3,494 research outputs found

    Using data visualization to deduce faces expressions

    Get PDF
    Conferência Internacional, realizada na Turquia, de 6-8 de setembro de 2018.Collect and examine in real time multi modal sensor data of a human face, is an important problem in computer vision, with applications in medical and monitoring analysis, entertainment and security. Although its advances, there are still many open issues in terms of the identification of the facial expression. Different algorithms and approaches have been developed to find out patterns and characteristics that can help the automatic expression identification. One way to study data is through data visualizations. Data visualization turns numbers and letters into aesthetically pleasing visuals, making it easy to recognize patterns and find exceptions. In this article, we use information visualization as a tool to analyse data points and find out possible existing patterns in four different facial expressions.info:eu-repo/semantics/publishedVersio

    Integrated electromyogram and eye-gaze tracking cursor control system for computer users with motor disabilities

    Get PDF
    This research pursued the conceptualization, implementation, and testing of a system that allows for computer cursor control without requiring hand movement. The target user group for this system are individuals who are unable to use their hands because of spinal dysfunction or other afflictions. The system inputs consisted of electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an eye-gaze tracking (EGT) system. Each input was processed by an algorithm that produced its own cursor update information. These algorithm outputs were fused to produce an effective and efficient cursor control. Experiments were conducted to compare the performance of EMG/EGT, EGT-only, and mouse cursor controls. The experiments revealed that, although EMG/ EGT control was slower than EGT-only and mouse control, it effectively controlled the cursor without a spatial accuracy limitation and also facilitated a reliable click operation

    Advanced and natural interaction system for motion-impaired users

    Get PDF
    Human-computer interaction is an important area that searches for better and more comfortable systems to promote communication between humans and machines. Vision-based interfaces can offer a more natural and appealing way of communication. Moreover, it can help in the e-accessibility component of the e-inclusion. The aim is to develop a usable system, that is, the end-user must consider the use of this device effective, efficient and satisfactory. The research's main contribution is SINA, a hands-free interface based on computer vision techniques for motion impaired users. This interface does not require the user to use his upper body limbs, as only nose motion is considered. Besides the technical aspect, user's satisfaction when using an interface is a critical issue. The approach that we have adopted is to integrate usability evaluation at relevant points of the software developmen

    Discovering Clusters in Motion Time-Series Data

    Full text link
    A new approach is proposed for clustering time-series data. The approach can be used to discover groupings of similar object motions that were observed in a video collection. A finite mixture of hidden Markov models (HMMs) is fitted to the motion data using the expectation-maximization (EM) framework. Previous approaches for HMM-based clustering employ a k-means formulation, where each sequence is assigned to only a single HMM. In contrast, the formulation presented in this paper allows each sequence to belong to more than a single HMM with some probability, and the hard decision about the sequence class membership can be deferred until a later time when such a decision is required. Experiments with simulated data demonstrate the benefit of using this EM-based approach when there is more "overlap" in the processes generating the data. Experiments with real data show the promising potential of HMM-based motion clustering in a number of applications.Office of Naval Research (N000140310108, N000140110444); National Science Foundation (IIS-0208876, CAREER Award 0133825
    corecore