysis and the Collaborative Learning Mechanisms (CLM) framework previously developed to understand collaboration around surfaces. This analysis aims to unpack collaborative interactions around these devices and identify ways in which successful and less successful collaborations occur. A comparison of our findings to previous studies of interactions around larger tabletop surfaces reveals some of the ways interactions around tablets differ to these. We use these understandings to begin to outline some of the issues to take into consideration when facilitating and designing for children’s collaboration around single tablet computer
    • …
    corecore