78,974 research outputs found

    Multi-Metric Evaluation of Thermal-to-Visual Face Recognition

    Full text link
    In this paper, we aim to address the problem of heterogeneous or cross-spectral face recognition using machine learning to synthesize visual spectrum face from infrared images. The synthesis of visual-band face images allows for more optimal extraction of facial features to be used for face identification and/or verification. We explore the ability to use Generative Adversarial Networks (GANs) for face image synthesis, and examine the performance of these images using pre-trained Convolutional Neural Networks (CNNs). The features extracted using CNNs are applied in face identification and verification. We explore the performance in terms of acceptance rate when using various similarity measures for face verification

    Local Line Binary Pattern for Feature Extraction on Palm Vein Recognition

    Get PDF
    In recent years, palm vein recognition has been studied to overcome problems in conventional systems in biometrics technology (finger print, face, and iris). Those problems in biometrics includes convenience and performance. However, due to the clarity of the palm vein image, the veins could not be segmented properly. To overcome this problem, we propose a palm vein recognition system using Local Line Binary Pattern (LLBP) method that can extract robust features from the palm vein images that has unclear veins. LLBP is an advanced method of Local Binary Pattern (LBP), a texture descriptor based on the gray level comparison of a neighborhood of pixels. There are four major steps in this paper, Region of Interest (ROI) detection, image preprocessing, features extraction using LLBP method, and matching using Fuzzy k-NN classifier. The proposed method was applied on the CASIA Multi-Spectral Image Database. Experimental results showed that the proposed method using LLBP has a good performance with recognition accuracy of 97.3%. In the future, experiments will be conducted to observe which parameter that could affect processing time and recognition accuracy of LLBP is neede

    Convolutional neural network extreme learning machine for effective classification of hyperspectral images

    Get PDF
    Due to its excellent performance in terms of fast implementation, strong generalization capability and straightforward solution, extreme learning machine (ELM) has attracted increasingly attentions in pattern recognition such as face recognition and hyperspectral image (HSI) classification. However, the performance of ELM for HSI classification remains a challenging problem especially in effective extraction of the featured information from the massive volume of data. To this end, we propose in this paper a new method to combine Convolutional neural network (CNN) with ELM (CNN-ELM) for HSI classification. As CNN has been successfully applied for feature extraction in different applications, the combined CNN-ELM approach aims to take advantages of these two techniques for improved classification of HSI. By preserving the spatial features whilst reconstructing the spectral features of HSI, the proposed CNN-ELM method can significantly improve the accuracy of HSI classification without increasing the computational complexity. Comprehensive experiments using three publicly available HSI data sets, Pavia University, Pavia center, and Salinas have fully validated the improved performance of the proposed method when benchmarking with several state-of-the-art approaches

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Polarimetric Thermal to Visible Face Verification via Self-Attention Guided Synthesis

    Full text link
    Polarimetric thermal to visible face verification entails matching two images that contain significant domain differences. Several recent approaches have attempted to synthesize visible faces from thermal images for cross-modal matching. In this paper, we take a different approach in which rather than focusing only on synthesizing visible faces from thermal faces, we also propose to synthesize thermal faces from visible faces. Our intuition is based on the fact that thermal images also contain some discriminative information about the person for verification. Deep features from a pre-trained Convolutional Neural Network (CNN) are extracted from the original as well as the synthesized images. These features are then fused to generate a template which is then used for verification. The proposed synthesis network is based on the self-attention generative adversarial network (SAGAN) which essentially allows efficient attention-guided image synthesis. Extensive experiments on the ARL polarimetric thermal face dataset demonstrate that the proposed method achieves state-of-the-art performance.Comment: This work is accepted at the 12th IAPR International Conference On Biometrics (ICB 2019
    • …
    corecore